
1/6

December 23, 2020

Learn to quickly detect RC4 encryption in (malicious)
binaries

0xc0decafe.com/2020/12/23/detect-rc4-in-malicious-binaries

RC4 (also known as ARC4) is a simple stream cipher. It was designed in the late 1980s and
its internals became known to the public in the mid-1990s. While it is a very simple and fast
crypto algorithm, security researchers have discovered multiple flaws in it throughout the
years. Today, it is just another broken stream cipher.

However, it is still used by software systems in the wild. Many malware families use it for
encryption or better said: just for obfuscation purposes. Due to its simplicity and speed,
malware authors embed it directly in their source code or statically link it into their binaries.
For instance, ZLoader utilizes it to decrypt its configuration and Smokeloader encrypts its
network traffic with this stream cipher.

Even though they could utilize one of the crypto APIs offered by Windows like the WinCrypt*
functions, malware authors likely prefer this way as another way to ensure malware analysts’
job security.

https://0xc0decafe.com/2020/12/23/detect-rc4-in-malicious-binaries
https://en.wikipedia.org/wiki/RC4
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptencrypt

2/6

In contrast to other ciphers, RC4 does not rely on any constants that make it easy for tools
like findcrypt-yara to detect it in the binary. Nevertheless, tools like capa that take the
assembly code structure of the binary into account are capable of detecting RC4. More on
how capa does this later on.

Detection possibility: Key-Scheduling Algorithm (KSA)

While explaining RC4 is out of scope of this blog post (Wikipedia does a great job!), one of
the most interesting parts of the algorithm is Key-Scheduling Algorithm (KSA). In a nutshell, it
initializes an internal array based on the provided key that is later utilized by another
algorithm to encrypt / decrypt. In pseudo code KSA looks like this (taken from Wikipedia):

for i from 0 to 255
 S[i] := i
endfor
j := 0
for i from 0 to 255
 j := (j + S[i] + key[i mod keylength]) mod 256
 swap values of S[i] and S[j]
endfor

The internal array S contains all possible byte values from 0x00 to 0xFF . It is permuted in
the KSA. This usually compiles down to something like the following:

https://github.com/polymorf/findcrypt-yara
https://github.com/fireeye/capa
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Modulo_operation

3/6

The first and second blocks are the actual KSA. Note the two cmp instructions (cmp eax,
100h and cmp r9d, 100h). These are part of the two for loops are seen in the pseudo-
code (lines 1 and 5). The third block is the Pseudo-random generation algorithm (PRGA)
used to encrypt/decrypt the plain/ciphertext. I won’t go much more into the details of the
PRGA, please refer to the great Wikipedia article on RC4.

Detect RC4 encryption with yara

These two for loops in the KSA are something where we could detect the presence of
RC4 in the binary. But mind possible false positives! For years, I utilized a simple yara rule to
detect this stream cipher.

https://en.wikipedia.org/wiki/RC4

4/6

rule rc4_ksa
{
 meta:
 author = "Thomas Barabosch"
 description = "Searches potential setup loops of RC4's KSA"
 strings:
 $s0 = { 3d 00 01 00 00 } // cmp eax, 256
 $s1 = { 81 f? 00 01 00 00 } // cmp {ebx, ecx, edx}, 256
 $s2 = { 48 3d 00 01 00 00 } // cmp rax, 256
 $s3 = { 48 81 f? 00 01 00 00 } // cmp {rbx, rcx, …}, 256
 condition:
 any of them
}

As you can see, this rule targets exactly the cmp instructions found in the KSA. While there
may be better ways to do this, this is still a very fast approximation.

Detect RC4 encryption with capa

Nowadays, we have tools like capa that do a better job. But how does capa does it? I’ve
promised to tell you: on one side, capa detects if a binary is linked against OpenSSL or
imports WinCrypt functions. This is trivial as you can see in the rule linked-against-
openssl.yml, which performs simple string matching:

rule:
 meta:
 name: linked against OpenSSL
 namespace: linking/static/openssl
 author: william.ballenthin@fireeye.com
 scope: file
 examples:
 - 6cc148363200798a12091b97a17181a1
 features:
 - or:
 - string: RC4 for x86_64, CRYPTOGAMS by <appro@openssl.org>
 - string: AES for x86_64, CRYPTOGAMS by <appro@openssl.org>
 - string: DSA-SHA1-old

On the other side, capa detects the KSA and PRGA algorithms of RC4 based on the
assembly. This is more interesting since capa takes the structure of the binary into account.
The rule encrypt-data-using-rc4-ksa.yml detects the KSA as follows:

https://github.com/fireeye/capa-rules/blob/1ff994f7916d66e39b4b5b8dbb310d0e0b051f7f/linking/static/openssl/linked-against-openssl.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-via-winapi.yml
https://github.com/fireeye/capa-rules/blob/1ff994f7916d66e39b4b5b8dbb310d0e0b051f7f/linking/static/openssl/linked-against-openssl.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-ksa.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-prga.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-ksa.yml

5/6

rule:
 meta:
 name: encrypt data using RC4 KSA
 namespace: data-manipulation/encryption/rc4
 author: moritz.raabe@fireeye.com
 scope: function
 att&ck:
 - Defense Evasion::Obfuscated Files or Information [T1027]
 mbc:
 - Cryptography::Encrypt Data::RC4 [C0027.009]
 - Cryptography::Encryption Key::RC4 KSA [C0028.002]
 examples:
 - 34404A3FB9804977C6AB86CB991FB130:0x403D40
 - C805528F6844D7CAF5793C025B56F67D:0x4067AE
 - 9324D1A8AE37A36AE560C37448C9705A:0x404950
 - 782A48821D88060ADF0F7EF3E8759FEE3DDAD49E942DAAD18C5AF8AE0E9EB51E:0x405C42
 - 73CE04892E5F39EC82B00C02FC04C70F:0x40646E
 features:
 - or:
 - and:
 - basic block:
 - and:
 - description: initialize S
 # misses if regular loop is used,
 # however we cannot model that a loop contains a certain number
 - characteristic: tight loop
 - or:
 - number: 0xFF
 - number: 0x100
 - or:
 - match: calculate modulo 256 via x86 assembly
 # compiler may do this via zero-extended mov from 8-bit register
 - count(mnemonic(movzx)): 2 or more
 - or:
 - description: modulo key length
 - mnemonic: div
 - mnemonic: idiv
 - and:
 - description: optimized, writes DWORDs instead of bytes
 - or:
 - number: 0xFFFEFDFC
 - mnemonic: sub
 - or:
 - number: 0x03020100
 - mnemonic: add
 - number: 0x4040404

capa detects RC4 in two ways. The first way consists of three parts (lines 20-29).

a basic block with a tight loop counting to 0xFF or 0x100
a match against another rule calculate modulo 256 via x86 assembly or two or more
movzx mnemonics

6/6

either a div or a idiv mnemonics that are utilized by the KSA for the module of
keylength (see pseudo algorithm of KSA)

The second way detects optimizations where instead of bytes DWORDs are written by the
KSA (lines 38-46). For instance, the password cracker John optimizes the KSA like this (see
opencl_rc4.h). It comprises an initialized array of 64 DWORDs:

#ifdef RC4_IV32
__constant uint rc4_iv[64] = { 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
 0x23222120, 0x27262524, 0x2b2a2928, 0x2f2e2d2c,
 0x33323130, 0x37363534, 0x3b3a3938, 0x3f3e3d3c,
 0x43424140, 0x47464544, 0x4b4a4948, 0x4f4e4d4c,
 0x53525150, 0x57565554, 0x5b5a5958, 0x5f5e5d5c,
 0x63626160, 0x67666564, 0x6b6a6968, 0x6f6e6d6c,
 0x73727170, 0x77767574, 0x7b7a7978, 0x7f7e7d7c,
 0x83828180, 0x87868584, 0x8b8a8988, 0x8f8e8d8c,
 0x93929190, 0x97969594, 0x9b9a9998, 0x9f9e9d9c,
 0xa3a2a1a0, 0xa7a6a5a4, 0xabaaa9a8, 0xafaeadac,
 0xb3b2b1b0, 0xb7b6b5b4, 0xbbbab9b8, 0xbfbebdbc,
 0xc3c2c1c0, 0xc7c6c5c4, 0xcbcac9c8, 0xcfcecdcc,
 0xd3d2d1d0, 0xd7d6d5d4, 0xdbdad9d8, 0xdfdedddc,
 0xe3e2e1e0, 0xe7e6e5e4, 0xebeae9e8, 0xefeeedec,
 0xf3f2f1f0, 0xf7f6f5f4, 0xfbfaf9f8, 0xfffefdfc };
#endif

Now we can understand where the constants 0xFFFEFDFC and 0x03020100 come from.
Such an optimized version of RC4 was actually utilized in the original XBOX bootloader
(there we can also see the utilization of the DWORD 0x4040404).

Let me tell you a tiny anecdote. A couple of years ago, a junior coworker reversed the whole
RC4 algorithm in a malicious binary and told some colleagues and me that they analyzed a
custom crypto algorithm. We told them that this was just plain old RC4. The coworker was a
little bit upset but they likely learned a lot from their tiny adventure in RC4. I hope that now
you are capable of spotting RC4 in (malicious) binaries and I’ve just saved you a couple of
hours of reversing.

https://github.com/openwall/john/blob/b81ed703ceb7ca62df50c2fa0d4ea366ef713a4a/run/opencl/opencl_rc4.h
https://mborgerson.com/deconstructing-the-xbox-boot-rom/

