Learn to quickly detect RC4 encryption in (malicious)
binaries

0xc0decafe.com/2020/12/23/detect-rc4-in-malicious-binaries

December 23, 2020

RC4 (also known as ARC4) is a simple stream cipher. It was designed in the late 1980s and
its internals became known to the public in the mid-1990s. While it is a very simple and fast
crypto algorithm, security researchers have discovered multiple flaws in it throughout the
years. Today, it is just another broken stream cipher.

However, it is still used by software systems in the wild. Many malware families use it for
encryption or better said: just for obfuscation purposes. Due to its simplicity and speed,
malware authors embed it directly in their source code or statically link it into their binaries.
For instance, ZLoader utilizes it to decrypt its configuration and Smokeloader encrypts its
network traffic with this stream cipher.

Even though they could utilize one of the crypto APlIs offered by Windows like the WinCrypt*
functions, malware authors likely prefer this way as another way to ensure malware analysts’
job security.

1/6

https://0xc0decafe.com/2020/12/23/detect-rc4-in-malicious-binaries
https://en.wikipedia.org/wiki/RC4
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptencrypt

In contrast to other ciphers, RC4 does not rely on any constants that make it easy for tools
like findcrypt-yara to detect it in the binary. Nevertheless, tools like capa that take the
assembly code structure of the binary into account are capable of detecting RC4. More on
how capa does this later on.

Detection possibility: Key-Scheduling Algorithm (KSA)

While explaining RC4 is out of scope of this blog post (Wikipedia does a great job!), one of
the most interesting parts of the algorithm is Key-Scheduling Algorithm (KSA). In a nutshell, it
initializes an internal array based on the provided key that is later utilized by another
algorithm to encrypt / decrypt. In pseudo code KSA looks like this (taken from Wikipedia):

for i from 0 to 255

S[i] = 1
endfor
j =0

for i from 0 to 255
j = (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[]j]

endfor

The internal array S contains all possible byte values from 0x00 to 0xFF . Itis permuted in
the KSA. This usually compiles down to something like the following:

2/6

https://github.com/polymorf/findcrypt-yara
https://github.com/fireeye/capa
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Modulo_operation

0000ED5276

0000Q0EDS5276 41 88 03
0000ED5279 FF CO
0000EDS527B 49 FF C3
0000EDS527E 3D 00 01 00 00
0000QED5283 72 F1
0000ED5285 45 8B F2
0000ED5288 45 8B CA
000QEDS528B 40 OF B6 F6
O000ED528F 4C 8D 1C 24
0000ED5293

0000QED5293

0000ED5293 45 OF B6 03
0000ED5297 33 D2
0000ED5299 41 8B Cl
0000ED529C F7 F6
O000EDSZ9E 41 FF C1
0000Q0EDS2A1 OF B6 0C 2A
0O000EDS52A5 41 03 CE
0000ED52AR8 41 03 C8
O000EDS52AE 44 OF B6 F1
O00QEDS2AF 42 8A 04 34
0000ED52B3 41 88 03
0000ED52B6 49 FF C3
O00Q0EDS2BY 46 88 04 34

0000ED52BD 41 81 F9 00 01 00 00

0000ED52C4 72 CD
0000ED52C6 45 8B CA
0000ED52C9 85 DB
0000EDS2CB 74 3B
0000ED5S2CD 4C 8B DB
0000ED52D0

0000EDS52D0

0000ED52D0 41 8D 41 01
0000Q0ED52D4 44 OF B6 CB
0000ED52D8 42 OF E6 14 0OC
0000EDS52DD 41 8D 04 12
0000Q0EDS2E1l 44 OF B6 DO
O0O00OED5ZES 42 8A 04 14
0000EDS52E9 42 88 04 0OcC
OQ00QEDS2ED 42 88 14 14
0O000ED52F1 42 OF E6 OC 0OC
0000ED52F6 03 CA
000QEDS2F8 OF B6 Cl
O000EDS52FB 8A OC 04
O000EDSZFE 30 OF
O000ED5300 48 FF C7
0000QEDS53203 49 FF CB
0000ED5306 75 C8

loc_ED5276:

loc_ED5293:

loc_ED52DO0:

mov
ine
inc
cmp
ib
mov
mov
MOVIX
lea

MoVIX
XOr
mov
div
inc
MOVEX
add
add
MOVEX
mov
mov
ine
mov
cmp
ib
mov
test
jz
mov

lea
MOVIX
MOVIX
lea
MOVIX
mov
mov
mov
MoVIX
add
MOVEX
mov
XOr
inec
dec
jnz

; CODE XREF:
[r11], al
eax
rll
eax, 100h
short loc EDS5276
rldd, rlod
r9d, rlod
esi, =il

rll, [rsp+l108h+var_108]

;i CODE XREF:

r8d, byte ptr [rll]

edx, edx

eax, r9d

esi

r9d

ecx, byte ptr [rdx+rbp]
ecx, rldd

ecx, r8d

rldd, <l

al, [rsp+rld4+l108h+var_108]
[r11], al

rll
[csp+rl4+108h+var_ 108], r8b
r9d, 100h

short loc_ED5293

r9d, rlod

ebx, ebx

short loc_EDS5308
rll, rbx

; CODE XREF:

eax, [r%+1]

r9d, al

edx, [rsp+r9+108h+var_108]
eax, [rl0+rdx]

rlod, al

al, [rsp+rl0+108h+var_108]
[rsp+r9+108h+var_108], al
[csp+rl0+108h+var_ 108], dl
ecx, [rsp+r9+108h+var_108]
ecx, edx

eax, cl

cl, [rsp+rax+l108h+var_108]
[kdi], el

rdi

rll

short loc_EDS52D0

rcd+3F+j

rcd+80473

red+C24j

The first and second blocks are the actual KSA. Note the two cmp instructions (cmp eax,
100h and cmp r9d, 100h). These are part of the two for loops are seen in the pseudo-
code (lines 1 and 5). The third block is the Pseudo-random generation algorithm (PRGA)
used to encrypt/decrypt the plain/ciphertext. | won’t go much more into the details of the
PRGA, please refer to the great Wikipedia article on RC4.

Detect RC4 encryption with yara

These two for loops in the KSA are something where we could detect the presence of

RC4 in the binary. But mind possible false positives! For years, | utilized a simple yara rule to

detect this stream cipher.

3/6

https://en.wikipedia.org/wiki/RC4

rule rc4_ksa

{
meta:
author = "Thomas Barabosch"
description = "Searches potential setup loops of RC4's KSA"
strings:
$s0 = { 3d 00 01 00 00 } // cmp eax, 256
$s1 = { 81 f? 00 01 00 00 } // cmp {ebx, ecx, edx}, 256
$s2 = { 48 3d 00 01 00 0O } // cmp rax, 256
$s3 = { 48 81 f? 00 01 00 00 } // cmp {rbx, rcx, ..}, 256
condition:
any of them
}

As you can see, this rule targets exactly the cmp instructions found in the KSA. While there
may be better ways to do this, this is still a very fast approximation.

Detect RC4 encryption with capa

Nowadays, we have tools like capa that do a better job. But how does capa does it? I've
promised to tell you: on one side, capa detects if a binary is linked against OpenSSL or
imports WinCrypt functions. This is trivial as you can see in the rule linked-against-
openssl.yml, which performs simple string matching:

rule:
meta:
name: linked against OpenSSL
namespace: linking/static/openssl
author: william.ballenthin@fireeye.com
scope: file
examples:
- 6cc148363200798a12091b97a17181al
features:
- or:
- string: RC4 for x86_64, CRYPTOGAMS by <appro@openssl.org>
- string: AES for x86_64, CRYPTOGAMS by <appro@openssl.org>
- string: DSA-SHA1l-o0ld

On the other side, capa detects the KSA and PRGA algorithms of RC4 based on the
assembly. This is more interesting since capa takes the structure of the binary into account.
The rule encrypt-data-using-rc4-ksa.yml detects the KSA as follows:

4/6

https://github.com/fireeye/capa-rules/blob/1ff994f7916d66e39b4b5b8dbb310d0e0b051f7f/linking/static/openssl/linked-against-openssl.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-via-winapi.yml
https://github.com/fireeye/capa-rules/blob/1ff994f7916d66e39b4b5b8dbb310d0e0b051f7f/linking/static/openssl/linked-against-openssl.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-ksa.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-prga.yml
https://github.com/fireeye/capa-rules/blob/7c59ad39d138467fe67ab79532714b8fa7efede0/data-manipulation/encryption/rc4/encrypt-data-using-rc4-ksa.yml

rule:
meta:

name: encrypt data using RC4 KSA

namespace: data-manipulation/encryption/rc4
author: moritz.raabe@fireeye.com

scope: function

atteack:

mbc:

Defense Evasion::0Obfuscated Files or Information [T1027]

Cryptography: :Encrypt Data::RC4 [C0027.009]
Cryptography: :Encryption Key::RC4 KSA [C0028.002]

examples:

34404A3FB9804977C6AB86CB991FB130 : 0x403D40
C805528F6844D7CAF5793C025B56F67D : 0X4067AE
9324D1A8AE37A36AE560C37448C9705A:0x404950

782A48821D8806OADFOF7EF3E8759FEE3SDDAD49E942DAAD18C5AF8AEOEQEBSIE : 0X405C42

73CEO4892E5F39EC82BOOCO2FCO4C70F : 0X40646E

features:
- or:
- and:

- basic block:
- and:
- description: initialize S
misses if regular loop is used,
however we cannot model that a loop contains a certain number
characteristic: tight loop
- or:
- number: OxFF
- number: 0x100
- or:
- match: calculate modulo 256 via x86 assembly
compiler may do this via zero-extended mov from 8-bit register
- count(mnemonic(movzx)): 2 or more

- or:

description: modulo key length
mnemonic: div
- mnemonic: idiv

- and:

- description: optimized, writes DWORDs instead of bytes
- or:

- number: OXFFFEFDFC
- mnemonic: sub

- or:

- number: 0x03020100
- mnemonic: add

- number: 0x4040404

capa detects RC4 in two ways. The first way consists of three parts (lines 20-29).

¢ a basic block with a tight loop counting to OxFF or 0x100

e a match against another rule calculate modulo 256 via x86 assembly or two or more

movzx mnemonics

5/6

e eithera div ora idiv mnemonics that are utilized by the KSA for the module of
keylength (see pseudo algorithm of KSA)

The second way detects optimizations where instead of bytes DWORDs are written by the
KSA (lines 38-46). For instance, the password cracker John optimizes the KSA like this (see
opencl_rc4.h). It comprises an initialized array of 64 DWORDs:

#ifdef RC4_IV32

__constant uint rc4_iv[64] = { 0x03020100, 0x07060504, 0x0b0a0908, 0x0fOeOdOC,
0x13121110, ©x17161514, 0x1b1a1918, 0x1fileldic,
0x23222120, 0x27262524, 0x2b2a2928, 0x2f2e2d2c,
0x33323130, 0x37363534, 0x3bh3a3938, 0x3f3e3d3c,
0x43424140, 0x47464544, 0x4b4a4948, 0x4fdedd4c,
0x53525150, 0x57565554, 0x5b5a5958, Ox5f5e5d5c,
0x63626160, 0x67666564, Ox6b6a6968, Ox6f6e6d6C,
OX73727170, Ox77767574, 0x7b7a7978, 0Ox7f7e7d7c,
0x83828180, ©x87868584, 0x8b8a8988, 0x8f8e8d8c,
0x93929190, ©x97969594, 0x9b9a9998, 0x9f9e9d9c,
Oxa3a2alal, Oxa7a6ab5a4, Oxabaaa9a8, 0xafaeadac,
Oxb3b2b1b0, Oxb7b6b5b4, Oxbbbab9b8, 0xbfbebdbc,
0xc3c2clcO, 0xc7c6ce5c4, Oxchcac9c8, Oxcfcecdcc,
0xd3d2d1do, Oxd7d6d5d4, Oxdbdad9d8, Oxdfdedddc,
Oxe3e2eled, Oxe7e6e5e4, Oxebeae9e8, 0Oxefeeedec,
Oxf3f2f1fo, oxf7f6fs5f4, oOxfbfafof8, oxfffefdfc };

#endif

Now we can understand where the constants OxFFFEFDFC and 0x03020100 come from.
Such an optimized version of RC4 was actually utilized in the original XBOX bootloader
(there we can also see the utilization of the DWORD 0x4040404).

Let me tell you a tiny anecdote. A couple of years ago, a junior coworker reversed the whole
RC4 algorithm in a malicious binary and told some colleagues and me that they analyzed a
custom crypto algorithm. We told them that this was just plain old RC4. The coworker was a
little bit upset but they likely learned a lot from their tiny adventure in RC4. | hope that now
you are capable of spotting RC4 in (malicious) binaries and I've just saved you a couple of
hours of reversing.

6/6

https://github.com/openwall/john/blob/b81ed703ceb7ca62df50c2fa0d4ea366ef713a4a/run/opencl/opencl_rc4.h
https://mborgerson.com/deconstructing-the-xbox-boot-rom/

