
1/15

December 22, 2020

SUNBURST, TEARDROP and the NetSec New Normal
research.checkpoint.com/2020/sunburst-teardrop-and-the-netsec-new-normal/

December 22, 2020

Foreword

In December 2020, a large-scale cyberattack targeting many organizations – predominantly
tech companies, mainly in the United States, but not only there – was discovered to have
been going on for several months. The attack was of a degree of sophistication that led to a
quick consensus of involvement by a foreign government, and was extraordinary in both the
amount of care taken in crafting it and the exotic vector of entry; instead of the usual phishing
or even exploitation, the attackers carried out an elaborate supply chain attack. In this post,
we share a focused analysis of some choice features of the backdoor used (SUNBURST)
and one of its payloads (TEARDROP), including an exhaustive deobfuscation of
SUNBURST’s hashes encoding strings and an analysis of TEARDROP’s control flow and
decryption method; and we share our perspective on what these findings say about the
attack and the people behind it, as well as what bearing this attack has on the future of
network security in general.

Introduction

https://research.checkpoint.com/2020/sunburst-teardrop-and-the-netsec-new-normal/

2/15

Here’s a story you might have heard already: Mr. Exemplary CISO wakes up early one
morning and goes to work as usual, a spring in his step and a bunch of one-time recovery
passwords in his wallet that he never ever loses. He reaches the lobby, swipes his smart
card which performs an Adi-Shamir-Level challenge-response scheme, and walks past
reception where shoulder-surfers are shot on sight. He boots up his laptop, types the BIOS
password which is three sentences from Moby Dick, presents his retina for scanning and
waits patiently as the mail exchange server remotely verifies the integrity of his laptop down
to the network card circuit design. A spear-phishing email reaches 40 of his colleagues, all of
whom report the incident then delete the email without consciously registering the event.
Somewhere on the third floor the signing certificate for a certain device driver expires, and
the offending server spontaneously combusts, as per protocol. Just when he thinks life can’t
get any better, Mr. Exemplary CISO receives one of his favorite things in the world: A
software update notification. The updated DLL is signed with the right certificate, its hash had
never been seen before, it’s almost identical byte-for-byte to the one sent last version, its
sandbox run produces no suspicious behavior; and so the update is installed, and Mr.
Exemplary CISO’s organization is, how goes the parlance, “pwned”, because the software
supplier’s production server was compromised — via social engineering, an unpatched 1-day
vulnerability or the admin password being password123 , pick your favorite — and so a
sufficiently clever attacker could access that server and flawlessly arrange all the above.

There are so many ways that sufficiently clever attackers could make all our lives miserable,
but usually don’t, and this whole ordeal is a somber reminder of that. President of Microsoft,
Brad Smith, put it this way: “This is not ‘espionage as usual,’ even in the digital age [..] this is
not just an attack on specific targets, but on the trust and reliability of the world’s critical
infrastructure”. We’re not quite as eloquent and will just say that this isn’t the Sony hack and
it can’t be dismissed with “don’t click update later, don’t click enable macros“. To deflect
future attacks of this sort, defenders will have to get technical, get creative, and be willing to
make trade-offs that would have seemed wasteful and paranoid before. Somewhere, the
author of your favorite banking Trojan just read this news, raised an eyebrow and said “hey,
will someone run me a port scan on notepad-plus-plus.org “. Even if every vendor of
every popular piece of software does become hyper-vigilant now, we all can’t get too
complacent trusting in their hyper-vigilance. That’s what we mean by the threat of a “NetSec
New Normal”: an unsettling step into a future of zero trust.

SUNBURST and the Art of Tactical Retreat

Technical details of the SUNBURST backdoor are widely available now in greater abundance
than you will ever require, which puts us at liberty to focus on one feature that interests us
and perhaps hasn’t been drilled into quite like the others: The backdoor’s elaborate evasion
scheme.

https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/
https://www.trendmicro.com/en_us/research/20/l/overview-of-recent-sunburst-targeted-attacks.html
https://blogs.microsoft.com/on-the-issues/2020/12/17/cyberattacks-cybersecurity-solarwinds-fireeye/

3/15

The evasions employed by SUNBURST are similar in concept to sandbox evasions.
Sandbox evasions are engineered to make sure that the malware doesn’t run on virtual
machines designed to detect malware; SUNBURST’s evasions are engineered to make sure
that the malware doesn’t run on machines belonging to people who have thought of the word
“malware” in the last thirty days. We’ve seen malware that includes blacklists of forensic
tools, AV processes and such — but 1. Usually these blacklists were used to violently
smother these processes instead of opting not to run the malware at all; and 2. None of them
were half as comprehensive as this one. The list is an OCD-level of thorough and can be
legitimately used as a resource for reverse engineers to be acquainted with new tools (ever
heard of pdfstreamdumper? Well, you have now).

In-line with the overall theme of not wanting to be seen, this blacklist is not given in the form
of an array of readable strings. Rather, the readable strings are replaced with FNV-1a hash
values. This alone has been an occasional malware feature for years now (except the
hipster-ish use of FNV-1a instead of SHA256, or even CRC32 checksums), but the feature
that really stands out here is the dedication to maintaining an illusion of code legitimacy even
when under direct review. The below code literally attempts to use a Jedi mind trick on the
reader: “This is not the malware you are looking for, move along”. The list of processes to
blacklist is a “service list” belonging to the “Orion Improvement Business Layer”, and these
aren’t hash values of process names associated with AV engines — they are “timestamps”.

The authors weren’t satisfied with just blacklisting processes and services. They also made
sure to blacklist some device drivers and entire ranges of IP addresses (by translating the
infected machine’s IP to a domain name and including domain names in the blacklist), a
feature that was used to blacklist all internal Solarwinds domains. This teaches us that not

https://evasions.checkpoint.com/
https://github.com/dzzie/pdfstreamdumper
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1_hash
https://twitter.com/megabeets_/status/1339308801112027138

4/15

only the attackers decided to use Solarwinds as a Uber to get to their targets, they also
learned in-detail the topology of Solarwinds’ internal networks to evade the prying eyes of
vigilant employees. In total, the list of hash-encoded strings embedded in SUNBURST is a
paranoid manifesto of over 200 domains, providers and services that SUNBURST will just
flatly refuse to deal with. Mark Russinovich put it tersely, saying that the attackers are “afraid
of sysinternals“. Which goes to show, even the most advanced and persistent of attackers
don’t believe themselves to be invincible — they believe in being just invincible enough, and
above all, in not tempting fate.

The full list of FNV-1a obfuscated strings included in SUNBURST is available in Addeneum I.

TEARDROP and Settling for the Ordinary

This attack was, no doubt, an incredible technical achievement on a large scale. Check Point
Threatcloud telemetry shows over 250 organizations that were infected with the SolarWinds
backdoor, half of which are in the United States. The attackers dotted their i’s and crossed
their t’s: they made sure to follow Solarwinds’ coding convention when pushing malicious
code; they included a “logic bomb” in their initial payload to delay malicious activity a full two
weeks from initial infection, and fool dynamic analysis; they limited their lateral movement to
legitimate-seeming operations made with stolen, but valid, user credentials. For all these
reasons, it’s noteworthy that this Übermensch-tier attack was used to deploy TEARDROP, a
merely human malware dropper.

At the time of discovery TEARDROP was a novel concoction: never-before-seen, possibly
even tailor-made for this attack. It was only deployed against a select few targets. If you’re
eager to feel its bits and bytes, there’s hashes courtesy of Talos and Sophos, as well as
YARA rules by FireEye. TEARDROP runs in-memory but it does register a Windows service,
which involves editing the registry.

TEARDROP’s control flow is straightforward. One of the DLL exported functions,
Tk_CreateImageType , is called during the service’s execution. This function writes a JPEG

image to the current directory, the name of which varies; Symantec reports having come
across upbeat_anxiety.jpg and festive_computer.jpg , and FireEye has seen a
gracious_truth.jpg . To the untrained eye, these might seem to have been named by a

poet; but more likely the image name is randomly generated by concatenating two words
from a hard-coded word list that’s out there somewhere, on whatever machine was used to
compile this piece of malware.

TEARDROP then performs decryption using a homebrew cipher and a hardcoded key of
length 0x96 . The process is implemented using the following gem of disassembly:

https://www.markrussinovich.com/
https://twitter.com/markrussinovich/status/1339611259524640769
https://docs.microsoft.com/en-us/sysinternals/
https://blog.talosintelligence.com/2020/12/solarwinds-supplychain-coverage.html
https://github.com/sophos-cybersecurity/solarwinds-threathunt/blob/master/iocs.csv
https://github.com/fireeye/sunburst_countermeasures/tree/main/rules/TEARDROP/yara
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/sunburst-supply-chain-attack-solarwinds

5/15

At a high level, this reads like some sort of homebrew PRNG deciding which key byte to use
each time, except the more you attempt to follow the actual process, the less sense it makes.
Amazingly, when run dynamically, via some dark magic the generated key indexes simply
map to 0, 1, 2, ..., 149, 0, 1, ... and so on; that’s some new level of “pseudo” in
“pseudo-random”! As it turns out, this isn’t a PRNG — it’s a compiler-optimized
implementation of the modulo operation. Feast your eyes on its underlying reasoning, which
is somewhat reminiscent of the Quake Fast Inverse Square Root Hack. If anything, this is
mainly a testament to the power of dynamic analysis if we ever saw it. You weren’t going to
statically reverse-engineer that. (Alternatively, it is a testament to the power of hex-rays
decompiler, which sees through it immediately).

Once the optimization is understood, the decryption code is equivalent to the following:

https://reverseengineering.stackexchange.com/questions/1397/how-can-i-reverse-optimized-integer-division-modulo-by-constant-operations
https://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/

6/15

CTXT_START_OFFSET = 0x30
KEY_LENGTH = 0x96
PREV_CTXT_BYTE_INITIAL_DEFAULT = 0xcc

prev_ctxt_byte = PREV_CTXT_BYTE_INITIAL_DEFAULT
for i, ctxt_byte in enumerate(ciphertext[CTXT_START_OFFSET:]):

ptxt_byte = ctxt_byte ^ (prev_ctxt_byte ^ key[i % KEY_LENGTH])
plaintext[i] = ptxt_byte
prev_ctxt_byte = ctxt_byte

So, the original encryption was a simple rotating XOR, followed by also XORing every
ciphertext byte with the previous ciphertext byte. There’s probably no purer distillation than
this of “homebrew cipher thrown together in five minutes for a piece of malware”. This is a
perfectly good obfuscation scheme, mind you, but for the thousandth time, there is no reason
for that extra XOR to be there. No one is randomly launching the Kasiski attack against in-
memory binary blobs in hopes of encountering rotating XOR ciphertexts.

The decrypted payload has the following custom header format, which reads like the tl;dr of a
proper PE header:

And here’s a taste of the payload code itself. The First image shows the code of the
decrypted BEACON payload found on TEARDROP while the second image shows the code
of a known BEACON sample we picked randomly. We won’t fault you for not being able to
find the differences between this picture and that picture. Even the PE base address is the
same.

https://youtu.be/loy84K3AJ5Q?t=121

7/15

 TEARDROP’s BEACON payload

8/15

 Cobalt Strike’s BEACON

(sha256: 3cfbf519913d703a802423e6e3fb734abf8297971caccc7ae45df172196b6e84)
The way TEARDROP is built, it could have dropped anything; in this case, it dropped
BEACON, a payload included with Cobalt Strike (a “penetration testing” tool based on the
well-known Metasploit framework). According to the Cobalt Strike website, BEACON’s
purpose is to model advanced attackers. It supports network lateral movement across a
variety of protocols, “passive” and “active” modes for C2 check-in, and a configurable C2
communication scheme that can be made to imitate other malware or blend in with the target
network’s legitimate traffic.

9/15

This really bears consideration. These attackers were riding on the tail of a network breach
of almost unprecedented sophistication, and now they had to pick their weapon of choice for
conducting lateral movement and data exfiltration. Armed with boundless ambition and
abundant resources, they looked over their options and picked… Cobalt Strike? Even Dton,
the Nigerian hustler who was covered here earlier this year and objectively ranks in the top
50 of least competent cybercriminals of all time, had an intuition that using well-known
commodity malware will cost him in detection rates. We can’t argue with success, and this
decision clearly paid off for the attackers, but we’re sure curious about the reasoning behind
it. Possibly it was meant to make attribution harder, and we can’t rule out the use of higher-
tier payloads for higher-tier targets.

Conclusion: Where to from here?

If we had to pick one actionable pithy phrase in the wake of this breach, it would be “Defense
in Depth”. It seems like a cliché that has been with us since forever ago, but it apparently
originates with a 2012 paper by the NSA, and the principle behind it is sound and relevant:
don’t spend all your energy building a single wall. There are no perfect walls, and someday,
someone is going to get through to the other side. When configuring a component, imagine
an ongoing attack that is within reach of it now — what will help secure the component? Or
an attack that has compromised the component already — how best to pre-empt the attack
from propagating further? A lot of principles and practices go into this; the Principle of Least
Privilege, to name one.

We’re not Naïve: organizations want to Get Stuff Done, and the incentives they set effectively
mandate a Principle of Most Privilege. Employees the world over are constantly demanding,
“Just let me do this thing! Don’t make me do something ‘more secure’ that’s 4 times as
complicated!”. Even as we rush to zealously Secure Everything, these concerns should be
taken seriously. We couldn’t put it better than Avi Douglen has: “how often does strict
password complexity policy enforced by IT [..] result in the user writing down his password,
and taping it to his screen? That is a direct result of focusing too much on the computer
aspect, at the expense of the human aspect. [..] Security at the expense of usability comes at
the expense of security.”

Looking at the binaries for SUNBURST and TEARDROP, we’ve learned that even this wildly
successful operation had its rough edges. Far from a worry-free power trip, the attackers
were wary all the while of having their activity seen at all, never mind recognized for what it
was; extensive blacklists of domains and processes had to be created to make sure of that.
We’ve learned that even a campaign on this level will not consist purely of ingenuous rabbit-
pulls, textbook solutions and tour-de-forces; even while pulling off an astounding network
security coup like this, at some points an actor will say “eh, it’ll do” and reach for the ole-
reliable forgettable loader, rotating XOR encryption and used-to-death commodity tool.
There’s something comforting about that; the attackers won this round, but maybe the game
in general is not so hopeless — if defenders step up.

https://research.checkpoint.com/2020/the-inside-scoop-on-a-six-figure-nigerian-fraud-campaign/
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/defense-in-depth.cfm
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://security.stackexchange.com/questions/6095/xkcd-936-short-complex-password-or-long-dictionary-passphrase?newsletter=1&nlcode=390222%7c5068

10/15

For full technical details on our response to the SolarWinds attack click here

Addendum I: List of FNV-1a Obfuscated Strings Included in
SUNBURST

https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk171000

11/15

Processes:
 2597124982561782591 = apimonitor-x64
 2600364143812063535 = apimonitor-x86
 13464308873961738403 = autopsy64
 4821863173800309721 = autopsy
 12969190449276002545 = autoruns64
 3320026265773918739 = autoruns
 12094027092655598256 = autorunsc64
 10657751674541025650 = autorunsc
 11913842725949116895 = binaryninja
 5449730069165757263 = blacklight
 292198192373389586 = cff explorer
 12790084614253405985 = cutter
 5219431737322569038 = de4dot
 15535773470978271326 = debugview
 7810436520414958497 = diskmon
 13316211011159594063 = dnsd
 13825071784440082496 = dnspy
 14480775929210717493 = dotpeek32
 14482658293117931546 = dotpeek64
 8473756179280619170 = dumpcap
 3778500091710709090 = evidence center
 8799118153397725683 = exeinfope
 12027963942392743532 = fakedns
 576626207276463000 = fakenet
 7412338704062093516 = ffdec
 682250828679635420 = fiddler
 13014156621614176974 = fileinsight
 18150909006539876521 = floss
 10336842116636872171 = gdb
 12785322942775634499 = hiew32demo
 13260224381505715848 = hiew32
 17956969551821596225 = hollows_hunter
 8709004393777297355 = idaq64
 14256853800858727521 = idaq
 8129411991672431889 = idr
 15997665423159927228 = ildasm
 10829648878147112121 = ilspy
 9149947745824492274 = jd-gui
 3656637464651387014 = lordpe
 3575761800716667678 = officemalscanner
 4501656691368064027 = ollydbg
 10296494671777307979 = pdfstreamdumper
 14630721578341374856 = pe-bear
 4088976323439621041 = pebrowse64
 9531326785919727076 = peid
 6461429591783621719 = pe-sieve32
 6508141243778577344 = pe-sieve64
 10235971842993272939 = pestudio
 2478231962306073784 = peview
 9903758755917170407 = peview
 14710585101020280896 = ppee
 13611814135072561278 = procdump64
 2810460305047003196 = procdump
 2032008861530788751 = processhacker

12/15

 27407921587843457 = procexp64
 6491986958834001955 = procexp
 2128122064571842954 = procmon
 10484659978517092504 = prodiscoverbasic
 8478833628889826985 = py2exedecompiler
 10463926208560207521 = r2agent
 7080175711202577138 = rabin2
 8697424601205169055 = radare2
 7775177810774851294 = ramcapture64
 16130138450758310172 = ramcapture
 506634811745884560 = reflector
 18294908219222222902 = regmon
 3588624367609827560 = resourcehacker
 9555688264681862794 = retdec-ar-extractor
 5415426428750045503 = retdec-bin2llvmir
 3642525650883269872 = retdec-bin2pat
 13135068273077306806 = retdec-config
 3769837838875367802 = retdec-fileinfo
 191060519014405309 = retdec-getsig
 1682585410644922036 = retdec-idr2pat
 7878537243757499832 = retdec-llvmir2hll
 13799353263187722717 = retdec-macho-extractor
 1367627386496056834 = retdec-pat2yara
 12574535824074203265 = retdec-stacofin
 16990567851129491937 = retdec-unpacker
 8994091295115840290 = retdec-yarac
 13876356431472225791 = rundotnetdll
 14968320160131875803 = sbiesvc
 14868920869169964081 = scdbg
 106672141413120087 = scylla_x64
 79089792725215063 = scylla_x86
 5614586596107908838 = shellcode_launcher
 3869935012404164040 = solarwindsdiagnostics
 3538022140597504361 = sysmon64
 14111374107076822891 = sysmon64
 7982848972385914508 = task explorer
 8760312338504300643 = task explorer-x64
 17351543633914244545 = tcpdump
 7516148236133302073 = tcpvcon
 15114163911481793350 = tcpview
 15457732070353984570 = vboxservice
 16292685861617888592 = win32_remote
 10374841591685794123 = win64_remotex64
 3045986759481489935 = windbg
 17109238199226571972 = windump
 6827032273910657891 = winhex64
 5945487981219695001 = winhex
 8052533790968282297 = winobj
 17574002783607647274 = wireshark
 3341747963119755850 = x32dbg
 14193859431895170587 = x64dbg
 17439059603042731363 = xwforensics64
 17683972236092287897 = xwforensics
 700598796416086955 = redcloak
 3660705254426876796 = avgsvc

13/15

 12709986806548166638 = avgui
 3890794756780010537 = avgsvca
 2797129108883749491 = avgidsagent
 3890769468012566366 = avgsvcx
 14095938998438966337 = avgwdsvcx
 11109294216876344399 = avgadminclientservice
 1368907909245890092 = afwserv
 11818825521849580123 = avastui
 8146185202538899243 = avastsvc
 2934149816356927366 = aswidsagent
 13029357933491444455 = aswidsagenta
 6195833633417633900 = aswengsrv
 2760663353550280147 = avastavwrapper
 16423314183614230717 = bccavsvc
 2532538262737333146 = psanhost
 4454255944391929578 = psuaservice
 6088115528707848728 = psuamain
 13611051401579634621 = avp
 18147627057830191163 = avpui
 17633734304611248415 = ksde
 13581776705111912829 = ksdeui
 7175363135479931834 = tanium
 3178468437029279937 = taniumclient
 13599785766252827703 = taniumdetectengine
 6180361713414290679 = taniumendpointindex
 8612208440357175863 = taniumtracecli
 8408095252303317471 = taniumtracewebsocketclient64
Services:
windows Defender:
 5183687599225757871 = msmpeng
 917638920165491138 = windefend
Windows Sense:
 10063651499895178962 = mssense
 16335643316870329598 = sense
Windows Sensor:
 10501212300031893463 = microsoft.tri.sensor
 155978580751494388 = microsoft.tri.sensor.updater
NIST:
 17204844226884380288 = cavp
Carbon Black:
 5984963105389676759 = cb
 11385275378891906608 = carbonblack
 13693525876560827283 = carbonblackk
 17849680105131524334 = cbcomms
 18246404330670877335 = cbstream
CrowdStrike:
 8698326794961817906 = csfalconservice
 9061219083560670602 = csfalconcontainer
 11771945869106552231 = csagent
 9234894663364701749 = csdevicecontrol
 8698326794961817906 = csfalconservice
FireEye:
 15695338751700748390 = xagt
 640589622539783622 = xagtnotif
 9384605490088500348 = fe_avk

14/15

 6274014997237900919 = fekern
 15092207615430402812 = feelam
 3320767229281015341 = fewscservice
ESET:
 3200333496547938354 = ekrn
 14513577387099045298 = eguiproxy
 607197993339007484 = egui
 15587050164583443069 = eamonm
 9559632696372799208 = eelam
 4931721628717906635 = ehdrv
 2589926981877829912 = ekrnepfw
 17997967489723066537 = epfwwfp
 14079676299181301772 = ekbdflt
 17939405613729073960 = epfw
F-SECURE:
 521157249538507889 = fsgk32st
 14971809093655817917 = fswebuid
 10545868833523019926 = fsgk32
 15039834196857999838 = fsma32
 14055243717250701608 = fssm32
 5587557070429522647 = fnrb32
 12445177985737237804 = fsaua
 17978774977754553159 = fsorsp
 17017923349298346219 = fsav32
 17624147599670377042 = f-secure gatekeeper handler starter
 16066651430762394116 = f-secure network request broker
 13655261125244647696 = f-secure webui daemon
 3421213182954201407 = fsma
 14243671177281069512 = fsorspclient
 16112751343173365533 = f-secure gatekeeper
 3425260965299690882 = f-secure hips
 9333057603143916814 = fsbts
 3413886037471417852 = fsni
 7315838824213522000 = fsvista
 13783346438774742614 = f-secure filter
 2380224015317016190 = f-secure recognizer
 3413052607651207697 = fses
 3407972863931386250 = fsfw
 10393903804869831898 = fsdfw
 3421197789791424393 = fsms
 541172992193764396 = fsdevcon
Drivers:
 17097380490166623672 = cybkerneltracker.sys
 15194901817027173566 = atrsdfw.sys
 12718416789200275332 = eaw.sys
 18392881921099771407 = rvsavd.sys
 3626142665768487764 = dgdmk.sys
 12343334044036541897 = sentinelmonitor.sys
 397780960855462669 = hexisfsmonitor.sys
 6943102301517884811 = groundling32.sys
 13544031715334011032 = groundling64.sys
 11801746708619571308 = safe-agent.sys
 18159703063075866524 = crexecprev.sys
 835151375515278827 = psepfilter.sys
 16570804352575357627 = cve.sys

15/15

 1614465773938842903 = brfilter.sys
 12679195163651834776 = brcow_x_x_x_x.sys
 2717025511528702475 = lragentmf.sys
 17984632978012874803 = libwamf.sys
domain names:
 1109067043404435916 = swdev.local
 15267980678929160412 = swdev.dmz
 8381292265993977266 = lab.local
 3796405623695665524 = lab.na
 8727477769544302060 = emea.sales
 10734127004244879770 = cork.lab
 11073283311104541690 = dev.local
 4030236413975199654 = dmz.local
 7701683279824397773 = pci.local
 5132256620104998637 = saas.swi
 5942282052525294911 = lab.rio
 4578480846255629462 = lab.brno
 16858955978146406642 = apac.lab
HTTP:
 8873858923435176895 = expect
 6116246686670134098 = content-type
 2734787258623754862 = accept
 6116246686670134098 = content-type
 7574774749059321801 = user-agent
 1475579823244607677 = 100-continue
 11266044540366291518 = connection
 9007106680104765185 = referer
 13852439084267373191 = keep-alive
 14226582801651130532 = close
 15514036435533858158 = if-modified-since
 16066522799090129502 = date

