
1/15

TrickBot: A Closer Look
blogs.keysight.com/blogs/tech/nwvs.entry.html/2020/12/21/trickbot_a_closerl-TpQ0.html

2020-12-21 | 11 min read

In early November, the Cybersecurity and Infrastructure Security Agency (CISA) released an advisory
warning administrators in the healthcare and public sector that TrickBot is being used to disturb
healthcare services by launching ransomware attacks and by stealing data. This month, Threat
Simulator released a TrickBot assessment covering the malware's kill chain. In this post, we'll take a
close look at the installation phase of the TrickBot infected document that inspired the assessment.

https://blogs.keysight.com/blogs/tech/nwvs.entry.html/2020/12/21/trickbot_a_closerl-TpQ0.html
https://us-cert.cisa.gov/ncas/alerts/aa20-302a
https://blogs.keysight.com/blogs/tech/nwvs.entry.html/2020/12/15/simulating_trickyma-Yjn5.html

2/15

Process tree for the sample under analysis.

Sample.doc Analysis (SHA-1: c2f948d866ff4dfa8aaebda5507c7d606ac9fb28)

The sample is a .doc file, an older file type for Microsoft Word, also known as Microsoft Word 97-2003
format. This file type may contain Visual Basic for Applications (VBA) macros.

 The document convinces the target to click Enable Editing and Enable Content. This is common for
malicious macro enabled documents to bypass security prompts and run the macro code embedded
within it.

The document contains the Document_Close event procedure. Upon closing of the document, the
Document.Close event will fire and the Document_Close procedure will be called. This will evade
sandboxes that do not close the document during analysis.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/1.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/2.png

3/15

The Document_Close procedure will delay execution for 2 seconds and then proceed to call the
function ResetCalcD. ResetCalcD will call another function named UniqueValues.

The UniqueValues function will first create the directory "C:\Artrite\Final_Joana\"
Then, UniqueValues will create the file "C:\Artrite\SarilumabSAR153191.part" and fill it with VBScript
comments.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/3.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/4.png

4/15

Finally, UniqueValues will create the file "C:\Artrite\SarilumabSAR153191.vbe" and fill it with VBScript
comments along with the value of the caption "luinpedrnass.dados.Caption." The caption contains the
next stage payload, a VBScript file.

After the call to ResetCalcD, the Document_Close procedure will create an Excel.Application object.
As a result, svchost.exe will spawn a process for excel.exe. This will mask the calling process,
winword.exe in this case, and will make tracking the process tree and kill chain of the malware more
difficult.
Next, the DisplayAlert property is set to False. This will prevent UI pop-ups from being presented to
the user.
Finally, the DDEInitiate method is called. This method will launch an application if the target system
has the Dynamic Data Exchange Server Launch Trust Center setting enabled. This setting is no
longer enabled by default.
If configured to do so, DDEInitiaite will cause excel.exe to launch cmd.exe with the command-line:

cmd /c C:\Artrite\SarilumabSAR153191.vbe

Finally, wscript.exe will execute the next stage, C:\Artrite\SarilumabSAR153191.vbe.

tl;dr: The malicious document will use the Document_Close VBA macro to drop and execute a VBE
file upon closing the document.

SarilumabSAR153191.vbe Analysis

The script file contains double base64 encoded data in a variable named tData.

tData is decoded using the function DecodeBase64_1.
 DecodeBase64_1 uses the Microsoft.XMLDOM object to decode base64 encoded data and uses the

Adodb.Stream object to write the decoded contents to “C:\Artrite\Final_Joana\WhatAreTopFacts.rtc”
 There is minor obfuscation using the Chr function to hide the strings "b64" and "bin.base64"

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/5.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/6.png

5/15

The data is then decoded a second time with a similar base64 decoding function and once again
saved to “C:\Artrite\Final_Joana\WhatAreTopFacts.rtc”

Finally, an Excel DDE is used once again to launch the next stage, WhatAreTopFacts.rtc (a 32-bit DLL
file), using rundll32.exe

tl;dr: SarilumabSAR153191.vbe will drop and execute a 32-bit DLL file using rundll32.exe.

WhatAreTopFacts.rtc Analysis

WhatAreTopFacts.rtc is a DLL that exports the function DllRegisterServer.
 It is odd that the malware author chose to name the exported function DllRegisterServer while not

taking advantage of the LoLBins that utilize that exported function. (msiexec.exe, odbcconf.exe)

The DllRegisterServer function will deobfuscate the strings "LdrFindResource_U" and
"LdrAccessResource".

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/7.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/8.png
https://blog.talosintelligence.com/2019/11/hunting-for-lolbins.html
https://lolbas-project.github.io/lolbas/Binaries/Msiexec/
https://lolbas-project.github.io/lolbas/Binaries/Odbcconf/
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/9.png

6/15

Next, DllRegisterServer will dynamically resolve the API functions ntdll!LdrFindResource_U and
ntdll!LdrAccessResource before calling LdrFindResource_U and LdrAccessResource to fetch the
contents of a resource embedded within the resource section of the binary.

The embedded resource has an entropy value of 7.99613 bits per byte. The high entropy suggests
that the resource is encrypted data.

DllRegisterServer will then copy the resource data into freshly allocated
PAGE_EXECUTE_READWRITE memory.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/10.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/11.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/12.png

7/15

DllRegisterServer will go onto decrypt the resource data using a dynamically derived key and an XOR
based encryption/decryption routine.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/13.png

8/15

Finally, DllRegisterServer will execute the decrypted resource data. The resource data turns out to be
encrypted shellcode.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/14.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/15.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/16.png

9/15

tl;dr: WhatAreTopFacts.rtc will decrypt and execute encrypted shellcode embedded as a resource.

WhatAreTopFacts.rtc Shellcode Analysis

At the tail end of the shellcode there is an embedded Portable Executable (PE) file. The embedded
PE is a DLL.

The shellcode begins by using the (JMP)/CALL/POP technique to get the base address of the
shellcode. The base address is then used to calculate the start and end address of the embedded PE.

In the shellcode, there is a function that gets a pointer to the PEB and walks the linked list of loaded
modules.

In the same function, the ror instruction is used within a loop.

This function implements a common shellcode technique that resolves Windows API functions by
using a precomputed value using a ROR 13 based hash function.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/17.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/18.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/19.png
https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/peb/index.htm
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/20.png
https://c9x.me/x86/html/file_module_x86_id_273.html
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/21.png
https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html

10/15

The shellcode will then use the above function to resolve the APIs necessary to load a PE from
memory.

These APIs will be used to load the PE in memory.

tl;dr: The shellcode will load and execute a DLL from memory.

WhatAreTopFacts.rtc Embedded DLL 1 Analysis

There is an embedded PE within this DLL. The embedded PE is a DLL.

First, this DLL dynamically resolves the API function kernel32!GetNativeSystemInfo.

Next, the DLL parses the embedded PE's headers and calculates the PE’s size.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/22.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/23.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/24.png

11/15

Afterwards, VirtualAlloc is used to allocate memory at the PE's preferred base address. If memory
allocation fails, then memory is allocated again, this time letting the OS decide the allocated memory
address.

Next, the DLL allocates heap memory for a custom struct and initializes it.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/25.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/26.png

12/15

Next, the DLL copies the PE's headers into the allocated memory region.

The headers are then used to load the PE's sections into memory.

The DLL will then go onto perform base relocation, if necessary.

Next, the libraries in the PE's import table will be loaded.

Afterwards, the image base address in the PEB is set to the base address of the next stage PE.

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/27.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/28.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/29.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/30.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/31.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/32.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/33.png

13/15

Finally, the entry point of the next stage PE will be called.

This DLL is a reflective loader.

The custom struct from earlier can be used to find the source of this reflective loader implementation.
Googling the following will lead to a fork of the MemoryModule project:

site:github.com "VirtualAlloc" "VirtualFree" "LoadLibraryA" "GetProcAddress" "FreeLibrary" "HeapAlloc"

The simularity struct definitions suggests that this DLL uses a derivative of the MemoryModule
project.

 Struct definition from MemoryModule

 Reversed struct definition

The only significant differences between reflective loader implementations were:

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/34.png
https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf
https://github.com/fancycode/MemoryModule
https://github.com/fancycode/MemoryModule/blob/master/MemoryModule.c#L80
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/35.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/36.png

14/15

A custom implementation of the C Run-time Library's (CRT) realloc function is used. This is a
necessary since the CRT's realloc function requires that the CRT is initialized, which it will not
be in this case.
GetNativeSystemInfo is dynamically resolved instead of imported
The image base addresses in the PEB is updated

tl;dr: This DLL will load and execute the next stage DLL from memory using MemoryModule.

WhatAreTopFacts.rtc Embedded DLL 2 Analysis

This DLL is similar but slightly different to the DLL from the previous stage. The custom struct no
longer has a field for VirtualAlloc and VirtualFree. This correlates with revisions of MemoryModule
prior to commit d88817fb.

 It is odd that two different versions of the same project are used within the same sample.

The next stage DLL is launched by calling its DllRegisterServer exported function.

tl;dr: This DLL will load and execute the next stage DLL from memory using MemoryModule (again).

WhatAreTopFacts.rtc Embedded DLL 3 Analysis

First, the DLL will allocate PAGE_EXECUTE_READWRITE memory using obfuscated values for the
constants: MEM_COMMIT and PAGE_EXECUTE_READWRITE.

Then, encrypted shellcode is decrypted using an XOR based encryption/decryption routine.

https://github.com/fancycode/MemoryModule
https://github.com/fancycode/MemoryModule/tree/d88817fbf7debbd0a0c2f5cc6e193f3a38f1d114
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/37.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/38.png
https://github.com/fancycode/MemoryModule
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/39.png

15/15

After decryption, the shellcode will be executed using the API function CreateThread.

Finally, the DLL waits 3 seconds for the shellcode to finish before exiting the rundll32 process.

tl;dr: this DLL will decrypt and execute shellcode using the CreateThread.

WhatAreTopFacts.rtc Embedded DLL 3 Shellcode Analysis

In the last part of the installation phase, self-unpacking shellcode is used to create a new 64-bit
wermgr.exe process in the suspended state using kernel32!CreateProcessInternalW.

 Then, the shellcode transitions the current 32-bit process (rundll32.exe) context into a 64-bit context.
This context switch will bypass popular API monitoring tools that only hook 32-bit ntdll APIs for
WoW64 processes.

 After switching context, code is injected into the suspended process using the Process Hollowing
technique.

 Finally to complete installation, the main thread of the wermgr.exe process is resumed.

© Keysight Technologies 2000–2022

https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/40.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/41.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/42.png
https://blogs.keysight.com/content/usergenerated/asi/cloud/attachments/keysight-blog/en/blogs/tech/nwvs/_jcr_content/root/responsivegrid/keysight_layout_cont_526586764/colcntrl-1/column-1/journal/trickbot_a_closerl-TpQ0/images/43.png
https://attack.mitre.org/techniques/T1055/012/

