[RE018-1] Analyzing new malware of China Panda hacker
group used to attack supply chain against Vietham
Government Certification Authority - Part 1

L= blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-
against-vietham-government-certification-authority.html

l. Introduction

In process of monitoring and analyzing malware samples, we discovered an interesting blog
post of NTT here. Following the sample hash in this report, we noticed a hash on VirusTotal:

History

Creation Time 2020-04-24 15:12:58
First SeenIn The Wild 2020-04-24 22:12:58
First Submission 2020-07-22 Q4:46:44
Last Submission 2020-07-22 04:46:44
Last Analysis 2020-12-15 01:56:18
Names

VVSup

EXE

eToken.exe

830DD354A31EF40856978616F35BD6B7_etoken.exe

Figure 1. Hash'’s information in the NTT blog

On the event that a hacker group believed to be from Russia attacked and exploited the
software supply chain to target a series of major US agencies, along with discovery that the
keyword eToken.exe belongs to the software that is quite popularly used in agencies,
organizations and businesses in Vietnam, we have used eToken.exe and SafeNet as
keywords for searching on VirusTotal and Google. As a result, we uncovered information
about two remarkable installation files (1, 2) that have been uploaded to VirusTotal since
August 2020:

1/26

https://blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://insight-jp.nttsecurity.com/post/102glv5/pandas-new-arsenal-part-3-smanager
https://www.virustotal.com/gui/file/97a5fe1d2174e9d34cee8c1d6751bf01f99d8f40b1ae0bce205b8f2f0483225c/details
https://1.bp.blogspot.com/-PIETpEmur5A/X92Vi8U7UQI/AAAAAAAABgY/VQz3tLTi04suHLR-PPL-ziToh9TxnF63QCNcBGAsYHQ/s668/image1.png
https://www.virustotal.com/gui/file/6be34df727fcb79123e4e8f472ad24b698d83395fb17d4db019e9976f485cd83/detection
https://www.virustotal.com/gui/file/b0fd1ff7f5d45be89fffc04937f352754c6055e1f4ca26a9257169ce168569ef/detection

Figure 2. Information look up on VirusTotal

The name of the installation files are quite familiar: gca01-client-v2-x32-8.3.msi and gca01-
client-v2-x64-8.3.msi, We have tried to download these two files from the website and they
have the same hash value. However, at the present time, all files on the VGCA homepage
have been removed and replaced with the official clean version. According to the initial
assessment, we consider this could be an attack campaign aimed at the software supply
chain that can be leveraged to target important agencies, organizations and businesses in
Vietnam.

On December 17", ESET announced a discovery of an attack on APT they called "Operation

SignSight" against the Vietnam Government Certification Authority (VGCA). In that report,
ESET said they have also notified VNCERT and VGCA and VGCA has confirmed that they
were aware of the attack before and notified the users who downloaded the trojanized
software.

At the time of analysis, we have obtained two setup files that have been tampered by
hackers. This blog post series will focus on analyzing the signatures and techniques that
hackers have applied to malicious samples in these two installation files.

2/26

https://1.bp.blogspot.com/-36KwaY0mZdA/X92WQKArYeI/AAAAAAAABgg/vW9pRbt8dQ8GJeR0sc3jDGZ7OGZ0h3VJwCNcBGAsYHQ/s2502/image2.png
https://1.bp.blogspot.com/-8mOVVtBSFuk/X92WURy23MI/AAAAAAAABgk/JOVJ_7n_dbon0NQeqc-OuBz9AU18Xy48gCNcBGAsYHQ/s2478/image3.png
https://www.eset.com/us/about/newsroom/press-releases/eset-discovers-operation-signsight-supply-chain-attack-against-a-certification-authority-in-southea-1/

Il. Analyze installation file

This application is named as "SafeNet Authentication Clients" from SafeNet .Inc company.
Portable Executable (PE) files are mostly signed with SafeNet certificates.

SICAFIGL A Pioperties il Sgnabure Detals [.
Geneal Dhglal Sypalues Secuty Dol Prevous Vemos Generd B0ldl Sgrohres Seoaity Detals Previos Versens Generdl Advarced
c | “atpnature Infarmatisn
S i Sapaue bl =) Digits
Progety Vi it Thiz degfial sonahre s 0K
Qe ripdinn Waree: of Sgnes Dhsal abgonitheri Temeahamn
File desoription £ Token Rase Cryptographec Proeder Safehiet, Ino shal Trarsday, July 3, 201

7 Sgrer nformaton
Type: POl S

Fike viamon 23730 Pame: | —
Procicname Safekel Auteriicaon Cent .4 -
Product wersion 83730 s [aat arvaacde

e e]

Dty S S [Mhossatary, Juy 3, 2004 2SR 04RH

See 133 KB
Dates roexlified (02014 357 FM

| Ancpiage Frain || it Shatan]
Original flename s TCAR DL

Figure 3. PE files signed with SafeNet certificate

By using UniExtract tool, we extracted the entire file from an installer (x64 setup file). The
total number of files is 218 files, 68 subfolders, the total size is 75.1 MB (78,778,368 bytes).
To find out which file has been implanted by hackers, we only focus on analyzing and
identifying unsigned PE files.

With the help of sigcheck tool in Micorsoft's Sysinternals Suite, with the test parameters is
signed, hash, scan all PE files, scan the hash on VirusTotal, the output is csv file. Then
sorting by unsigned file, resulting from VirusTotal, we discovered that eToken.exe is the file
was implanted by the hacker.

Figure 4. Discovered file was implanted by hacker

The hash of this eToken.exe matches with the one in NTTSecurity's report. Another strange
point is that it's a 32bit PE but located in the x64 directory, the version information such as
“Company, Description, Product...” are not valid for such a large company application. Here
is the scan result of the eToken file on VirusTotal.

Since this application is built with Visual C ++ of Visual Studio 2005 which is old version, and
uses the Qt4 library, some of the dll files of this installer are also unsigned. We checked each
file and determined that the files were clean, leaving only three suspicious files:
RegistereToken.exe, eTOKCSP.dIl and eTOKCSP64.dlIl.

3/26

https://1.bp.blogspot.com/--LKfFQcWqgo/X92W4k9OL9I/AAAAAAAABgw/ab6_0paBtoMbZ6eayGigvQaChkMN3AfAQCNcBGAsYHQ/s1124/image4.jpg
https://1.bp.blogspot.com/-5RDhfOgCLjQ/X92XInZr-eI/AAAAAAAABg8/D_vtg7klMfU5cDTo6B9KRao-mv2m2NCxwCNcBGAsYHQ/s1429/image5.jpg
https://www.virustotal.com/gui/file/97a5fe1d2174e9d34cee8c1d6751bf01f99d8f40b1ae0bce205b8f2f0483225c/detection

So eToken.exe file is a malware that hackers have added to the installation of the software
suite. To find out how eToken.exe is executed, we analyze the installation file: msi file
(Microsoft Windows Installer file): gca01-client-v2-x64-8.3.msi

Extracting the msi file to raw format before installing, we obtained two .cab files (Microsoft
Cabinet file): Data1.cab and Cabs.w1.cab. This is anomaly because a normal msi file has
only one main .cab file. Check the Data1.cab file and the MSI log text file, eToken.exe and
RegistereToken.exe are in Data1.cab file. And both .exe files have no GUID ID info:

PO = = .
¥ JDatal.cabl,

MName Size Modified Attributes Method

= registeretoken.exe &0 384 A MSZip

= A MYip

etoken.exe 196 608

nosxs. 98CE24AD_52FB_DBSF_FF1F_CBB3BYATET18E
regSetInstallPath.9ED65736_9665_4658_00C1_772F5BA45EF2

Featura Mame: DriverFeature
Components:

eToken .exe
RegistereToken.exe

Feature MName: BsecDrivers
Componants:

IKEYENUM_2K . 2BD446E7_B3A2_479D_8033_AASBDAEC424D
IKEYENUM_VISTA.2BD440E7_B3A2_479 3_AASBDAFC424D
TKEYENUM_XP . 2BD4406E7_B3AZ_479D_8D33_AASEDAFCA24D

Figure 5. Exe files do not have a GUID ID info

Continue checking the features: DriverFeature, and two files eToken.exe and
RegistereToken.exe msi file with Microsoft's Orca tool (a specialized tool for analyze and
modify msi files). Through a search, the hacker has added a custom action: RegisterToken
(without "e" before Token) to the msi file and added that CustomAction at the end of
InstallExecuteSequence. RegistereToken.exe will be called with the parameter is
eToken.exe:

Acting [wig Soufce Larget A || Tables = | Acticn Comditinn Sequence

InstallUSeguence G

£ ® — —
|| Tables 34 InstaliExecuteSequence - 176 rows

Figure 6. Hacker implanted a custom action
Analyzing the RegistereToken.exe file, we see that this file was built on "Wednesday,

22.07.2020 07:40:31 UTC", ie 07/22/2020, 2h40m31s PM GMT +7, PE64, using VC ++
2013:

4/26

https://1.bp.blogspot.com/-bJ6hG3GDEXw/X92XrXSjSaI/AAAAAAAABhE/wDt3tKDd83oMz7HtsC_SQhrgHltug-wugCNcBGAsYHQ/s821/image6.jpg
https://1.bp.blogspot.com/-khpUY39gFL4/X92YAWXH_0I/AAAAAAAABhM/MLsnyIxhkZk_Ka4dTvjVqhcbUeuzQ0wvQCNcBGAsYHQ/s580/image7.jpg
https://1.bp.blogspot.com/-ISkJO1rUxxg/X92YZmteNQI/AAAAAAAABhY/GLO29EWLxxwVvsl35RYzAS2WAzvcnpsswCNcBGAsYHQ/s1037/image8.jpg

V5 120 2083

Figure 7. Information of the Registere Token.exe file

RegistereToken.exe's pseudo code only calls the WinExec API to execute the passed in
argument:

sZExePath[@] = &;
(&szExePath[1]., ©, MAXIPATH):
(8164, szExePath, MAX_PATH);
J[1] = @;

aChar = pExeInput[i++];
pos|1 - 1] = aChar;

Figure 8. Tasks of RegistereToken.exe

With all the information above and based on the timestamp in the Data1.cab and
RegistereToken.exe files, we can conclude:

o Hacker has created and modified the .msi file and created the Data1.cab file at
timestamp: 07/20/2020 - 15:15 UTC time, added the eToken.exe file at this time.

o Build RegistereToken.exe file at timestamp: 22/07/2020 - 07:40 UTC

» Add RegistereToken.exe file to Data1.cab at timestamp: 22/07/2020 - 08:40 UTC

Note: According to Cab file format, the two Date and Time fields of a file in the cab file are
DOS Datetime format, each of which is a Word 2 bytes which reflect the time when the file
was added according to DOS time. Cab file processing programs will convert and display in
UTC time. That is, the above UTC times are the current time on the hacker machine. See
more here.

5/26

https://1.bp.blogspot.com/-IcwZNrM1A20/X92Y27Xv1sI/AAAAAAAABhg/H2ejAmyt7wY0S7AH5k5iWhv1gaKH82bowCNcBGAsYHQ/s1126/image9.jpg
https://1.bp.blogspot.com/-RcjCLA8Jf4M/X92ZAz4yTjI/AAAAAAAABhk/Tb1t6FpLvZgU0tbYSt3_HA472YeqhdWEgCNcBGAsYHQ/s515/image10.jpg
https://docs.microsoft.com/en-us/windows/win32/sysinfo/ms-dos-date-and-time

0 00 00 00 03 07 00 00 M5CF

a0 Of D Fi =

Comment

Figure 9. MS DOS Datetime Information

lll. Analyze eToken.exe

1. Analyze PE Structure

File eToken.exe:

Size: 192 KB (196,608 bytes)
MD5: 830DD354A31EF40856978616F35BD6B7

SHA256:
97A5FE1D2174E9D34CEESC1D6751BF01F99D8F40B1AEOBCE205B8F2F0483225C

Information about compiler, RichID and build timestamp:

Build with VC ++ 6 of Microsoft Visual Studio, Service Pack 6.

Build at: 26/04/2020 - 15:12:58 UTC

Checksum is correct, file has not been modified PE Header.

Linking with MFC42.dlIlI library, Microsoft Foundation Class v4.2 library of Microsoft, is a
library supporting GUI programming on Windows, always included in Visual Studio
suite.

Link with a special library: dbghelp.dll. Use the MakeSureDirectoryPathExist API
function. See more here.

Checking the resource section of the file, we determined that this is a Dialog application,
created by MFC Wizard of Visual Studio 6. The project name is VVSup, which means the
.exe file when built out would be VVSup.exe.

6/26

https://1.bp.blogspot.com/-g2nRRStuFeM/X92Z6huMPlI/AAAAAAAABh0/0zv3nlc2UFcG_PUy9_ZGW0B19RrFBSC0wCNcBGAsYHQ/s907/image11.jpg
https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-makesuredirectorypathexists

y loan

% | B Dasleg - 102 }(

w 100 : 1033 |
102 : 1033) |
F 129 : 2052 ™ i . il i A - st
WS g 10 | [5 5 = e L o e L Sl Ty _F:
Ican Group | .:“pu:ﬂ:'.un[S : e ; 5 Ll i :
| Version Info o Copyngric IC] 203 . Buttonl - ' o Cancel
................. Helo
] (1000: Phoe dsbgcorbo s i

1129 PIALOG 0, 0, 187, 96
2 ['STYLE DS_SETFONT | DS_MODALFRAME | WS_POPUP | WS_CAPT
3 | CAPTION "Dialog"
¥ng
5 [[FONT IU, Syoram
6({
7| CONTROL "OK", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD |
8 ! CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTOMN | WS_CHILD |
9}

RH Dialog - 129) 4

Figure 10. File's resource information

2. Static code analysis

eToken.exe (VVSup.exe) is built with dynamic link DLL mode with MFC42.dll, so the .exe
file will be small and the functions of the MFC42 libirary will be easily identified via the name
import of the DLL. The name mangling rule of Microsoft VC ++ compiler reflects the class
name, function name, parameter name, call type... of functions. IDA helps us to define the
functions import by ordinal of MFC42.dll using the file mfc42.ids and mfc42.idt included
with IDA.

However, VVSup is built with the RTTI (Runtime Type Information) option is disabled, so
there is no information about the RTTI and Virtual Method Table of all classes in the file. We
only have RTTI of class type_info, the root class of RTTI.

7/26

https://1.bp.blogspot.com/-wKQSdoc02_I/X92aorZE84I/AAAAAAAABh8/03rksL8PJi4p6AvXfS3B17SxnVhlVpXTwCNcBGAsYHQ/s797/image12.jpg
https://1.bp.blogspot.com/-qYNk7TvBobs/X92asrEkFgI/AAAAAAAABiA/Ec1uLPn0mMocAGeA5L_XJWaJtr2LKst9wCNcBGAsYHQ/s414/image13.jpg

: class Eype_info: (#classinf
dd offset const E¥peli
@:: vftable' da

Figure 11. RTTI Info of type_info class

The analysis will show how to define classes, recreate the code of this malware, and share
experience in applying when analyzing malwares/files using MFC.

Plugins used:

e Simabus’s Classinformer
+ Matrosov’'s HexRaysCodeXplorer
e MFC_Helper

The MFC C++ source code can be found in the src\mfc directory of the Visual Studio
installer. Since MFC4.2 (MFC of VS6) is very old, it can be found on Github. We refer here.

About the relationship chart of the classes of MFC (Hierarchy Chart), you can see at this link.

Three important dlls file to diffing/compare with MFC malware, for example in this sample
eToken, are mfc42.dll, mfc42d.dll, mfco42d.dll. You can find and download the correct
debug symbol file (.pdb) of the dlls you have. The most important one is mfc42d.dll (debug
build), since its .pdb will contain full information about the types, enumes, classes, and
vtables of the MFC classes. We export local types from mfc42d.dll to .h file, then import into
our idb database. IDA's Parse C ++ has an error, unable to parse the "<>" template syntax,
so we find and replace pairs of "<" and ">"to"_" in .h files.

Parallel opening mfc42d.dll in new IDA together with IDA is parsing malware, copy names,
types of classes, functions from mfc42d.dll. As mentioned, this malware is an MFC Dialog
application, so we will definitely have the following classes in the malware: CObject,
CCmdTarget, CWinThread, CWnd, CDialog. According to the MFC Wizard's auto-naming
rule, we have classes with the following names: CVVSupApp (inherited from CWinApp),
CAboutDlIg (dialog About, resID = 100), CVVSupDIg (main dialog, resiD = 102).

Scan results of vtables, classes of two plugins Classinformer and HexRaysCodeXplorer.

8/26

https://1.bp.blogspot.com/-IkLAXB8hn4k/X92bG-O8IZI/AAAAAAAABiM/cTdEa-a5ev4rdL1JmXxKrWbzpmPAsDrUgCNcBGAsYHQ/s993/image14.jpg
https://github.com/dblock/msiext/tree/master/externals/WinDDK/7600.16385.1/inc/mfc42
https://docs.microsoft.com/en-us/cpp/mfc/hierarchy-chart?view=msvc-160

methods
methods count: b5e

Vitable Methods Flags Ty Higrarchy

F oo4apaBac 1 type_info type_info
Figure 12. Scanning vtables, classes result

Use MFC_Helper scan CRuntimeClass, as expected, CVVSupDIlg has CRuntimeClass
and add another class: CVVSupDIgAutoProxy. It shows that the hacker when running the
MFC Wizard, clicked to select support OLE Control.

CRuntimeClass CWWSupDlgAutaProxy
public: static struct CRuntimsClass const

Figure 13. Detect classe after run MFC_Helper

Based on the import function CWinApp::GetRuntimeClass, we can determine CVVSupApp
vtable, and based on CDialog::GetRuntimeClass we can define two vtables of the other
two dialogs. But which dialog is About, which dialog is a malware dialog? Identify all the
internal structures of MFX such as AFX_MSGMAP, AFX_DISPMAP,
AFX_INTERFACEMAP...

Using the Xref to feature call the CDialog constructor: void __thiscall CDialog::CDialog
(CDialog *this, unsigned int nIDTemplate, CWnd *pParentWnd), nIDTemplate is the
reslID of the dialog, we define the vtable of CAboutDIlg and CMalwareDIlg. Because
CMalwareDIg does not have CRuntimeClass and RTTI, so it is temporarily named like that.
The hacker deleted the DECLARE_DYNAMIC_CREATE line of these two classes and the
CVVSupApp class when build.

9/26

https://1.bp.blogspot.com/-_i_97eh669A/X92cBuL4J2I/AAAAAAAABiY/YTQxDoVyed057pvlz5MhuzaEle4msDKbwCNcBGAsYHQ/s563/image15.jpg
https://1.bp.blogspot.com/-vmULcHNBMB8/X92cQWysMiI/AAAAAAAABic/ucMDPAKTG8Ep2OjfNz0qByNVtitZvUK9ACNcBGAsYHQ/s1055/image16.jpg

o O e O e O N o O e o o
LY

Chialog *__thiscall CAboutDLlg: :CAboutDlg(CAboutDlg *this)

proc near

@

168

dword ptr []. offset const CAboutDlg:: 'vftable’

+68h]

ntr [1. offset const CMalwareDlg:: vftable'

i {alwareDlg.m_pfnmemcpy],
«+CMalwareDlg.m_pfnmemset],
«+CMalwareDlg.m_pfnShellExecuteExA],

Figure 14. Identify vtable of CAboutDIlg and CMalwareDlIg

Relational Classes table of this malware:

C\Win Thread

T

CWinfApp

#

CVV Suphpp

CAboulDig

weroo

10/26

https://1.bp.blogspot.com/-0brQX9cLrWg/X92cqI-dUmI/AAAAAAAABio/SdNUwngt8zgQ7flmoejyTXY0f-CJIGhigCNcBGAsYHQ/s872/image17.png
https://1.bp.blogspot.com/-k806zNYhk3A/X92cyvT3vtI/AAAAAAAABis/vEKVZO5bqcssgl3Q6wGN35Mcmx2lCoGYACNcBGAsYHQ/s509/image18.jpg

_.ﬁ Ohject Explorer O & =
: const CVVSupDlgAutoProxy:: vftable' methods count: 22
const CMalwareDlg:: vftable' methods count: 54
const CVVSupApp:: vftable' methods countg 41

Bx : const CAboutDlg:: wftable' method ount: 54
@x484848: const CVVSupDlg:: 'vftable' methods count: 54

Figure 15. Relational classes table of this malware

Copy the names of functions, types, function types, parameters ... from the respective parent
classes of the above classes, in the correct order in the vtable, identify the generated MFC
Wizard functions and the functions the hacker wrote.

.rdata: 00404418 dd offset
.rdata:904044AC
ta:

Figure 16. Result after copy name of functions, types, function types, parameters

Every MFC application has a global variable called theApp, belonging to the main class
CXXXApp inheriting from CWinApp. In the case of this malware are: CVVSupApp theApp;
This global variable is initialized by C RTL in the start function, called before main/WinMain,
in table __xc_a. The functions in this table call after the C RTL constructors in __xi_a. These
tables are the parameters passed to the internal _initterm function of C RTL.

11/26

https://1.bp.blogspot.com/-9glMbONw0Kw/X92c2r8T1PI/AAAAAAAABiw/gI1HLJnBF-4aXs2zZznSgTbqNd3yOkVIgCNcBGAsYHQ/s816/image19.png
https://1.bp.blogspot.com/-1JtSv_ezr3Y/X92dAs5Z7kI/AAAAAAAABi4/r689R_Vk8OYzHKtJhkvTJa1S7VlpRxj6QCNcBGAsYHQ/s698/image20.png

Figure 17. TheApp global variable in the MFC application

The flowchart of creating and executing an MFC application is as follows:

slan =t i E—

teipp |

LT

| indaize
r|u\‘.u.'.'rua-1 e »

g TelADE o
InRAppicaton calied * |ntirstance cased * meAppFan | > Ceo

Figure 18. Flowchart of creating and executing an MFC application

The CVVSupApp :: Initinstance function is also a common code generated by MFC wizard

12/26

https://1.bp.blogspot.com/-50NZP4L4EU8/X92dSIDpggI/AAAAAAAABjE/OTn-iOLW3OI8MLID01SPtthNxgSvtl05wCNcBGAsYHQ/s795/image21.jpg
https://1.bp.blogspot.com/-kJ82R4sBCDE/X92dolzkUwI/AAAAAAAABjM/LMK26DprFQMGHh4pjqIwotRs-Z-IVNGyQCNcBGAsYHQ/s800/image22_2.png

Figure 19. CVVSupApp::Initinstance function

Constructor of CVVSupDlg: void CVVSupDIg::CVVSupDlg() is also common code
generated by MFC Wizard. But in CVVSupDlIg::OnlnitDialog, which is called from
CVVSupDlg::DoModal(), we can see immediately, at the end of the code that the MFC
Wizard generated, CMalwareDlg is initialized and shown, then the malware exits forcibly
exit (0).

13/26

https://1.bp.blogspot.com/-XwjGjOtCna4/X92dy9-iDrI/AAAAAAAABjQ/HNhzVv2KYFUGuVK38WW3NK5-prqw4jkzACNcBGAsYHQ/s844/image23.jpg

pCMalwareDlg = (CMalwareDlg *)
5_pMalwareDlg = pCMalwareDlg;
tryLevel = 1;

if (pCMalwareDlg)

1

pMalwareDlg (pCMalwareDlg, 0);

}
ols

pMalwareDlg 0;
)
tryLevel = @xFFFFFFFF;
hDesktopwnd = oF
pDesktopwnd = (hDesktopwnd);
(&pMalwareDlg-=>basec s, 129u, pDesktopwnd);
(&pMalwareDlg-=baseclass, SW_SHOW);
(©);

CMalwareDlg pDlg = new CMalwareDlg();

pDlg->Create(129, CWnd::FromHandle(GetDesktopWindow()));
pD1g-=ShowWindow(SW_SHOW) ;

exit(9);

Figure 20. CMalwareDIg was created and shown

The value 129 is the resID of the CMalwareDIg dialog, and sizeof(CMalwareDlg) = 0x290,
which is larger than the size of the parent CDialog. It proves that CMalwareDIlg was added
by hackers to some data members. Through analysis, we recreated the data members of
CMalwareDlg:

Offset|Size|(struct declspec{align{4)}) CMalwareDlg
q

; CDhialog baseclass;

char m_szBase6dTable[256]:
char m_szServiceName[260];
char m_szMask[32];

void *m_pfnmemcpy;

vold *m_pfnmemset;

volid *m_pfnShellExecuteExA;

| &3

Figure 21. Recreate data members of CMalwareDlg

The CMalwareDIg::CMalwareDIlg Constructor does the following initialization jobs. Note the
copy string "192.168" into the field m_szMask:

14/26

https://1.bp.blogspot.com/-qalfPW0DLPg/X92eTXbhQdI/AAAAAAAABjY/bzX-qp0ds-omrkbEwvV_fPH4EUfyuvNNACNcBGAsYHQ/s694/image24_2.png
https://1.bp.blogspot.com/-Q9Eu4Zmoj3M/X92ehYXm2yI/AAAAAAAABjc/iOfA_Y1kn2EqSlgnR5WVliOKmuarS2YFACNcBGAsYHQ/s853/image25.jpg

Figure 22. Copy "192.168" string to m_szMask field

When shown, CMalwareDIg::OnlnitDialog will be called, and the main function that is
important for doing the malware's task is called here:

C {

(&this-=baseclass);

(this); [/ this-}[nfétft{);

return 1;

3

Figure 23. The Infect main function will do the malware's job

The Infect (we named) function is relatively long, so it should be presented via the flowchart
below:

15/26

https://1.bp.blogspot.com/-VZF-n2W-JOs/X92evxJ3GVI/AAAAAAAABjk/dt8IqbELogI-Heb3sPXtUJVAvWKKJ9vxQCNcBGAsYHQ/s907/image26.jpg
https://1.bp.blogspot.com/-EtzOJKNKeGA/X92e5B-oBXI/AAAAAAAABjo/0kKY1e1_Y94VIhTrIxT6kUM90Y5w994TQCNcBGAsYHQ/s638/image27.jpg

Call Get3omeAP1Addrs

Basetd Decode Sericelame:
“NelBims Messager Register

¥

Base 64 Decode Servcelescnpbon:
“HelBios communicalion between
syslem components™

y

Extract CAB fike in data sechon to:
% USERPROFLE% WesiiTz cab

Updaie file extracted from TZ.cab
wilh C&C and prosy infa

User 5 Admin

L

Create Service DIl lir netapil2 ol with
SendceMame and SerdceDescriplion above

MO
< Useris Admin
v YES
“'“:;“;,“‘“ Run exlraea? ere e 72 cab, eneale e nelapia2 dil
AT o areclor %WINDIrS apppaiich
LI AR e e ntd
to the randoe fike %d tmp

in above direciony ¢
Read ProcyConlig Trom Regisiry,
or from peet j5 of Firefo if ot exist

YES

Hetum TRUE

H

¥
e) i load dil e cxiraciod from T2
cal function expor "Enleny”
Creale 1 Tasksheduke in Child direciory TaskWWindows.
Mame = emd TFundiin? exe diF E

We'll go into detail each of the important child functions called by the Infect function of the

Figure 24. Infect function flowchart

CMalwareDlg class. The UserlsAdmin function, using the IsUserAdmin() API of

shell32.dll:

16/26

https://1.bp.blogspot.com/-qBETTnyflHk/X92fNoQj02I/AAAAAAAABj4/5Fv3iyqDpBYM2SyYGPlH-6tCYcbAyh8jwCNcBGAsYHQ/s800/image28_2.jpg

hModule
if (!
{
hModule =
= hModule;
it ('hModule)
{

}
}
IsUserAnAdmin = (hModule, "IsSUsSerAnAdmin');
it (IsUserAnAdmin)

f
}

else

|
}

return result;

return 1;

result IsUserfanAdmin();

result = 0;

Figure 25. UserlsAdmin fuction

GetSomeAPIAddrs function is a redundant function, function pointers are taken but
completely unused. We guess this could be an old code.

o A eax

A eax

2: //f eau
- _'J(

#oid ’pfnmemsét; Iy

hNtD1l = wtdll.d11");

this-=m_pfnmemcpy = (hNtD11,

hNtdll = 'ntdll.d11");

this-=m_pfnmemset {hNtdll,

hShell3z = ("shell32.d11");

ShellExecuteExA = {hShella2,

pfnmemset = this-=m_pfnmemset:

this-=m_pfnShellExecuteExA = ShellExXecuteExA;

return pfnmemset && this-=m_pfnmemcpy && ShellExXecuteExA;

https://1.bp.blogspot.com/-FkJysVQiLt0/X92fd-cmIKI/AAAAAAAABkA/6WqMQjZ52jwlpgUtv3f1OnpjdClqvuK0ACNcBGAsYHQ/s618/image29.jpg
https://1.bp.blogspot.com/-mubdz1UcgoM/X92fnXwTTvI/AAAAAAAABkE/k8CgV3hhiH4HmdZWXgVJJRhD3uJbgzyngCNcBGAsYHQ/s727/image30.jpg

Figure 26. GetSomeAPIAddrs function

The Base64Decode function is like other Base64 decode functions, except that the Base64
code table is copied by the hacker to a char arrary m_szBase64Table and accessed from
here. After being decoded Base64, the original ServiceName
"TmV0QmIvcyBNZXNzYWdIciBSZWdpc3RIcg==" will be "NetBios Messager Register".
The original ServiceDescription
"TmV0QmIivcyBjb21tdW5pY2F0aW9ulGJidHdIZW4gc3lzdGVtIGNvbXBvbmVudHMu"
would be "NetBios communication between system components."

The ExtractCabFile function is a global function, not part of the CMalwareDIg class. Note
that the file is created with the attribute hidden.

HANDLE hFile; // esi

pszCabFile = 1pDst;
("%USERPROFILE%\M\test\\T7z.cab™,| lpDst, MAX_PATH);

(PEZCabFLILE];
hFile = (

pszCabFile,

FILE_WRITE_DATA,

FILE_SHARE_WRITE,

=

CREATE Al WAYS,
FILE_ATTRIBUTE_HIDDEN,
T,
if (hFile == INVALID_HANDLE_VALUE && () == ERROR_ACCESS_DEMWIED)

L

return @;
1
lpDst = ©;
(hFile, , 94874u,| &lpDst, 8);
(hFileT];
return 1;

Figure 27. ExtractCabFile function

The .cab file is completely embedded in the .data section, size = 94874 (0x1729A). Hackers
declared the following equivalent: "static BYTE g_abCabFile[] = {0xXXXX, 0xYYYY};" (no
const, so it will be located in .data section). Extracting that area, we have a .cab file
containing a file, named smanager_ssl.dll, the date added to the cab is 04/26/2020 - 23:11
UTC, build date 26.04.2020 15:11:24 UTC.

18/26

https://1.bp.blogspot.com/-2nmqEmmI4J0/X92f9-3wttI/AAAAAAAABkQ/RMrNDWzwkPMV0Zpvv9wk5dNXtlSRPr4cQCNcBGAsYHQ/s858/image31.jpg

.data:e0406198 g_abCABFile db| 'MSEE'|e : DATA XREF: ExtractCabFile+54:0
Ol 2

@

7

Mame Sze Modified Attributes Method Block

Figure 28. The embedded .cab file contains the file smanager_ssl.dll

The smanager_ssl.dll file (netapi32.dll) will be analyzed in the next post because it is
relatively complex.

n dirs”

Figure 29. RunExtrac32Exe function

The ExecuteAndWait function is also a global function, using the ShellExecuteExA API to
call and wait until the execution completes.

19/26

https://1.bp.blogspot.com/-_bie72h48Ew/X92gQhVJEEI/AAAAAAAABkY/LXbpkkSJPaom4cbjWQpZHxrY8hFPJcNpwCNcBGAsYHQ/s934/image32.jpg
https://1.bp.blogspot.com/-pXA7HFck07U/X92gcLlJHSI/AAAAAAAABkc/y0Tnws0SfNMwCHbEAIsqy6-Vpab8R8XEQCNcBGAsYHQ/s1144/image33.png

__.:|[..__. =i - -
cInfo; /7 [esp+4h] [ebp-3Ch]

ExecInfo oW =

ExecInfo.c

ExecInfo. sk = MASK_NOCLOSEPROCESS;
ExecInfo.lpVerb "Open":

ExecInfo. lpParame

ExecInfo.1lpFile = pszFile,

hShell3z = ("shell32.dl1");
ShellExecuteEx = {(hShell32, "ShellExecu

{&ExecInfo, ©, sizeof(ExeclInfo));

{ExethfD.hPrﬂceas_ INFINITE);

Feturm 1,

Figure 30. ExecuteAndWait function

The Config of the Proxy on the victim machine is defined by the hacker through a struct as
shown, PROXY_TYPE is an enum:

Offset|{Size||struct PROXY_CONFIG
1
£ char szAddress[6&4];
char szPort[36];
PROXY_TYPE proxyType;

Figure 31. struct PROXY_CONFIG

The ReadProxyConfig function will read from the victim's registry first, otherwise it will read
from the Firefox pref.js file. We are still not clear why hackers tried to read from Firefox,
maybe they did a reconnaisance to learn about the commonly used web browsers at the
target.

20/26

https://1.bp.blogspot.com/-Wg1EkKl5Wxw/X92gmKqA-jI/AAAAAAAABkk/fTJvCDqi564U_8F7Q5cjCaOVJZxWn8ygQCNcBGAsYHQ/s704/image34.jpg
https://1.bp.blogspot.com/-6g1IJWQIdSY/X92gv8npY9I/AAAAAAAABks/p57qHBjjbMozhwt6kVVUUjU6D8qZOeP7ACNcBGAsYHQ/s785/image35.jpg

result = {pConfig);
if (lresult
P

result = (pConfig)

-

i
return result;

Figure 32. ReadProxyConfig function
The ReadProxyConfigFromRegistry function is a bit long so there are only important parts:

ff.ﬁzSubﬁey = “Sﬂftwaré&hﬁicrusuft\\wlndowﬁ\\CurrentVErsiDn\\Internet Settings”®
if | (
HKEY_CURRENT_USER,
sZ25ubKkey,
e,
szProxyEnable[@xC] = 8;
(szFroxyEnable, "ProxyEnable");
if | (hkResult, szProxyEnable, &, &, szData, &cbData))

{
}
it (szData, "http="))

{

return @;

pos = &pConfig-=proxyType;
pConfig-=proxyType = PROXY_HTTF;
(szData, "http=%[~:]:%d", pConfig, pConfig-=szPort);

else 1f [{szData, "socks=") }
1
pos = &pConTig-=proxyType:
pConfig-=proxyType = PROXY_SOCKS;
(szData, "socks=%[n:]:%d", pConfig., pConfig-=>szPort);
}
else

1

pos = &pConfig-=proxyType:
it | (szData, "htt

1

="))

"Pos = PROXY_HTTPS;
pszPort pConfig-=szPort;
pszaddr pConfig;

SebmE = "https=%[A:]:%d";

else

pszZPort pConfig-=szPort;
psziddr pConfig;

SZEME = "%[M:]:%d":

*pos = PROXY_HTTP;

(szData, SZFmE. pszAddr, pszPort);

}

return *pos lI= 0;

Figure 33. The main job of the ReadProxyConfigFromRegistry function

https://1.bp.blogspot.com/-soOZWmMSnlU/X92g6G26RvI/AAAAAAAABk0/fqblNBdSS1glSeil1Qwz4QaG8VJoJ9kfwCNcBGAsYHQ/s643/image36.jpg
https://1.bp.blogspot.com/-OZmYojYNXVk/X92hESx6KVI/AAAAAAAABk4/zBfQp1qg7MMjR8lFrIOzh-Y9dqesdj3EwCNcBGAsYHQ/s910/image37.jpg

The ReadProxyConfigFromFireFox function is very long so we won't cover it in detail here.
The UpdateFile function uses the memsearh equivalent function to find a string in the file's
content, and C&C Info will be written at the found location. In the case of this malware, the
mask string is "192.168".

(hFile, 8);
dwFileSize;

=, SlpFlleNams,

(pMem, s_dwFilesSize, ask):

pos = @)

Numberof

pbMewContent, 428u, &NumberOfBytesWritten,

Figure 34: The UpdateFile function uses the memsearh equivalent function to find a string

We recreated the C&C Info struct as follows:

8 CC_INFO struc

"set|5ize|struct _ declspec{align(4)) CC_INFO
{
szAddr_1 db 64 c) alalule] [elaE char szaddr_1[64];
ZPort_1 ¢ e char szPort_1[186];
szAddr_2 db C) 4 char szaddr_2[64];
sZPort_2 db 16 slakelel il char szPort_2[16];
szAddr_3 db &4 BEAB|OE char szaddr_3[64];
szPort_3) BEER|BE char szPort_3[16];
sZKey y 32 dup(?) I char szKey|32];
B wAlive ? 31 16|06¢ __inti1l6 wAlive;
2 Padding_1 db 1@ (7} 5112{80E char Padding_1[1@];
1C proxyConfig PR 16 7 B11C|eg PROXY CONFIG proxyConfig;
p184|0¢ char Padding_2[40];
Padding_2 db 46 dup(?) LAC! ¥ ;

\C CC_INFO ends

Figure 35. struct of C&C info

And C&C info has been hardcoded by hackers in the code:

22/26

https://1.bp.blogspot.com/-Vfd7ApP3IhA/X92hSxI07rI/AAAAAAAABlA/_Q6yGlvwoT8_W4c41DJIm316odhAmKU9QCNcBGAsYHQ/s963/image38.jpg
https://1.bp.blogspot.com/-57hmaR59hR4/X92hbuGu8kI/AAAAAAAABlI/rVSPiOG_qPMSRgff3rB85wUZNhDyyBBMACNcBGAsYHQ/s873/image39.jpg

g CCInfo db |

Figure 36. C&C information is hardcoded in the malicious code

The content of smanager_ssl.dll* (netapi32.dllI**) is original and after being updated from
g_CClinfo structure via:

¥

FAFSIT6E00001FFS.

.....auUpdate .

Figure 37. Contents of smanager_ssl.dll file (netapi32.dll) before and after being updated

The function to load the extracted file and create the Scheduler Task:

23/26

https://1.bp.blogspot.com/-eyVCPqDAh60/X92hkLC6p3I/AAAAAAAABlQ/FzUn9HNkyP4htKqAKLMg5ENimJNGetrXQCNcBGAsYHQ/s1100/image40.jpg
https://1.bp.blogspot.com/-NDmEEJn3OLk/X92h2uKR7sI/AAAAAAAABlc/e1Nup6DqJhoZFb_IQ2bUWT-SBQok3x-pwCNcBGAsYHQ/s1143/image41.jpg

L
L]
L
L
L]
L
L
L]
L
.
L
L
»

FLr b S OUREY™ } SZCmdl);

12.d1l1 path" fsc HOURLY

Figure 38. Function LoadDIIAndCreateSchedulerTask to load the extracted file and create
a Scheduler Task

Then, if the malware is run with admin, it will register as a ServiceDII, with the name
mentioned above, the Service registry key chosen at random from a table of ten elements,
and appended "Ex". These series include: "Winmads", "Winrs", "Vsssvr", "PlugSvr",
"WaRpc", "GuiSvr", "WlanSvr", "DisSvr", "MediaSvr", "NvdiaSvr".

After appending Ex by the sprintf function, the registry key on the victim machine is created
under the branch HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost will
be one of the following strings: “WinmadsEx”, “WinrsEx”, “VsssvrEx”, “PlugSvrEx”,
‘“WaRpcEx”, “GuiSvrEx”, “WlanSvrEx”, “DisSvrEx”, “MediaSvrEx”, “NvdiaSvrEx”.

Since the function is also a bit long, only the main points are covered here:

24/26

https://1.bp.blogspot.com/-jWZvSq-d-gM/X92h-v_xtmI/AAAAAAAABlg/9gcasqsokBkWRT7JnTlJaZWv7vagXJOLACNcBGAsYHQ/s1084/image42.jpg

F‘.ll.i'JEI_E.E. LLPath, [LPath) =

Figure 40. Create service on victim machine

25/26

https://1.bp.blogspot.com/-n_klekVe1dw/X92iUWzDPHI/AAAAAAAABlw/hkO3gVGM3ZAkcVigVihTrkmy1ei7XSAGQCNcBGAsYHQ/s1132/image43.jpg
https://1.bp.blogspot.com/-G6H1skAwpTk/X92ibPIpicI/AAAAAAAABl0/FW5EuqybJtc80MtGTk-3uVNP7j9TUFP9ACNcBGAsYHQ/s1120/image44.jpg

The RegistryCall function is a self-written function by hacker, it is a global function, also only
doing tasks with the Registry. From our point of view, hackers' programming styles are
extremely messy and inconsistent (maybe this is how they intentionally confusing), which
made it difficult for us to analyze. After registering as a DIl service, the Infect function
completes and returns. Malware will exit because of the above call to exit(0) on
OnlInitDialog

We will provide .xml file containing analysis information on IDA so anyone interested in this
malware can use it to re-import IDA and Ghidra using Ghidra's plugin xml_importer.py.

The 10Cs of the malicious code have been noted in the article. You can write your own .bat
file or script using PowerShell, VBS ... to find and remove this malware on the victim's
computers.

Note:
Original smanager_ssl.dll

o MD5: C11E25278417F985CC968C1E361A0FBO
o SHA256:
F659B269FBE4128588F7A2FA4D6022CC74E508D28EEE05CS5AFF26CC23B7BD1AS

netapi32.dll (ie smanager_ssl.dll has updated CClinfo):

o MD5: 43CE409C21CAD2EF41C9E1725CA12CEA
o SHA256:
6C1DB6C3D32C921858A4272E8CC7D78280B46BAD20A1DE23833CBE2956EEBF75

Click here for Viethamese version: Part 1, Part 2

Trwong Quéc Ngan (aka HTC)

Malware Analysis Expert - VinCSS (a member of Vingroup)

26/26

https://blog.vincss.net/2020/12/phan-tich-ky-thuat-dong-ma-doc-moi-co-nhieu-dau-hieu-lien-quan-toi-nhom-tin-tac-Panda.html
https://blog.vincss.net/2020/12/re017-2-phan-tich-ky-thuat-dong-ma-doc-moi-co-nhieu-dau-hieu-lien-quan-toi-nhom-tin-tac-Panda.html

