Sunburst: connecting the dots in the DNS requests

SL securelist.com/sunburst-connecting-the-dots-in-the-dns-requests/99862/

Igor Kuznetsov

On December 13, 2020 FireEye published important details of a newly discovered supply
chain attack. An unknown attacker, referred to as UNC2452 or DarkHalo planted a backdoor
in the SolarWinds Orion IT software. This backdoor, which comes in the form of a .NET
module, has some really interesting and rather unique features.

We spent the past days checking our own telemetry for signs of this attack, writing additional
detections and making sure that our users are protected. At the moment, we identified
approximately ~100 customers who downloaded the trojanized package containing the
Sunburst backdoor. Further investigation is ongoing and we will continue to update with our
findings.

Now, several things really stand out for this incident. This supply chain attack was designed
in a very professional way — kind of putting the “A” in “APT” — with a clear focus on staying
undetected for as long as possible. For instance, before making the first internet connection

1/10

https://securelist.com/sunburst-connecting-the-dots-in-the-dns-requests/99862/
https://securelist.com/author/igorsoumenkov/
https://securelist.com/author/costin/
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/

to its C2s, the Sunburst malware lies dormant for a long period, of up to two weeks, which
prevents an easy detection of this behavior in sandboxes. Other advanced threat groups are
also known to adopt similar strategies, for instance with hardware or firmware implants,
which “sleep” for weeks or months before connecting to their C2 infrastructure. This explains
why this attack was so hard to spot.

One of the things that sets this apart from other cases, is the peculiar victim profiling and
validation scheme. Through the SolarWinds Orion IT packages, the attackers reached about
18,000 customers, according to the SolarWinds alert. Yet, out of these 18.000, it would
appear that only a handful were interesting to them. Considering the fact that having the
resources to manually exploit 18,000 computer networks is probably outside the reach of
most if not all the attackers out there, this leads to the point that obviously some of those
would have been a higher priority. Finding which of the 18,000 networks were further
exploited, receiving more malware, installing persistence mechanisms and exfiltrating data is
likely going to cast some light into the attacker’s motives and priorities.

In the initial phases, the Sunburst malware talks to the C&C server by sending encoded DNS
requests. These requests contain information about the infected computer; if the attackers
deem it interesting enough, the DNS response includes a CNAME record pointing to a
second level C&C server.

Our colleagues from FireEye published several DNS requests that supposedly led to
CNAME responses on Github:
https://github.com/fireeye/sunburst_countermeasures/blob/main/indicator_release/Indicator_
Release_NBls.csv

Associated Malware DNS Record Type ~ FQDN P Target

SUNBURST CNAME 6a57jk2ba1d9keg15chg.appsync-api.eu-west-1.avsvmcloud[.Jcom freescanonline[.Jcom
SUNBURST CNAME 7sbvaemscsOmc925tb99.appsync-api.us-west-2.avsvmcloud[.Jcom deftsecurity[.]Jcom
SUNBURST CNAME gq1h856599gqh538acqn.appsync-api.us-west-2 avsvmcloud[.Jcom freescanonline[.Jcom
SUNBURST CNAME ihvpgv9psvq02ffo77et.appsync-api.us-east-2.avsvmcloud[.Jcom thedoccloud[.Jcom
SUNBURST CNAME k5kcubuassl3alrf7gm3.appsync-api.eu-west-1.avsvmcloud[.Jcom thedoccloud([.Jcom
SUNBURST CNAME mhdosoksaccfIsni9icp.appsync-api.eu-west-1.avsvmecloud[.Jcom thedoccloud[.Jcom

DNS CNAME request-response pairs (Copyright 2020 by FireEye, Inc.)

The goal

Knowing that the DNS requests generated by Sunburst encode some of the target’s
information, the obvious next step would be to extract that information to find out who the
victims are!

2/10

https://github.com/fireeye/sunburst_countermeasures/blob/main/indicator_release/Indicator_Release_NBIs.csv
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18091958/solarwind_sunburst_01.png

Our colleagues from QiAnXin Technology already published a Python script to decode the
domain names (on Github, of course):

https://github.com/RedDrip7/SunBurst DGA_Decode/blob/main/decode.py. . Unfortunately,
that script cannot decode all the DNS requests, besides it is always good to practice in
reverse engineering anyway, so let’s look in the malware code.

TL;DR

Three of the requests from FireEye’s Github repository can be mapped to two domain
names that belong to a government organization and a telecommunications company
in the US.

Low-level details

The sample we’ll be analyzing is 2c4a910a1299cdae2a4e55988a2f102e. All we need is a
.NET decompiler (dnSpy is a good one).

The logic that is interesting to us is located in OrionImprovementBusinessLayer.Update,
which in turn calls one of the four functions: GetCurrentString, GetPreviousString,
GetNextStringEx and GetNextString.

These four functions correspond to four different DNS-based communication methods.

num = (OrionImprovementBusinesslayer.svclistModified2 ? (num + 1) : @);
string hostName;
if (OrionImprovementBusinesslLayer.status == OrionImprovementBusinesslayer.ReportStatus.New)
{

hostName = ((addressFamilyEx == OrionImprovementBusinesslayer.AddressFamilyEx.Error) ? cryptoHelper.GetCurrentString() : cryptoHelper.GetPreviousString(out flag2));
+
else
{

if (OrionImprovementBusinesslayer.status != OrionImprovementBusinesslLayer.ReportStatus.Append)

i

break;

hostName = (flag3 ? cryptoHelper.GetNextStringEx(dnsRecords.dnssec) : cryptoHelper.GetNextString(dnsRecords.dnssec));
¥
addressFamilyEx = OrionImprovementBusinesslayer.DnsHelper.GetAddressFamily(hostName, dnsRecords);

Now, to find out what kind of data is encoded in the DNS requests (the hostname variable)
we need to look closer into each one of these functions.

The first function GetCurrentString generates strings that contain a supposedly unique
target’s identifier (this.guid), the target’'s hostname (this.dnStrLower) and the rest of the
hostname that will be in form of “appsync-api.*.avsvmcloud|.Jcom”. The encoding of the data
is done by the functions CreateSecureString and CreateString.

public string GetCurrentString()
i

string text = OrionImprovementBusinesslayer.CryptoHelper.CreateSecureString(this.guid, true);
return text + OrionImprovementBusinesslayer.CryptoHelper.CreateString((this.nCount > @) ? (this.nCount - 1) : this.nCount, text[@]) + this.dnStrlower + this.GetStatus();
H

The function GetPreviousString is bigger, but produces a similar hostname for a DNS
request. It includes a part of the target’s hosthame in the request, so that it would match the
limitations on the request length. Each such request also includes the sequence number

3/10

https://github.com/RedDrip7/SunBurst_DGA_Decode/blob/main/decode.py
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18092055/solarwind_sunburst_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18092230/solarwind_sunburst_03.png

(this.nCount) that is the offset of the current substring from the beginning of the hostname.

hublic string GetPreviousString(out bool last)
{
string text = OrionImprovementBusinesslayer.CryptoHelper.CreateSecureString(this.guid, true);
int num = 32 - text.length - 1;
string result = "";
last = false;
if (this.offset »= this.dnStr.Length || this.nCount > 38)
{
return result;
+
int num2 = Math.Min(num, this.dnStr.Length - this.offset);
this.dnStrlower = this.dn5tr.Substring(this.offset, num2);
this.offset += num2;
if (OricnImprovementBusinesslayer.ZipHelper.Unzip("8483A8A=").Contains(this.dnStriower[this.dnStriower.Length - 1]))
{
if (num2 == num)
{
this.offset--;
this.dnStrLower = this.dnStrLower.Remove(this.dnStrlower.Length - 1};
}
this.dnStrLower += "@";

if (this.offset »= this.dnStr.Length || this.nCount » 38)
{
this.nCount = -1;
b
result = text + OricnImprovementBusinesslayer.CryptoHelper.CreateString(this.nCount, text[@]) + this.dnStrlLower + this.GetStatus();
if (this.nCount »= @)
{
this.nCount++;
¥
last = (this.nCount < @);
return result;

The remaining two functions, GetNextStringEx and GetNextString, generate a different type
of DNS requests. They include only the target’s UID, hashes of the running processes of
interest and (only in the Ex version) the list and status of these processes. The target’'s UID
is then encrypted, and the data is encoded with CreateSecureString.

public string GetNextStringEx(bool flag)
1

byte[] array = new byte[(OricnImprovementBusinessiayer.svclist.Length * 2 + 7) / 815
Array.Clear(array, @, array.length);

for (int i = @; i < OrionImprovementBusinesslayer.svelist.length; i++)

{

byte[] array2 = array;

int num2 = array.lLength - 1 - 1 / 4;
. array2[num2] |= Convert.ToByte(num << i % 4 * 2);
¥

return OrionImprovementBusinesslayer.CryptoHelper.CreateSecureString(this.UpdateBuffer(2, array, flag), false) + this.GetStatus();
h

// Token: @x@6@@@3CD RID: 2589 RVA: @x@@@474F5 File Offset: @x@@@456FB
public string GetNextString(bool flag)
i

return OrionImprovementBusinesslayer.CryptoHelper.CreateSecureString(this.UpdateBuffer(l, null, flag), false) + this.GetStatus();
i

The problem

int num = Convert.ToInt32(OricnImprovementBusinesslayer.svclist[i].stopped) | Convert.ToInt32(OrionImprovementBusinesslayer.svclist[i].running) << 1;

The encryption used in the malware is just a simple XOR operation, and the encoding is
either a substitution cipher or Base32 with a custom alphabet. However, if we reverse the
sequence of operations of GetPreviousString or GetCurrentString for the known CNAME
DNS requests published by FireEye, the resulting strings don’t look like valid domain names!

A possible explanation is that the requests were generated by the third or fourth
communication methods, described as GetNextStringEx or GetNextString. Indeed, they can
be decoded without errors and the size of decoded data fits. However, these requests don’t

4/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18092257/solarwind_sunburst_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18092324/solarwind_sunburst_05.png

have the target’s name included!

The solution

At this point, a question arises — can we match any of existing private and public DNS data
for the malware root C2 domain, “avsvmcloud[.Jcom” with the CNAME records, to identify
who was targeted for further exploitation?

A list of SUNBURST-generated domain names that include the domain names were kindly
shared by John Bambenek on Github:
https://github.com/bambenek/research/blob/main/sunburst/unig-hostnames.ixt .

Here’s a few such examples:
nnbggtir1ivOv3vfnfaddfe.appsync-api.us-west-2.avsvmcloud[.Jcom
nq97kdu88pn1qpv8f3t5.appsync-api.us-east-1.avsvmcloud[.Jcom
nr2ia9qfa349b0q20i60bou6iuir02rn.appsync-api.us-east-1.avsvmcloud[.]Jcom

We complemented John’s data with our own datasets as well as other publicly available
pDNS databases. Each one of these DNS requests also has the Base32-encoded UID.
Since the UIDs are also included in other types of requests (types 3 and 4) in encrypted
form, this allows us to match the requests!

The target’s UID is calculated in OrionlmprovementBusinessLayer.GetOrCreateUserID by
MD5-hashing the MAC address of the first online network adapter, then XORing it down to
64 bits.

5/10

https://github.com/bambenek/research/blob/main/sunburst/uniq-hostnames.txt

private static bocl GetOrCreateUserID{out byte[] hashed4)

i

string text = OricnImprovementBusinesslayer.ReadDeviceInfa();

hashed = new byte[2];
Array.Clear(hashed, @, hash64.Length);
if (text == null)

i

return false;
¥
text += OricnImprovementBusinesslayer.domaind;
try
{

text += OricnImprovementBusinesslayer.RegistryHelper.GetValue(OrionImprovementBusi
! B2j¥z38Xd29In3dXT28PRzjON2dws Jdwxy JTHNTC7KLESPKA1xLqosKMIPLBosyKgEAA=="]), OricnI
¥
catch
i
¥
using (MD5 md = MD5.Create())
i

byte[] bytes = Encoding.ASCII.GetBytes(text);

byte[] array = md.ComputeHash(bytes);

if (array.Length < hash64.Length)

i

return false;

H

for (int 1 = @; i < array.Length; i++)

i

: byte[] array2 = hash64;

int num = i ¥ hashe4.length;

; array2[num] “= array[i];

H
¥

return true;

The DNS requests published by FireEye on their GitHub have the following encrypted UIDs

inside:

DNS request

UID (64 bit)

6a57jk2ba1d9keg15cbg.appsync-api.eu-west- OxEED328E059EBO7FC
1.avsvmcloud[.Jcom

7sbvaemscs0mc925tb99.appsync-api.us-west- 0x683D2C991E01711D

2.avsvimcloud[.]Jcom

gq1h856599gqh538acqn.appsync-api.us-west- 0x2956497EB4DDOBF9
2.avsvimcloud[.Jcom

ihvpgv9psvq02ffo77et.appsync-api.us-east- OxF7A37335B9E57DDB
2.avsvimcloud[.]Jcom

k5kcubuassl3alrf7Tgm3.appsync-api.eu-west- OxA46E6E874771323C

1.avsvmcloud[.Jcom

6/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/12/18092434/solarwind_sunburst_06.png

mhdosoksaccfIsni9icp.appsync-api.eu-west- OxA46E6E874771323C
1.avsvmcloud[.Jcom

In total, we analyzed 1722 DNS records, leading to 1026 unique target name parts and 964
unique UIDs.

Matching the two lists we got the following data:

domain name part(0x2956497EB4DDO0BF9)=central.****.g

domain name part(0x2956497EB4DDOBF9)=0ov

domain name part(0x683D2C991E01711D)=central.****.g

domain name part(0x683D2C991E01711D)=ov

domain name part(OxF7A37335B9E57DDB)="**net.***.com

These steps effectively decoded 3 of the 6 CNAME records provided by FireEye into two
possible domains:

net..com — a rather big telecommunications company from the US, serving more
than 6 million customers
central.***.gov — a governmental organization from the US

Please note that for ethical reasons, we do not include these exact domain names here. We
notified the two organizations in question though, offering our support to discover further
malicious activities, if needed.

It should also be noted that there is no way to be sure that machines in these two domains
were actually further exploited. This being a probabilistic puzzle, we can assume with a
high degree of certitude the two decoded domains were interesting to the attackers,
however, we cannot be 100% sure that associated organizations were the subject of further
malicious activities.

To summarize our research, the UIDs we discovered match two domain names that belong
to a US government organization and a large US telecommunications company. It is likely
that other interesting targets were selected by the attackers for further exploitation. If you
happen to have access to large DNS databases, including CNAME replies for any
subdomain in “avsvmcloud[.Jcom”, please let us know! (contact: intelreports (at) kaspersky
[dot] com)

In order to help the community to potentially identify other interesting targets for the
attackers, we are publishing the source code for the decoder:
https://github.com/2igosha/sunburst_dga

Stay safe!

More details and mitigations about Sunburst, UNC2452 / DarkHalo are available to
customers of Kaspersky Intelligence Reporting. Contact: intelreports (at) kaspersky [dot] com

7/10

https://github.com/2igosha/sunburst_dga

Sunburst / UNC2452 /| DarkHalo FAQ

1.

Who is behind this attack? | read that some people say APT29/Dukes?

At the moment, there are no technical links with previous attacks, so it may be an
entirely new actor, or a previously known one that evolved their TTPs and opsec to the
point where they can’t be linked anymore. Volexity, who previously worked on other
incidents related to this, named the actor DarkHalo. FireEye named them “UNC2452”,
suggesting an unknown actor. While some media sources linked this with
APT29/Dukes, this appears to be either speculation or based on some other,
unavailable data, or weak TTPs such as legitimate domain re-use.

. luse Orion IT! Was | a target of this attack?

First of all, we recommend scanning your system with an updated security suite,
capable of detecting the compromised packages from SolarWinds. Check your network
traffic for all the publicly known IOCs — see
https://github.com/fireeye/sunburst_countermeasures. The fact that someone
downloaded the trojanized packages doesn’t also mean they were selected as a target
of interest and received further malware, or suffered data exfiltration. It would appear,
based on our observations and common sense, that only a handful of the 18,000 Orion
IT customers were flagged by the attackers as interesting as were further exploited.

. Was this just espionage or did you observe destructive activities, such as

ransomware?

While the vast majority of the high-profile incidents nowadays include ransomware or
some sort of destructive payload (see NotPetya, Wannacry) in this case, it would
appear the main goal was espionage. The attackers showed a deep understanding and
knowledge of Office365, Azure, Exchange, Powershell and leveraged it in many
creative ways to constantly monitor and extract e-mails from their true victims’ systems.

. How many victims have been identified?

Several publicly available data sets, such as the one from John Bambenek, include
DNS requests encoding the victim names. It should be noted that these victim names
are just the “first stage” recipients, not necessarily the ones the attackers deemed
interesting. For instance, out of the ~100 Kaspersky users with the trojanized package,
it would appear that none were interesting to the attackers to receive the 2nd stage of
the attack.

. What are the most affected countries?

To date, we observed users with the trojanized Orion IT package in 17 countries.
However, the total number is likely to be larger, considering the official numbers from
SolarWinds.

. Why are you calling this an attack, when it’s just exploitation? (CNA vs CNE)

Sorry for the terminology, we simply refer to it as a “supply chain attack”. It would be
odd to describe it as a “supply chain exploitation”.

8/10

https://github.com/fireeye/sunburst_countermeasures

7. Out of the 18,000 first stage victims, how many were interesting to the attackers?
This is difficult to estimate, mostly because of the lack of visibility and because the
attackers were really careful in hiding their traces. Based on the CNAME records
published by FireEye, we identified only two entities, a US government organization
and a telecommunications company, who were tagged and “promoted” to dedicated
C2s for additional exploitation.

8. Why didn’t you catch this supply chain attack in the first place?

That’s a good question! In particular, two things made it really stealthy. The slow
communication method, in which the malware lies dormant for up to two weeks, is one
of them. The other one is the lack of x86 shellcode; the attackers used a .NET injected
module. Last but not least, there was no significant change in the file size of the
module when the malicious code was added. We observed two suspicious modules in
2019, which jumped from the usual 500k to 900k for
SolarWinds.Orion.Core.BusinessLayer.dll. When the malicious code was first added, in
February 2020, the file didn’t change size in a significant manner. If the attackers did
this on purpose, to avoid future detections, then it’'s a pretty impressive thing.

9. What is Teardrop?

According to FireEye, Teardrop is malware delivered by the attackers to some of the
victims. It is an unknown memory-only dropper suspected to deliver a customized
version of the well-known CobaltStrike BEACON. To date, we haven’t detected any
Teardrop samples anywhere.

10. What made this such a successful operation?
Probably, a combination of things — a supply chain attack, coupled with a very well
thought first stage implant, careful victim selection strategies and last but not least, no
obvious connections to any previously observed TTPs.

o Backdoor

o Malware Descriptions
e Malware Technologies
e Sunburst

o Supply-chain attack

o Targeted attacks

Authors

lgor Kuznetsov

@ Costin Raiu

Sunburst: connecting the dots in the DNS requests

9/10

https://securelist.com/tag/backdoor/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/sunburst/
https://securelist.com/tag/supply-chain-attack/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/author/igorsoumenkov/
https://securelist.com/author/costin/

Your email address will not be published. Required fields are marked *

10/10

