
1/13

James Haughom

SolarWinds SUNBURST Backdoor: Inside the APT
Campaign

labs.sentinelone.com/solarwinds-sunburst-backdoor-inside-the-stealthy-apt-campaign/

Key findings:

Without any updates, SentinelOne customers are protected from SUNBURST;
additionally, our customers have been supplied bespoke in-product hunting packs for
real-time artifact observability.
The malware deployed through the SolarWinds Orion platform waits 12 days before it
executes. This common phenomenon is a prime example of why lengthy EDR data
retention is critical.

https://labs.sentinelone.com/solarwinds-sunburst-backdoor-inside-the-stealthy-apt-campaign/
https://www.sentinelone.com/blog/fireeye-breached-taking-action-and-staying-protected/
https://www.solarwinds.com/securityadvisory

2/13

After the 12-day dormant period, SUNBURST’s malicious code looks for processes,
services, and drivers. You can find each list at the end of this research.

List of processes: includes mostly monitoring tools like Sysinternals and
researchers tools. If they are seen, SUNBURST exits and does not run.
List of services: includes security products that have weak anti-tamper
measures. SUNBURST goes to the registry and tries to disable them. The
backdoor may have bypassed these products, or at least tried to. SentinelOne is
not on this list, and even if it was, SentinelOne’s anti-tamper capability protects
from such attempts (without any special configuration needed).
List of drivers: The third list is shorter and includes a list of drivers; among them
is SentinelOne. When SUNBURST sees the drivers, it exits before initiating any
C2 communication or enabling additional payloads.

The following analysis demonstrates the above key findings.

Reversing SUNBURST

Interesting functionality resides within the UpdateNotification() and Update()
methods; more specifically, the true payload lies within an important while() loop.

3/13

The TrackProcesses() method (called both by Update and UpdateNotification) is
responsible for querying the running processes on the victim’s machine to find process,
service, and driver names of interest. This routine will get a list of running process objects,
then pass it to three methods below for identifying blacklisted processes/services. These
methods will return true if a blacklisted process/service is found, causing the malware to
break out of the Update() loop.

The hash of each process name is calculated, and then checked against a blacklist of
hardcoded hashes. If the calculated hash is present in the blacklist, this method will return
true.

4/13

In the SearchServices() method, the malware leverages the same hashing technique to
identify services of interest, then tries to manually disable the service through modifying its
registry key.

Below, the SetValue() method is used with argument 4 for the Start entry, thus
disabling the service through the registry.

5/13

In order to ensure that this works as intended, the malware attempts to take ownership of the
registry key before disabling the service.

Lastly, SearchConfigurations() is used to identify blacklisted drivers. This is performed
through the WMI query – Select * From Win32_SystemDriver , which is obfuscated in
the below screenshot as
C07NSU0uUdBScCvKz1UIz8wzNooPriwuSc11KcosSy0CAA==. The file name is obtained
for each driver, and if this driver is found in the blacklist, this method will return true. As
mentioned before, returning true causes the malware to break out of the Update() loop prior

6/13

to initiating the true backdoor code. Our driver SentinelMonitor.sys is hardcoded in the
blacklist, meaning that the malware will not fully execute its payload on endpoints protected
by SentinelOne so long as our driver is loaded.

If this blacklist check is passed, only then is the backdoor code initiated. The first interesting
action the backdoor code takes is to call out to C2 to receive instructions/commands that will
be parsed and passed to the job engine. This C2 callout is to a URL generated at runtime by
the malware’s DGA, which will end up being a subdomain of avsvmcloud[.]com. We have
observed no endpoints monitored by SentinelOne calling out to any subdomain of
*.avsvmcloud[.]com.

During the research, we extracted all hashes from the malware, then calculated components
in our agent found in C:Program FilesSentinelOne* to match. The only SentinelOne-related
hash found was the driver name that FireEye shared.

Snip of hardcoded hashes extracted from the malware:

7/13

Hashing function extracted from the malware:

Results of the tool:

> .fnva_hash_s1.exe
12343334044036541897 matched --> SentinelMonitor.sys

List of processes: SunBurst Exits

apimonitor-x64

apimonitor-x86

autopsy64

autopsy

autoruns64

autoruns

autorunsc64

autorunsc

binaryninja

blacklight

cff

cutter

de4dot

debugview

diskmon

dnsd

dnspy

dotpeek32

dotpeek64

dumpcap

evidence

8/13

exeinfope

fakedns

fakenet

ffdec

fiddler

fileinsight

floss

gdb

NO MATCH

hiew32

NO MATCH

idaq64

idaq

idr

ildasm

ilspy

jd-gui

lordpe

officemalscanner

ollydbg

pdfstreamdumper

pe-bear

pebrowse64

peid

pe-sieve32

pe-sieve64

pestudio

peview

pexplorer

ppee

ppee

procdump64

procdump

processhacker

procexp64

procexp

procmon

prodiscoverbasic

py2exedecompiler

r2agent

rabin2

radare2

9/13

ramcapture64

ramcapture

reflector

regmon

resourcehacker

retdec-ar-extractor

retdec-bin2llvmir

retdec-bin2pat

retdec-config

retdec-fileinfo

retdec-getsig

retdec-idr2pat

retdec-llvmir2hll

retdec-macho-extractor

retdec-pat2yara

retdec-stacofin

retdec-unpacker

retdec-yarac

rundotnetdll

sbiesvc

scdbg

scylla_x64

scylla_x86

shellcode_launcher

solarwindsdiagnostics

sysmon64

sysmon

task

task

tcpdump

tcpvcon

tcpview

vboxservice

win32_remote

win64_remotex64

windbg

windump

winhex64

winhex

winobj

wireshark

x32dbg

10/13

x64dbg

xwforensics64

xwforensics

redcloak

avgsvc

avgui

avgsvca

avgidsagent

avgsvcx

avgwdsvcx

avgadminclientservice

afwserv

avastui

avastsvc

aswidsagent

aswidsagenta

aswengsrv

avastavwrapper

bccavsvc

psanhost

psuaservice

psuamain

avp

avpui

ksde

ksdeui

tanium

taniumclient

taniumdetectengine

taniumendpointindex

taniumtracecli

taniumtracewebsocketclient64

List of services: SunBurst tries to bypass

The list includes Windows Defender, Carbon Black, CrowdStrike, FireEye, ESET, F-
SECURE, and more.

apimonitor-x64

apimonitor-x86

autopsy64

autopsy

autoruns64

11/13

autoruns

fsgk32st

fswebuid

fsgk32

fsma32

fssm32

fnrb32

fsaua

fsorsp

fsav32

ekrn

eguiproxy

egui

xagt

xagtnotif

csfalconservice

csfalconcontainer

cavp

cb

mssense

msmpeng

windefend

sense

carbonblack

carbonblackk

cbcomms

cbstream

csagent

csfalconservice

xagt

fe_avk

fekern

feelam

eamonm

eelam

ehdrv

ekrn

ekrnepfw

epfwwfp

ekbdflt

epfw

fsaua

12/13

fsma

fsbts

fsni

fsvista

fses

fsfw

fsdfw

fsaus

fsms

fsdevcon

List of drivers: SunBurst Exits

cybkerneltracker.sys

atrsdfw.sys

eaw.sys

rvsavd.sys

dgdmk.sys

sentinelmonitor.sys

hexisfsmonitor.sys

groundling32.sys

groundling64.sys

safe-agent.sys

crexecprev.sys

psepfilter.sys

cve.sys

brfilter.sys

brcow_x_x_x_x.sys

lragentmf.sys

libwamf.sys

IOCs/Hunt:

1. Search for the presence of the Injected class of weaponized DLL on
OrionImprovementBusinessLayer class in the SolarWinds.Orion.Core.BusinessLayer
namespace – Indicates weaponized .NET assembly/DLL

2. Hardcoded named pipe name 583da945-62af-10e8-4902-a8f205c72b2e – Does not
indicate that the backdoor code was initiated, but is the first action taken after the 12-14
day dormant period.

3. Review proxy/web gateway logs for traffic to subdomains of this domain. This indicates
that the backdoor code was indeed executed – avsvmcloud[.]com

13/13

4. Executed during blacklist check routine in the context of the
process businesslayerhost.exe :
Select * From Win32_SystemDriver – WMI query to identify blacklisted
drivers

