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December 18, 2020

Combining supervised and unsupervised machine
learning for DGA detection

elastic.co/blog/supervised-and-unsupervised-machine-learning-for-dga-detection

Editor’s Note — December 21, 2020: This blog has been updated since its original
release to include a use case that applies this workflow to the SUNBURST attack.

It is with great excitement that we announce our first-ever supervised ML and security
integration! Today, we are releasing a supervised ML solution package to detect domain
generation algorithm (DGA) activity in your network data.

In addition to a fully trained detection model, our release contains ingest pipeline
configurations, anomaly detection jobs, and detection rules that will make your journey from
setup to DGA detection smooth and easy. Navigate to our detection rules repository to
check out how you can get started using supervised machine learning to detect DGA
activity in your network and start your free trial with Elastic Security today. 

DGAs: A breakdown

Domain generation algorithms (DGA) are a technique employed by many malware authors
to ensure that infection of a client machine evades defensive measures. The goal of this
technique is to hide the communication between an infected client machine and the

https://www.elastic.co/blog/supervised-and-unsupervised-machine-learning-for-dga-detection
https://github.com/elastic/detection-rules/blob/main/docs/ML_DGA.md
http://ela.st/security-trial
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command & control (C & C or C2) server by using hundreds or thousands of randomly
generated domain names, which ultimately resolve to the IP address of a C & C server.

To more easily visualize what’s occurring in a DGA attack, imagine for a moment you’re a
soldier on a battlefield. Like many soldiers, you have communication gear that uses radio
frequencies for communication. Your enemy may try to disrupt your communications by
jamming your radio frequencies. One way to devise a countermeasure for this is by
frequency hopping — using a radio system that changes frequencies very quickly during the
course of a transmission. To the enemy, the frequency changes appear to be random and
unpredictable, so they are hard to jam.

DGAs are like a frequency-hopping communication channel for malware. They change
domains so frequently that blocking the malware’s C2 communication channel becomes
infeasible by means of DNS domain name blocking. There are simply too many randomly
generated DNS names to try and identify and block them. 

This technique emerged in the world of malware with force in 2009, when the “Conficker”
worm began using a very large number of randomly generated domain names for
communication. The worm’s authors developed this countermeasure after a consortium of
security researchers interrupted the worm’s C2 channel by shutting down the DNS domains
it was using for communication. DNS mitigation was also performed in the case of the 2017
WannaCry ransomware global outbreak.

Blending in

If the best place to hide a tree is in a forest, malware operators have long recognized that
blending in with normal web traffic is one of the best ways to go undetected. An HTTP
request with a randomly generated domain name is a hard problem in network security
monitoring and detection. The vast amount of HTTP traffic in modern networks makes
manual review infeasible. Some malware and bots have unusual user agent strings that can
be alerted on with search rules, but malware authors can easily leverage a user agent string
that looks no different from a web browser.

With the rise of mobile and IoT, user agent strings have become so numerous that manual
review for suspicious activity is also becoming infeasible. Web proxies have long used
categorization to look for URLs that are known to be suspicious, but DGA domains are so
voluminous and short-lived that they are often not categorized. Threat intelligence feeds
can identify IP addresses and HTTP requests that are associated with known malware
families and campaigns, but these are so easily changed by malware operators that such
lists are often outdated by the time we put them to use in searches.

The sheer volume of network traffic collected in many organizations and the random nature
of DGA-generated domains makes detection of this activity a challenge for rule-based
techniques — and a perfect fit for our supervised machine learning model! Using Inference,

https://www.elastic.co/guide/en/machine-learning/current/ml-inference.html
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Elastic’s DGA detection ML model will examine packetbeat DNS data as it is being ingested
into your Elasticsearch cluster, automatically determining which domains are potentially
malicious. Follow the steps in the next section to get started. 

Getting started

To get started with DGA detection within the security app, we have released a set of
features to our publicly available rules repository to assist with the importing of machine
learning models to the Elastic Stack. This repo not only provides our community a place to
collaborate on threat detection, but also acts as a place to share the tools required to test
and validate rules.

Please see our previous blog and webinar for additional information on the initiative. If you
don’t already have an Elastic Cloud subscription, you can try it out through our free 14 day
cloud trial to start experimenting with the supervised ML solution package to detect DGA
activity

Part of this rule toolkit is a CLI (command line interface) to not only test rules, but also
interact with your stack. For instance, we have released various Python libraries to interact
with the Kibana API. This was critical in making an easier process for importing the model
dependencies to get your rules operational. To start enriching DNS data and receiving alerts
for DGA activity, follow these three steps:

Step one: Importing the model

First, you must import the DGA model, painless scripts, and ingest processors into your
stack. Currently, DGA models and any unsupervised models for anomaly detection (more to
come) are available in the detection-rules repo using github releases. To upload, run the
following CLI command:

python -m detection_rules es <args_or_config> experimental setup-dga-model -t 
<release-tag> 

Following the upload, you will need to update your packetbeat configuration, as the model
will enrich packetbeat DNS events with a DGA score. This can easily be done by adding the
additional configuration to your Elasticsearch output configuration:

output.elasticsearch: 
 hosts: ["your-hostname:your-port"] 
 pipeline: dns_enrich_pipeline 

The supervised model will then analyze and enrich Packetbeat DNS events, which contain
these ECS fields:

dns.question.name 
dns.question.registered_domain 

https://github.com/elastic/detection-rules/blob/main/docs/experimental-machine-learning/DGA.md
https://www.elastic.co/blog/elastic-security-opens-public-detection-rules-repo
https://www.elastic.co/webinars/introducing-the-public-repository-for-detection-rules
https://cloud.elastic.co/registration
https://github.com/elastic/detection-rules/releases
https://github.com/elastic/detection-rules/blob/main/CLI.md
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The model will then add these fields to processed DNS events:

Field name Description

ml_is_dga.malicious_prediction A value of “1” indicates the DNS domain is
predicted to be the result of malicious DGA
activity. A value of “0” indicates it is predicted to
be benign. 

ml_is_dga.malicious_probability A probability score, between 0 and 1, that the
DNS domain is the result of malicious DGA
activity.

A sample screenshot of enriched DNS data is shown below:

Note: For more detailed information, please consult the detection-rules readme.

About the DGA Rules

Now let’s look at some conditional search rules that detect and alert on DGA activity. Two
search rules are provided in the package that can be enabled and run in the detection
engine in the Elastic Security app:

1. Machine Learning Detected a DNS Request Predicted to be a DGA Domain
2. Machine Learning Detected a DNS Request With a High DGA Probability Score

The first rule matches any DNS event that has a DGA prediction value of 1, indicating the
DNS domain name was probably the product of a domain generation algorithm and is
therefore suspicious. The rule, found here, simply looks for the following condition:

event.category:network and network.protocol:dns and ml_is_dga.malicious_prediction: 
1 

The second rule matches any DNS event that has a DGA probability higher than 0.98,
indicating the DNS domain name was probably the product of a domain generation
algorithm and is therefore suspicious. The rule, found here, simply looks for the following

https://github.com/elastic/detection-rules/blob/02d6f16fda93b84ca128a7da5939de548878aba9/docs/ML_DGA.md
https://github.com/elastic/detection-rules/releases/tag/ML-experimental-detections-20201209-1
https://github.com/elastic/detection-rules/releases/tag/ML-experimental-detections-20201209-1
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condition:

event.category:network and network.protocol:dns and ml_is_dga.malicious_probability 
> 0.98 

Like all rules in the Elastic Detection Engine, they can be forked and customized to suit
local conditions. The probability score in the second rule can be adjusted up or down if you
find that a different probability score works better with your DNS events. Either rule can
have its risk score increased if you wish to raise the priority of DGA detections in your alert
queue. Exceptions can be added to the rules in order to ignore false positives such as
content distribution network (CDN) domains that may use pseudorandom domain names.

Another future possibility we plan to explore is to use event query language (EQL) to look
for clusters of anomaly or search-based alerts using multivariate correlation. For example, if
we see a cluster of alerts from a host engaged in probable DGA activity, confidence
increases that we have a significant malware detection that needs attention.

Such a cluster could consist of DGA alerts combined with other anomaly detection alerts
such as a rare process, network process, domain, or URL. These additional anomaly
detections are produced by the library of machine learning packages included in the Elastic
Security app.

Step two: Importing the rules

The rules in the DGA package can be imported using the kibana rule-upload feature in the
detection-rules CLI (in the format of .toml). Since the rules provided in detection-rules repo
releases are in .toml format, simply run the following command to upload a rule from the
repo:

python -m detection_rules kibana upload-rule -h 
Kibana client: 
Options: 
 --space TEXT Kibana space 
 -kp, --kibana-password TEXT 
 -ku, --kibana-user TEXT 
 --cloud-id TEXT 
 -k, --kibana-url TEXT 
Usage: detection_rules kibana upload-rule [OPTIONS] TOML_FILES... 
 Upload a list of rule .toml files to Kibana. 
Options: 
 -h, --help  Show this message and exit. 
 -h, --help  Show this message and exit. 

Step three: Enable rule and profit

Now that we have the trained supervised ML model imported into the stack, DNS events
being enriched, and rules at our disposal, all that is left to do is confirm that the rule is
enabled and wait for alerts! 

https://github.com/elastic/detection-rules/tree/main/rules/ml
https://github.com/elastic/detection-rules/blob/main/CLI.md#uploading-rules-to-kibana
https://github.com/elastic/detection-rules/releases
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When viewing the rule in the Detection Engine, you can confirm that it is activated as seen
below:

 

And now wait for alerts. Once an alert is generated, you can use the Timeline feature to
investigate the DNS event and start your investigation.

However, no machine learning model is perfect! Some benign domains will be mistakenly
labeled as false positives. In the next section, we will investigate how to leverage
preconfigured anomaly detection jobs and accompanying rules that ship with this release to
tune out false positives.

False positives? Anomaly detection to the rescue!
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As with every detection technique, there will always be some false positives. These may
come in the form of CDN traffic or custom domains that appear to be malicious but that are
actually normal in the environment. To make sure that our DGA detection adapts to each
user’s environment, we have created a preconfigured anomaly detection job named
experimental-high-sum-dga-probability. When enabled, this ML job examines the DGA
scores produced by the supervised DGA model (yes it’s ML, all the way down) and looks for
anomalous patterns of unusually high scores for a particular source IP address. Such
events are assigned an anomaly score.

To maximize the benefit from the anomaly detection job, we are releasing it together with a
complementary rule: Potential DGA Activity. This will create an anomaly based alert in the
detection page in the security app.

Both the preconfigured anomaly detection job and complementary rule are available in the
our detection rules repo releases. 

How to choose the right configuration for your environment

It all starts with the supervised DGA model. Every DNS request ingested through
Packetbeat is analyzed by the model and assigned a probability that indicates the likely
maliciousness of the domain involved in the request. You can use the outputs of the
supervised model directly in the security app using the conditional logic rules discussed in
the ‘Getting started’ section, or, you can import and enable our preconfigured anomaly
detection job and rules to further customize the detections to the subtleties of your
environment. 

How to choose the right configuration for your environment? Start simple. Enable the
conditional search rules discussed in the ‘Getting started’ section. These rules act directly
on the outputs of the supervised model and will quickly give you an idea of how much false
positive background noise there is in your environment. If you find that the conditional
search rules operating on the direct outputs of the supervised model produce too many
alerts, you may benefit from importing and enabling the anomaly detection job. 

In particular, the ML detection rule that operates on the results of the anomaly detection job 
may be useful for finding sources with aggregate high amounts of DGA activity rather than
alerting on individual DGA scores one by one. If you do not have the ML module running,
start up a free trial, or you can try it out in Elastic Cloud.

Sample screenshots of the anomaly detection model and associated rules provided with the
release are below:

https://github.com/elastic/detection-rules/releases/download/ML-experimental-detections-20201209-1/ML-experimental-detections-20201209-1.zip
https://github.com/elastic/detection-rules/releases/download/ML-experimental-detections-20201209-1/ML-experimental-detections-20201209-1.zip
https://github.com/elastic/detection-rules/releases
https://github.com/elastic/detection-rules/releases/download/ML-experimental-detections-20201209-1/ML-experimental-detections-20201209-1.zip
https://www.elastic.co/cloud/elasticsearch-service/signup
https://cloud.elastic.co/login
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Output of the experimental-high-sum-dga-probability unsupervised ML job

Output of the Potential DGA Activity ML rule that acts on output from this unsupervised ML
job
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Alert created by the Machine Learning Detected a DNS Request With a High DGA
Probability Score search rule

Alert created by the Machine Learning Detected a DNS Request Predicted to be a DGA
Domain search rule

Case study: Detecting real-world DGA activity in the SUNBURST
attack
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Let’s try to apply this experimental DGA workflow to the recent SUNBURST campaign. 

To recap, on December 13 SolarWinds released a security advisory regarding a successful
supply-chain attack on the Orion network management platform. At the time of this writing,
the attack affects Orion versions released between March and June of 2020. Likewise, on
December 13, FireEye released information about a global campaign involving SolarWinds
supply-chain compromise that affected some versions of Orion software.

We previously released a blog post addressing Elastic users and the SolarWinds case,
commonly called SUNBURST. That post highlights that Elastic Security’s malware
prevention technology used by both Elastic Endgame and Elastic endpoint security has
been updated with detections for the attacks described in the SolarWinds disclosure.

SUNBURST was a sophisticated software supply-chain attack that reportedly inserted
malware into the SolarWinds Orion product and distributed it using an auto-update
mechanism. The size, scope, and extent of the incident is still being assessed at the time of
this writing. 

Existing Elastic Security detections

A set of 1722 DGA-generated domain names used by the SOLARWINDS malware has
been shared by a security researcher. One of the existing Elastic Security machine
learning-based detection rules, DNS Tunneling, produces two anomaly based alerts on the
DNS names in this sample. Similar to DNS tunneling, the ratio of child-to-parent domains in
the SUNBURST name sample is very high. This ML job associated with this rule is coded to
analyze Packetbeat data but it can be cloned and modified to ingest other DNS events in
Elastic Common Schema (ECS) format. This is the DNS Tunneling ML job:

This ML job has an associated detection rule named DNS Tunneling:

https://www.solarwinds.com/securityadvisory
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.elastic.co/blog/elastic-security-provides-free-and-open-protections-for-sunburst
https://github.com/bambenek/research/blob/main/sunburst/uniq-hostnames.txt
https://www.elastic.co/guide/en/security/current/dns-tunneling.html
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Using these Elastic Security rules, these anomaly detections, shown below, can be
transformed into detection alerts and optional notifications in order to get them into
appropriate incident triage and response work queues. Here is what these SUNBURST
anomaly detections look like in the Elastic Machine Learning app:

This is a useful detection, but this job may not detect DGA activity all of the time. In order to
strengthen DGA detection, we are shipping the experimental DGA detection workflow.

Using the experimental DGA workflow

We found that the experimental DGA ML detection workflow detects most of this activity.
We ran these SUNBURST DGA domains through the supervised DGA detection model
discussed herein (see above for details of how to download and run this model and its
rules). We found that the model tagged 82% of the names in the sample as DGA, which
would have produced 1420 alerts on the sample set. Here is a screenshot of SUNBURST
DNS names that have been tagged as DGA activity by the supervised model:
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These events can be turned into detection alerts using the detection rule Machine Learning
Detected a DNS Request Predicted to be a DGA Domain. We can also make a copy of this
rule and modify it to match the observed parent domain used by a particular malware
instance like SUNBURST. We can match this set of SUNBURST DGA events by adding a
test to the rule query like this:

network.protocol:dns and ml_is_dga.malicious_prediction: 1 and 
dns.question.registered_domain: "avsvmcloud.com"

We can then give this rule a critical severity level and a high risk score of 99 in order to
move it towards the front of the alert and analysis work queue. Here is a screenshot of
alerts generated by this rule modified to call attention to detection of SUNBURST DGA
activity:

We have included this rule, Machine Learning Detected DGA activity using a known
SUNBURST DNS domain, in the package. Under real-world infection conditions, a
population of high frequency DGA-using malware instances could produce enough alerts to
trip the max_signals circuit breaker which is set to 100 by default. In that case, we might
have alerts for some malware instances and not others, depending on which events were
first matched by the search. 

In order to ensure we identify a greater number of infected hosts engaged in DGA activity,
we have increased the max_signals value in the DGA search rules to 10,000. Note: This
setting cannot be modified in the rule editor, it must be modified in an external rule file and
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then imported. The setting can be observed by viewing a rule file in an editor.

In cases where DGA activity is heavy and alerts are numerous, we can also aggregate and
sift DGA alerts or events in order to count them by hostname or source IP in a data table
like this:

 

We are also including a sample dashboard for Packetbeat DGA events with visualizations
and aggregations, including this data table visualization, which is aggregated by source.ip.
Alternatively, you can aggregate by host.name if your DNS events contain that field. This file
is named dga-dashboard.ndjson and can be imported into Kibana by selecting Import on
the Saved Objects page which can be found after selecting Stack Management. 

Here is a screenshot of this dashboard rendering DGA events in a packetbeat-* index:

We’re here to help

You are not alone! If you run into any issues in this process or simply want to know more
about our philosophies on threat detection and machine learning, please reach out to us on
our community Slack channel, our discussion forums, or even roll your sleeves up and work
with us in our open detection repo. Thank you and enjoy!

https://github.com/elastic/detection-rules/releases/tag/ML-experimental-detections-20201221-2
https://ela.st/slack
https://discuss.elastic.co/
https://github.com/elastic/detection-rules
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We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?


