
1/22

December 18, 2020

Analyzing Solorigate, the compromised DLL file that
started a sophisticated cyberattack, and how Microsoft
Defender helps protect customers

microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-
cyberattack-and-how-microsoft-defender-helps-protect/

UPDATE: Microsoft continues to work with partners and customers to expand our
knowledge of the threat actor behind the nation-state cyberattacks that compromised
the supply chain of SolarWinds and impacted multiple other organizations. Microsoft
previously used ‘Solorigate’ as the primary designation for the actor, but moving
forward, we want to place appropriate focus on the actors behind the sophisticated
attacks, rather than one of the examples of malware used by the actors. Microsoft
Threat Intelligence Center (MSTIC) has named the actor behind the attack against
SolarWinds, the SUNBURST backdoor, TEARDROP malware, and related
components as NOBELIUM. As we release new content and analysis, we will use
NOBELIUM to refer to the actor and the campaign of attacks.

We, along with the security industry and our partners, continue to investigate the extent of
the Solorigate attack. While investigations are underway, we want to provide the defender
community with intelligence to understand the scope, impact, remediation guidance, and
product detections and protections we have built in as a result. We have established a
resource center that is constantly updated as more information becomes available at
https://aka.ms/solorigate.

https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://aka.ms/solorigate

2/22

While the full extent of the compromise is still being investigated by the security industry as a
whole, in this blog we are sharing insights into the compromised SolarWinds Orion Platform
DLL that led to this sophisticated attack. The addition of a few benign-looking lines of code
into a single DLL file spelled a serious threat to organizations using the affected product, a
widely used IT administration software used across verticals, including government and the
security industry. The discreet malicious codes inserted into the DLL called a backdoor
composed of almost 4,000 lines of code that allowed the threat actor behind the attack to
operate unfettered in compromised networks.

The fact that the compromised file is digitally signed suggests the attackers were able to
access the company’s software development or distribution pipeline. Evidence suggests that
as early as October 2019, these attackers have been testing their ability to insert code by
adding empty classes. Therefore, insertion of malicious code into the
SolarWinds.Orion.Core.BusinessLayer.dll likely occurred at an early stage, before the final
stages of the software build, which would include digitally signing the compiled code. As a
result, the DLL containing the malicious code is also digitally signed, which enhances its
ability to run privileged actions—and keep a low profile.

In many of their actions, the attackers took steps to maintain a low profile. For example, the
inserted malicious code is lightweight and only has the task of running a malware-added
method in a parallel thread such that the DLL’s normal operations are not altered or
interrupted. This method is part of a class, which the attackers named
OrionImprovementBusinessLayer to blend in with the rest of the code. The class contains all
the backdoor capabilities, comprising 13 subclasses and 16 methods, with strings
obfuscated to further hide malicious code.

Once loaded, the backdoor goes through an extensive list of checks to make sure it’s
running in an actual enterprise network and not on an analyst’s machines. It then contacts a
command-and-control (C2) server using a subdomain generated partly from information
gathered from the affected device, which means a unique subdomain for each affected
domain. This is another way the attackers try to evade detection.

With a lengthy list of functions and capabilities, this backdoor allows hands-on-keyboard
attackers to perform a wide range of actions. As we’ve seen in past human-operated attacks,
once operating inside a network, adversaries can perform reconnaissance on the network,
elevate privileges, and move laterally. Attackers progressively move across the network until
they can achieve their goal, whether that’s cyberespionage or financial gain.

3/22

Figure 1. Solorigate malware infection chain

The challenge in detecting these kinds of attacks means organizations should focus on
solutions that can look at different facets of network operations to detect ongoing attacks
already inside the network, in addition to strong preventative protection.

We have previously provided guidance and remediation steps to help ensure that customers
are empowered to address this threat. In this blog, we’ll share our in-depth analysis of the
backdoor’s behavior and functions, and show why it represents a high risk for business
environments. We’ll also share details of the comprehensive endpoint protection provided by
Microsoft Defender for Endpoint. In another blog, we discuss protections across the broader
Microsoft 365 Defender, which integrates signals from endpoints with other domains –
identities, data, cloud – to provide coordinated detection, investigation, and remediation
capabilities. Read: Using Microsoft 365 Defender to protect against Solorigate.

Where it all starts: A poisoned code library

The attackers inserted malicious code into SolarWinds.Orion.Core.BusinessLayer.dll, a code
library belonging to the SolarWinds Orion Platform. The attackers had to find a suitable place
in this DLL component to insert their code. Ideally, they would choose a place in a method

https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://www.microsoft.com/security/blog/2020/12/15/ensuring-customers-are-protected-from-solorigate/
https://www.microsoft.com/en-us/microsoft-365/security/endpoint-defender
https://www.microsoft.com/en-us/security/business/threat-protection/integrated-threat-protection
https://www.microsoft.com/security/blog/2020/12/28/using-microsoft-365-defender-to-coordinate-protection-against-solorigate/

4/22

that gets invoked periodically, ensuring both execution and persistence, so that the malicious
code is guaranteed to be always up and running. Such a suitable location turns out to be a
method named RefreshInternal.

Figure 2: The method infected with the bootstrapper for the backdoor

Figure 3: What the original method looks like

The modification to this function is very lightweight and could be easily overlooked—all it
does is to execute the method OrionImprovementBusinessLayer.Initialize within a parallel
thread, so that the normal execution flow of RefreshInternal is not altered.

Why was this method chosen rather than other ones? A quick look at the architecture of this
DLL shows that RefreshInternal is part of the class
SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager and is
invoked by a sequence of methods that can be traced back to the CoreBusinessLayerPlugin
class. The purpose of this class, which initiates its execution with a method named Start

5/22

(likely at an early stage when the DLL is loaded), is to initialize various other components
and schedule the execution of several tasks. Among those tasks is Background Inventory,
which ultimately starts the malicious code.

Figure 4. The inserted malicious code runs within a parallel thread

The functionality of the backdoor resides entirely in the class
OrionImprovementBusinessLayer, comprising 13 subclasses and 16 methods. Its name
blends in with the rest of the legitimate code. The threat actors were savvy enough to avoid
give-away terminology like “backdoor”, “keylogger”, etc., and instead opted for a more
neutral jargon. At first glance, the code in this DLL looks normal and doesn’t raise
suspicions, which could be part of the reason why the insertion of malicious code was
undetected for months, especially if the code for this DLL was not frequently updated.

To have some minimal form of obfuscation from prying eyes, the strings in the backdoor are
compressed and encoded in Base64, or their hashes are used instead.

6/22

Figure 5: Example of obfuscated strings

Initial reconnaissance

The Initialize method is the de facto execution entry point of the backdoor. It carries out
several checks to verify that it is running in a real victim’s environment:

It verifies that the process hosting the malicious DLL is named
solarwinds.businesslayerhost.exe
It checks that the last write-time of the malicious DLL is at least 12 to 14 days earlier
It delays execution by random amounts of time
It verifies that the domain name of the current device meets the following conditions:

The domain must not contain certain strings; the check for these strings is
implemented via hashes, so at this time the domain names that are block-listed
are unknown
The domain must not contain “solarwinds”
The domain must not match the regular expression (?i)([^a-z]|^)(test)([^a-z]|$), or
in simpler terms, it must not look like a test domain

It checks that there are no running processes related to security-related software (e.g.,
Windbg, Autoruns, Wireshark)
It checks that there are no drivers loaded from security-related software (e.g.,
groundling32.sys)
It checks that the status of certain services belonging to security-related software
meets certain conditions (e.g., windefend, sense, cavp)
It checks that the host “api.solarwinds.com” resolves to an expected IP address

If any of these checks fail, the backdoor terminates. All these inspections are carried out to
avoid exposing the malicious functionality to unwanted environments, such as test networks
or machines belonging to SolarWinds.

The backdoor

After the extensive validation described above, the backdoor enters its main execution stage.
At its core, the backdoor is a very standard one that receives instructions from the C2 server,
executes those instructions, and sends back information. The type of commands that can be
executed range from manipulating of registry keys, to creating processes, and deleting files,
etc., effectively providing the attackers with full access to the device, especially since it’s
executing from a trusted, signed binary.

In its first step, the backdoor initiates a connection to a predefined C2 server to report some
basic information about the compromised system and receive the first commands. The C2
domain is composed of four different parts: three come from strings that are hardcoded in the
backdoor, and one component is generated dynamically based on some unique information

7/22

extracted from the device. This means that every affected device generates a different
subdomain to contact (and possibly more than one). Here’s an example of a generated
domain:

Figure 6: Dynamically generated C2 domain

The dynamically generated portion of the domain is the interesting part. It is computed by
hashing the following data:

The physical address of the network interface
The domain name of the device
The content of the MachineGuid registry value from the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography

The backdoor also generates a pseudo-random URI that is requested on the C2 domain.
Like the domain, the URI is composed using a set of hardcoded keywords and paths, which
are chosen partly at random and partly based on the type of HTTP request that is being sent
out. Possible URIs that can be generated follow these formats:

pki/crl/<random components>.crl, where <random components> can be numbers and
one of the following strings:

“-root”
“-cert”
“-universal_ca”
“-ca”
“-primary_ca”
“-timestamp”
“-global”
“-secureca”

8/22

fonts/woff/<random components>-webfont<random component>.woff2 or
fonts/woff/<random components>.woff2, where the <random components> can be
numbers and one or more of the following strings:

“Bold”
“BoldItalic”
“ExtraBold”
“ExtraBoldItalic”
“Italic”,
“Light”
“LightItalic”
“Regular”
“SemiBold”
“SemiBoldItalic”
“opensans”
“noto”
“freefont”
“SourceCodePro”
“SourceSerifPro”
“SourceHanSans”
“SourceHanSerif”

swip/upd/<random components>, where <random components> can be one or more of
the following strings:

“SolarWinds”
“.CortexPlugin”
“.Orion”
“Wireless”
“UI”
“Widgets”
“NPM”
“Apollo”
“CloudMonitoring”
“Nodes”,
“Volumes”,
“Interfaces”,
“Components”

swip/Upload.ashx
swip/Events

Here are examples of final URLs generated by the backdoor:

hxxps://3mu76044hgf7shjf[.]appsync-api[.]eu-west-1[.]avsvmcloud[.]com
/swip/upd/Orion[.]Wireless[.]xml

9/22

hxxps://3mu76044hgf7shjf[.]appsync-api[.]us-east-2[.]avsvmcloud[.]com /pki/crl/492-
ca[.]crl
hxxps://3mu76044hgf7shjf[.]appsync-api[.]us-east-1[.]avsvmcloud[.]com
/fonts/woff/6047-freefont-ExtraBold[.]woff2

Finally, the backdoor composes a JSON document into which it adds the unique user ID
described earlier, a session ID, and a set of other non-relevant data fields. It then sends this
JSON document to the C2 server.

Figure 7: Example of data generated by the malware

If the communication is successful, the C2 responds with an encoded, compressed buffer of
data containing commands for the backdoor to execute. The C2 might also respond with
information about an additional C2 address to report to. The backdoor accepts the following
commands:

Idle
Exit
SetTime
CollectSystemDescription
UploadSystemDescription
RunTask
GetProcessByDescription
KillTask
GetFileSystemEntries
WriteFile
FileExists

10/22

DeleteFile
GetFileHash
ReadRegistryValue
SetRegistryValue
DeleteRegistryValue
GetRegistrySubKeyAndValueNames
Reboot
None

In a nutshell, these commands allow the attackers to run, stop, and enumerate processes;
read, write, and enumerate files and registry keys; collect and upload information about the
device; and restart the device, wait, or exit. The command CollectSystemDescription
retrieves the following information:

Local Computer Domain name
Administrator Account SID
HostName
Username
OS Version
System Directory
Device uptime
Information about the network interfaces

Resulting hands-on-keyboard attack

Once backdoor access is obtained, the attackers follow the standard playbook of privilege
escalation exploration, credential theft, and lateral movement hunting for high-value accounts
and assets. To avoid detection, attackers renamed Windows administrative tools like
adfind.exe which were then used for domain enumeration.

C:\Windows\system32\cmd.exe /C csrss.exe -h breached.contoso.com -f (name=”Domain
Admins”) member -list | csrss.exe -h breached.contoso.com -f objectcategory=* >
.\Mod\mod1.log

Lateral movement was observed via PowerShell remote task creation, as detailed by FireEye
and Volexity:

$scheduler = New-Object -ComObject
(“Schedule.Service”);$scheduler.Connect($env:COMPUTERNAME);$folder =
$scheduler.GetFolder(“\Microsoft\Windows\SoftwareProtectionPlatform”);$task =
$folder.GetTask(“EventCacheManager”);$definition =
$task.Definition;$definition.Settings.ExecutionTimeLimit =
“PT0S”;$folder.RegisterTaskDefinition($task.Name,$definition,6,”System”,$null,5);echo
“Done” C:\Windows\system32\cmd.exe /C schtasks /create /F /tn

https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/

11/22

“\Microsoft\Windows\SoftwareProtectionPlatform\EventCacheManager” /tr
“C:\Windows\SoftwareDistribution\EventCacheManager.exe” /sc ONSTART /ru system /S
[machine_name]

Persistence is achieved via backdoors deployed via various techniques:

1. PowerShell:

Powershell -nop -exec bypass -EncodedCommand

The –EncodedCommand, once decoded, would resemble:

Invoke-WMIMethod win32_process -name create -argumentlist ‘rundll32
c:\windows\idmu\common\ypprop.dll _XInitImageFuncPtrs’ -ComputerName WORKSTATION

1. Rundll32:

C:\Windows\System32\rundll32.exe C:\Windows\Microsoft.NET\Framework64\[malicious .dll
file], [various exports]

With Rundll32, each compromised device receives a unique binary hash, unique local
filesystem path, pseudo-unique export, and unique C2 domain.

The backdoor also allows the attackers to deliver second-stage payloads, which are part of
the Cobalt Strike software suite. We continue to investigate these payloads, which are
detected as Trojan:Win32/Solorigate.A!dha, as the situation continues to unfold.

Microsoft Defender for Endpoint product and hardening guidance

Supply chain compromise continues to be a growing concern in the security industry. The
Solorigate incident is a grave reminder that these kinds of attacks can achieve the harmful
combination of widespread impact and deep consequences for successfully compromised
networks. We continue to urge customers to:

Isolate and investigate devices where these malicious binaries have been detected
Identify accounts that have been used on the affected device and consider them
compromised
Investigate how those endpoints might have been compromised
Investigate the timeline of device compromise for indications of lateral movement

Hardening networks by reducing attack surfaces and building strong preventative protection
are baseline requirements for defending organizations. On top of that, comprehensive
visibility into system and network activities drive the early detection of anomalous behaviors
and potential signs of compromise. More importantly, the ability to correlate signals through
AI could surface more evasive attacker activity.

https://i.blackhat.com/USA-19/Thursday/us-19-Doerr-The-Enemy-Within-Modern-Supply-Chain-Attacks.pdf
https://www.microsoft.com/security/blog/2020/12/15/ensuring-customers-are-protected-from-solorigate/

12/22

Microsoft Defender for Endpoint has comprehensive detection coverage across the
Solorigate attack chain. These detections raise alerts that inform security operations teams
about the presence of activities and artifacts related to this incident. Given that this attack
involves the compromise of legitimate software, automatic remediation is not enabled to
prevent service interruption. The detections, however, provide visibility into the attack activity.
Analysts can then use investigation and remediation tools in Microsoft Defender Endpoint to
perform deep investigation and additional hunting.

Microsoft 365 Defender provides visibility beyond endpoints by consolidating threat data from
across domains – identities, data, cloud apps, as well as endpoints – delivering coordinated
defense against this threat. This cross-domain visibility allows Microsoft 365 Defender to
correlate signals and comprehensively resolve whole attack chains. Security operations
teams can then hunt using this rich threat data and gain insights for hardening networks from
compromise. Read: Using Microsoft 365 Defender to protect against Solorigate.

Figure 8. Microsoft Defender for Endpoint detections across the Solorigate attack chain

Several Microsoft Defender for Endpoint capabilities are relevant to the Solorigate attack:

Next generation protection

https://www.microsoft.com/en-us/microsoft-365/security/endpoint-defender
https://www.microsoft.com/en-us/security/business/threat-protection/integrated-threat-protection
https://www.microsoft.com/security/blog/2020/12/28/using-microsoft-365-defender-to-coordinate-protection-against-solorigate/

13/22

Microsoft Defender Antivirus, the default antimalware solution on Windows 10, detects and
blocks the malicious DLL and its behaviors. It quarantines malware, even if the process is
running.

Detection for backdoored SolarWinds.Orion.Core.BusinessLayer.dll files:

Trojan:MSIL/Solorigate.BR!dha

Detection for Cobalt Strike fragments in process memory and stops the process:

Trojan:Win32/Solorigate.A!dha
Behavior:Win32/Solorigate.A!dha

Detection for the second-stage payload, a cobalt strike beacon that might connect to
infinitysoftwares[.]com.

Trojan:Win64/Solorigate.SA!dha

Detection for the PowerShell payload that grabs hashes and SolarWinds passwords from the
database along with machine information:

Trojan:PowerShell/Solorigate.H!dha

Figure 9. Microsoft Defender for Endpoint prevented malicious binaries

Endpoint detection and response (EDR)

Alerts with the following titles in the Microsoft Defender Security Center and Microsoft 365
security center can indicate threat activity on your network:

https://www.microsoft.com/security/blog/2020/12/15/ensuring-customers-are-protected-from-solorigate/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:MSIL/Solorigate.BR!dha
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Solorigate.A!dha&threatId=-2147196107
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Solorigate.A!dha&threatId=-2147196108
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win64/Solorigate.SA!dha
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:PowerShell/Solorigate.H!dha&threatId=-2147196089

14/22

SolarWinds Malicious binaries associated with a supply chain attack
SolarWinds Compromised binaries associated with a supply chain attack
Network traffic to domains associated with a supply chain attack

Alerts with the following titles in the Microsoft Defender Security Center and Microsoft 365
security center can indicate the possibility that the threat activity in this report occurred or
might occur later. These alerts can also be associated with other malicious threats.

ADFS private key extraction attempt
Masquerading Active Directory exploration tool
Suspicious mailbox export or access modification
Possible attempt to access ADFS key material
Suspicious ADFS adapter process created

Figure 10. Microsoft Defender for Endpoint detections of suspicious LDAP query being
launched and attempted ADFS private key extraction

15/22

Figure 11. Microsoft Defender for Endpoint alert description and recommended actions for
possible attempt to access ADFS key material

Our ability to deliver these protections through our security technologies is backed by our
security experts who immediately investigated this attack and continue to look into the
incident as it develops. Careful monitoring by experts is critical in this case because we’re
dealing with a highly motivated and highly sophisticated threat actor. In the same way that
our products integrate with each other to consolidate and correlate signals, security experts
and threat researchers across Microsoft are working together to address this advanced
attack and ensure our customers are protected.

Threat analytics report

16/22

We published a comprehensive threat analytics report on this incident. Threat analytics
reports provide technical information, detection details, and recommended mitigations
designed to empower defenders to understand attacks, assess its impact, and review
defenses.

Figure 12. Threat analytics report on the Solorigate attack

Advanced hunting

Microsoft 365 Defender and Microsoft Defender for Endpoint customers can run advanced
hunting queries to hunt for similar TTPs used in this attack.

Malicious DLLs loaded into memory

To locate the presence or distribution of malicious DLLs loaded into memory, run the
following query

https://techcommunity.microsoft.com/t5/microsoft-365-defender/new-threat-analytics-report-shares-the-latest-intelligence-on/ba-p/2001095
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAE2XzQ7sNAyFs0biHa7uCiQWadL8LZFAAokdT5A0DdwFXAkQbHh4nM_uMBp1pm0S2zk-Ps585273t_vkLvn90f3muvtF7n5yn-Vuuu9l7Ha_u7_cn-6D-9J94f6V33_cr_L2D7k-uJ_dD-5bd8jdJ5n3wX3lPrrisnxO512Sq7oh47e8LfLc5C7JWOX5EC_JRXvf5Zo8RVmzWHVLZB_dN3JNeY5ib8jdtrQ9JBkN8hvls8RmFRuXzIn422-bzFmypsvqInNvecpEqFYPViyZeVis6jcy58LmjnbbGLI-ifeL6E88L_neMXR8PbHezNz-olgJYjnLuyafJe87cev7yP1emey72Pz9W_FZzWqW1VM-Vd4NGb_Y1SXXkhU3Ngv7TzK-PW_MTuwn9r_tphfCajWw405ce1eHfKbMPNirZ6yTidPWVr53fvdok0tz4dmvWh3idWDzBLFBdF7ug_x2spJZvSOrhuNiN0PWDL5vcrvRfrKV8aORDVkd5NqIePi6x_f9AusIFgEfJ9Yned3IbozLi1mV2VXmbbQnVvauh0SgbNiYLJiQ5HnAt0Lu9sxGvgdxNbOq3JsyuvNwwrELT09MaqGCeYSbHdZOq5SBtb3TJnPU6gUnCnhV8PasU4buCE84kfE42fEie4NZlSwoE3bNPRx4omi2021ryQrNqY5FYps8L7BqoF3gVoTNmew-VjfuWWztGCtVcpOHm5Wbq5HsX3Kv-ZuwalEpHS5eeNw5f6xuTHVvg0g91g6qp1OJB_hsmxrjoLZ2rCf6k8hFgZX_V-zBngocGWhRA7ELD1rfjfg8czSXO-oA7nt-t4yo1cVoQks8fFpYUyVRP5VVk5wltHLBlQWyASVTBu5YvxaN_Sza-yhvQAnf1Tfy7oA_FYZ6ailg68TLZuSNJm2NO8nB3s9tvJz8emo1oCrT6uE0nG5wbNSrZzyDaHnxVBV_ksMMkwoYdfjbiaeT6_nS0cN8FKI4iPAmwkAlTusQuidPTJWIDlhVqaf5UvfHWzJlb4w2U0fldyKaTPyTPVciiLwf9JWG5YKtiO5War4aRoU4VZEXmK03hd21p95UETcnM4qU4G2BxQGGdbwm0GrYG3x7Lk_-TubvHqe1l0BLu4VnteJ7wcRpUXTT1mCcu19KoLM92b9h4IVuV1C-rP5VZya6n9HlgWZm8A62n0k2NIeP-h7caxTaMTx4dupi8HuA4-ITqMJCbRWsTdYcxBLY7WUafbH7br0rMl7I1wkfGpo4WB3fVNRj8cRHpCKi-Uvo3039LdOMhV19Hqigcvokf5oFz24atXTDMe3-nbXap1XhywuLhbdCLqZpWiZzlfyqtmU7vzQwT6hopCdoBx6vU08Gha26jT1pP0_UUcd2gh0JZB52aie9qZYIut7i1S6vyHX8NOvZt0UdiSoYDyaR3RbXQgW00gYVtq0qnzI-jxc7lX_RunuioiMRqcKcMGuASICFjy4-3WmBi0eXOoqR7fmmdhRfVZlJZJkaXm89O5DdEwxvbEyr1GrnNtWmQe-57MSZQLBbpzis4w5yFfHeYMhBfaseelipfT4Rc3yr1Aj_Bva0V2vffphwma3CvADWJ-jrqe0gxhPGLTsTVfI0resNY2_ihKh9W09hTxQNNKZV3UStD8vqwwbtlsn6xYntaZqovPOmbZ4a0j7wKGUwfydRLJis_WbX5oOFKrpHYTJYBXDQk0hnX82y6MnaoFsW6x16hjzYQTVF1ZP3MCs3kTbQ015esLY9PafZar3iYvfKm8KuFkhqB59wJ7OPBmqqTXpeV96drAh0Fu2xep9NfwYM0v8di7zkl2pd5DG8VLahcTu7l3WZC72YpuKnxR1hWqc7-df5--RzmTqexkhP1Rx2IlGVrFTLc6ZZ2J_sVpkc0Kli1RTAJ8PPZXOUsXrCjm-9JZteTztBXPZPrdjZVnei_7cqu91noP8A9D6a0LYOAAA&runQuery=true&timeRangeId=week

17/22

DeviceImageLoadEvents
| where SHA1 in ("d130bd75645c2433f88ac03e73395fba172ef676",
"1acf3108bf1e376c8848fbb25dc87424f2c2a39c","e257236206e99f5a5c62035c9c59c57206728b28",

"6fdd82b7ca1c1f0ec67c05b36d14c9517065353b","2f1a5a7411d015d01aaee4535835400191645023",

"bcb5a4dcbc60d26a5f619518f2cfc1b4bb4e4387","16505d0b929d80ad1680f993c02954cfd3772207",

"d8938528d68aabe1e31df485eb3f75c8a925b5d9","395da6d4f3c890295f7584132ea73d759bd9d094",

"c8b7f28230ea8fbf441c64fdd3feeba88607069e","2841391dfbffa02341333dd34f5298071730366a",

"2546b0e82aecfe987c318c7ad1d00f9fa11cd305","e2152737bed988c0939c900037890d1244d9a30e")

or SHA256 in ("ce77d116a074dab7a22a0fd4f2c1ab475f16eec42e1ded3c0b0aa8211fe858d6",
"dab758bf98d9b36fa057a66cd0284737abf89857b73ca89280267ee7caf62f3b",
"eb6fab5a2964c5817fb239a7a5079cabca0a00464fb3e07155f28b0a57a2c0ed",
"ac1b2b89e60707a20e9eb1ca480bc3410ead40643b386d624c5d21b47c02917c",
"019085a76ba7126fff22770d71bd901c325fc68ac55aa743327984e89f4b0134",
"c09040d35630d75dfef0f804f320f8b3d16a481071076918e9b236a321c1ea77",
"0f5d7e6dfdd62c83eb096ba193b5ae394001bac036745495674156ead6557589",
"e0b9eda35f01c1540134aba9195e7e6393286dde3e001fce36fb661cc346b91d",
"20e35055113dac104d2bb02d4e7e33413fae0e5a426e0eea0dfd2c1dce692fd9",
"2b3445e42d64c85a5475bdbc88a50ba8c013febb53ea97119a11604b7595e53d",
"a3efbc07068606ba1c19a7ef21f4de15d15b41ef680832d7bcba485143668f2d",
"92bd1c3d2a11fc4aba2735d9547bd0261560fb20f36a0e7ca2f2d451f1b62690",
"a58d02465e26bdd3a839fd90e4b317eece431d28cab203bbdde569e11247d9e2",
"cc082d21b9e880ceb6c96db1c48a0375aaf06a5f444cb0144b70e01dc69048e6")

Malicious DLLs created in the system or locally

To locate the presence or distribution of malicious DLLs created in the system or locally, run
the following query

https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAE2Xy87tNAyFO0biHX6dEUgM0twzRALEnCdImkYc6QgkQDDh4XE-u5utqru3xHaWl5ezfzju4-_j83HJ9Se5fpHrj_LmPn47_jr-PD6Or4-vjn_l-s_xq7z9Q86P45fj5-P745S7zzLu4_jm-HSUI8sRD3ckOesx5Pstb4s8N7lL8q3yfB5dnoK973JOnoLMWcy6JZ5Px3dyTnkOYm_I3ba0PST56uUa5Fhis4qNS8YE_O23TcYsmdNldpGxtzxlIlSrJzOWjDwtVvUbGHNhc0e7bQyZn8T7RfQRz0t-dwwdX0-sNyO3vyBWvFjO8q7JseR9J259H7jfM5P9Fhu_rxWf1axmmT3lqPJuyPeLVV1yLplxY7Ow_iTft-eNWcR-Yv3bbnohrFY9K-7EtVd1yjFl5MlaHd86mYg2t_K787u_Njk1F471qtUhXgc2I4gNonNy7-XayUpm9o6sGo6L1QyZM_i9ye1G-8lWxo9GNmS2l3Mj4sTm5Pu-X2AdwMLjI2J9kteN7Ma4vJhVGV1l3EZ7YmWvekgEyoaNyYIJSZ4HfCvkbo9s5HsQVzOryr0pX3ceIhy78PTEpBYqmAe42WHttEoZWNsrbTJGrV5wooBXBW_HPGXojjDCiYzHyYoX2RuMqmRBmbBr7uHAE0WzlW5bS2ZoTvVbILbJ8wKrBtoFbgXYnMnuY3XjnsXWjrFSJTd5uJm5uRrI_iX3mr8JqxaV0uHihced88fqxlTXNojUYe2kejqVeILPtqkxDmprxxrRn0QuCqz8v2JP1lTgyECLGohdeND6bsTnGKO53FF7cN_ju2VErS6-JrTEwaeFNVUS9VOZNclZQisXXFkg61EyZeCO9VvR2N9Fex_l9Sjhu_oG3p3wp8JQRy15bEW8bEbeaNLWuEgO9npu4-Xk6qhVj6pMq4doON3g2KhXx_cMouXFU1X8SQ4zTCpg1OFvJ55OrudLR0_zUYjiJMKbCD2VOK1D6JocMVUiOmFVpZ7mS90fb8mUvfG1mToqvxPRZOKfrLkSQeD9oK80LBdsBXS3UvPVMCrEqYq8wGy9KeyuPfWmirg5mVGkBG8LLPYwrOM1gVbD3uDXcTryFxm_e5zWXgIt7RaO2YrvBROnRdFNW71x7n4pgY52ZP-GgRe6XUH5svpXnZnofkaXB5qZwdvbeibZ0Bw-6ntyr1Fox3Dg2amLwfUEx8XhqcJCbRWsTeacxOJZ7WUafbH6br0r8L2QrwgfGpo4mB3eVNRhMeIjUBHB_CX076b-lmnGwq4-D1RQOR3Jn2bBsZpGLd1wTLt_Z672aVX48sJi4a2Qi2malslcJb-qbdn2Lw3MEyoa6Anagcdr15NBYatuY03azxN11LGdYEcCmYed2klvqiWArrN4tcsrch0_zXr2bVEHovLGg0lkt8W1UAGttEGFbavKp4zP88VO5V-w7p6o6EBEqjARZg0Q8bDw0cWnOy1wcehSRzGyPd_UjuKrKjOJLFPD661ne7IbwfDGxrRKrbZvU20a9J7LdpwJBLt1itM67iBXAe8NhpzUt-qhg5Xa5xMxh7dKDfBvYE97tfbthwmX2SqM82AdQV93bScxRhi3bE9UydO0rjeMvYkdovZt3YU9UTTQmFZ1E7U-LasPG7RbJusXEdvTNFF550zbHDWkfeBRSm_-IlEsmKz9Ztfmg4UqukNhMlh5cNCdSGddzbLoyNqgWxbrHbqHPFlBNUXVnfcwKzeRNtDTXl6wtj09u9lqveJi9cqbwqoWSGoHn3Ans44GaqpNul9X3kVmeDqL9li9z6Y_Awbp_45FXvJLtS7y6F8q29C4nd3LusyFXkxT8WhxB5jW6U7utf-OHJepYzRGOqrmtB2JqmSlWp49zcL-ZLXKZI9OFasmDz4Zfi4bo4zVHXZ46y3Z9HraDuKyf2rF9ra6Ev2_VVnt3gP9B3GMOb2sDgAA&runQuery=true&timeRangeId=week

18/22

DeviceFileEvents
| where SHA1 in ("d130bd75645c2433f88ac03e73395fba172ef676",
"1acf3108bf1e376c8848fbb25dc87424f2c2a39c","e257236206e99f5a5c62035c9c59c57206728b28",

"6fdd82b7ca1c1f0ec67c05b36d14c9517065353b","2f1a5a7411d015d01aaee4535835400191645023",

"bcb5a4dcbc60d26a5f619518f2cfc1b4bb4e4387","16505d0b929d80ad1680f993c02954cfd3772207",

"d8938528d68aabe1e31df485eb3f75c8a925b5d9","395da6d4f3c890295f7584132ea73d759bd9d094",

"c8b7f28230ea8fbf441c64fdd3feeba88607069e","2841391dfbffa02341333dd34f5298071730366a",

"2546b0e82aecfe987c318c7ad1d00f9fa11cd305","e2152737bed988c0939c900037890d1244d9a30e")

or SHA256 in ("ce77d116a074dab7a22a0fd4f2c1ab475f16eec42e1ded3c0b0aa8211fe858d6",
"dab758bf98d9b36fa057a66cd0284737abf89857b73ca89280267ee7caf62f3b",
"eb6fab5a2964c5817fb239a7a5079cabca0a00464fb3e07155f28b0a57a2c0ed",
"ac1b2b89e60707a20e9eb1ca480bc3410ead40643b386d624c5d21b47c02917c",
"019085a76ba7126fff22770d71bd901c325fc68ac55aa743327984e89f4b0134",
"c09040d35630d75dfef0f804f320f8b3d16a481071076918e9b236a321c1ea77",
"0f5d7e6dfdd62c83eb096ba193b5ae394001bac036745495674156ead6557589",
"e0b9eda35f01c1540134aba9195e7e6393286dde3e001fce36fb661cc346b91d",
"20e35055113dac104d2bb02d4e7e33413fae0e5a426e0eea0dfd2c1dce692fd9",
"2b3445e42d64c85a5475bdbc88a50ba8c013febb53ea97119a11604b7595e53d",
"a3efbc07068606ba1c19a7ef21f4de15d15b41ef680832d7bcba485143668f2d",
"92bd1c3d2a11fc4aba2735d9547bd0261560fb20f36a0e7ca2f2d451f1b62690",
"a58d02465e26bdd3a839fd90e4b317eece431d28cab203bbdde569e11247d9e2",
"cc082d21b9e880ceb6c96db1c48a0375aaf06a5f444cb0144b70e01dc69048e6")

SolarWinds processes launching PowerShell with Base64

To locate SolarWinds processes spawning suspected Base64-encoded PowerShell
commands, run the following query

DeviceProcessEvents
| where InitiatingProcessFileName =~ "SolarWinds.BusinessLayerHost.exe"
| where FileName =~ "powershell.exe"// Extract base64 encoded string, ensure valid
base64 length| extend base64_extracted = extract('([A-Za-z0-9+/]{20,}[=]{0,3})', 1,
ProcessCommandLine)| extend base64_extracted = substring(base64_extracted, 0,
(strlen(base64_extracted) / 4) * 4)| extend base64_decoded = replace(@'\0', '',
make_string(base64_decode_toarray(base64_extracted)))//
| where notempty(base64_extracted) and base64_extracted matches regex '[A-Z]' and
base64_extracted matches regex '[0-9]'

SolarWinds processes launching CMD with echo

To locate SolarWinds processes launching CMD with echo, run the following query

DeviceProcessEvents
| where InitiatingProcessFileName =~ "SolarWinds.BusinessLayerHost.exe"
| where FileName == "cmd.exe" and ProcessCommandLine has "echo"

C2 communications

https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAK1TXUsCQRQ9z0H_YfHF3VKzkqAHoW8KJIIegkpEdxeVdlV2TO3zt3fu3VHcsloohpm5d-ac-zlzghAT9OFzv0KCoUqG45TnIQYYU17HGl7hYIoezxJOBxe86_O2j7auA3Q_WTjjaUT5kohYOXW8cy3gmqiIpwlulBkQXcERHrmLnvIbRDypv3PiDb1UqM04Cysj-t7fiPyp4oziI46srS0OhznP6CUh3-fuoEPJELOHGjWphk9LAaWAulFsmnnJ3hvmkEYzITfibfDFTqTILtm9RR6heg61Fll8y97No0p91xec-bmLIucdDlHGLc_KeEaV6z42mVsTL9ihXsIbMXXVRdul7pEp8W_rmu3hMeWYo62RNWx3vD_FLTXqZKrn_sqUyKq6upaZVvF3pkeO9Lam0oaV8sQvfV7ut8QuvR3p25UKuThg7e4ZWVrBot2lXg-8b_2Y5bL9FnFD_RGJvvo8eXk2D3m7q_7DgBYFGzPicU6bju10nl7G-vN99WhsbbqKlErMX2KT8n9aTd-0WP0AdbkD_LwEAAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAG2OSwrCQBBEay14h2EOkBtk4w-FIIIL1yEZzEASIfEL4tl9M3EhITT9requXsnpLq-CfFCnS6x6bM3cqdWVeq6Z3jJ6qGLW4UY7MA_qlcfY6jy6sGFaU-9hNHEn1YdodYRVM-10ipsl7EQL3cihH_YzGK-ot4Xfo5LQPXE7-dGUXhr1Cvryb9vACKpm9PGSusEGNPv9YtDIQcMlB7eCZfUF5AwwqToBAAA&runQuery=true&timeRangeId=month

19/22

To locate DNS lookups to a malicious actor’s domain, run the following query

DeviceEvents
| where ActionType == "DnsQueryResponse" //DNS Query Responseand AdditionalFields has
".avsvmcloud"

To locate DNS lookups to a malicious actor’s domain, run the following query

DeviceNetworkEvents
| where RemoteUrl contains 'avsvmcloud.com'
| where InitiatingProcessFileName != "chrome.exe"
| where InitiatingProcessFileName != "msedge.exe"
| where InitiatingProcessFileName != "iexplore.exe"
| where InitiatingProcessFileName != "firefox.exe"
| where InitiatingProcessFileName != "opera.exe"

Find SolarWinds Orion software in your enterprise

To search for Threat and Vulnerability Management data to find SolarWinds Orion software
organized by product name and ordered by how many devices the software is installed
on, run the following query

DeviceTvmSoftwareInventoryVulnerabilities
| where SoftwareVendor == 'solarwinds'
| where SoftwareName startswith 'orion'
| summarize dcount(DeviceName) by SoftwareName
| sort by dcount_DeviceName desc

ADFS adapter process spawning

DeviceProcessEvents
| where InitiatingProcessFileName =~"Microsoft.IdentityServer.ServiceHost.exe"
| where FileName in~("werfault.exe", "csc.exe")
| where ProcessCommandLine !contains ("nameId")

Appendix

MITRE ATT&CK techniques observed

This threat makes use of attacker techniques documented in the MITRE ATT&CK framework.

Initial Access

T1195.001 Supply Chain Compromise

Execution

T1072 Software Deployment Tools

Command and Control

https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAGWOSwrCQBQEay14hyEH0BO4EKJLwc8FghkwEI2YZCTg4S1noQtpHt00Bf1KIomGs74xRW4M9MyZ8SLw5GL38AJrqUG2kzkxcc_tSgUKStuePWPmJw56L9PlPkoElqpkx9H8I8Mf-1mvzHVerVXzXa5o2ZqjXksHP6yyFyxMyZy4-msrP8oUvAEb21tt5gAAAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEALWQPQ6CQBCFX23iHZDGjhvYqYmNMSYegCA_G4E1gEDh4f12KgtLCZmd3TfvZ5e9co1yyuhnatAkr04PHcBztSC9Iq210ps-qQLtqEhX1gb2QL-B1WAZ56BJ8WxNuWU_shvhZnC8XrorMWbD9JfzCa3DxaEdzKnUhZm3e_Z8R9Da7pziEjQb7VhjGJUxA5pQMxX_PaVhmvOOctEUZ85P-2vdokkFk-BSwJ4XzPG8JvikXxkfdzmn1oQCAAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAI2QywrCMBBF71rwH7pTP8JdN27cKN1KH5EKfUATLYof78lAsYiChGQmd2ZOJpPK6aaLSuwRr9VBvc4KGpVrQN2pQ3ecgciguzJd1XB33HIVVDfswHbySrTUQk_sqNpyHP4nNTNiZcREW1aiFdU9rJgxQotxj_oPb49tLeJRoxbwRuurNnZ86cLZzYien7Ss3GIPq6-YRY8e_7tWOpvP9MaGrII5_O7ize-tkyl_zj59ZcecOMVSL39fnZCaAQAA&runQuery=true&timeRangeId=month
https://attack.mitre.org/
https://attack.mitre.org/techniques/T1195/001/
https://attack.mitre.org/techniques/T1072/

20/22

T1071.004 Application Layer Protocol: DNS

T1071.001 Application Layer Protocol: Web Protocols

T1568.002 Dynamic Resolution: Domain Generation Algorithms

T1132 Data Encoding

Persistence

T1078 Valid Accounts

Defense Evasion

T1480.001 Execution Guardrails: Environmental Keying

T1562.001 Impair Defenses: Disable or Modify Tools

Collection

T1005 Data From Local System

Additional malware discovered

In an interesting turn of events, the investigation of the whole SolarWinds compromise led to
the discovery of an additional malware that also affects the SolarWinds Orion product but
has been determined to be likely unrelated to this compromise and used by a different threat
actor. The malware consists of a small persistence backdoor in the form of a DLL file named
App_Web_logoimagehandler.ashx.b6031896.dll, which is programmed to allow remote code
execution through SolarWinds web application server when installed in the folder
“inetpub\SolarWinds\bin\”. Unlike Solorigate, this malicious DLL does not have a digital
signature, which suggests that this may be unrelated to the supply chain compromise.
 Nonetheless, the infected DLL contains just one method (named DynamicRun), that can
receive a C# script from a web request, compile it on the fly, and execute it.

https://attack.mitre.org/techniques/T1071/004/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1568/002/
https://attack.mitre.org/techniques/T1132/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1480/001/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1005/

21/22

Figure 13: Original DLL

Figure 14: The malicious addition that calls the DynamicRun method

This code provides an attacker the ability to send and execute any arbitrary C# program on
the victim’s device. Microsoft Defender Antivirus detects this compromised DLL as
Trojan:MSIL/Solorigate.G!dha.

22/22

Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft 365
Defender tech community.

Read all Microsoft security intelligence blog posts.

Follow us on Twitter @MsftSecIntel.

https://techcommunity.microsoft.com/t5/microsoft-365-defender/bg-p/MicrosoftThreatProtectionBlog
https://www.microsoft.com/security/blog/microsoft-security-intelligence/
https://twitter.com/MsftSecIntel

