
1/7

Nick Blazier December 18, 2020

A quirk in the SUNBURST DGA algorithm
blog.cloudflare.com/a-quirk-in-the-sunburst-dga-algorithm/

Loading...

Nick Blazier

https://blog.cloudflare.com/a-quirk-in-the-sunburst-dga-algorithm/
https://blog.cloudflare.com/author/nick-blazier/
https://blog.cloudflare.com/author/nick-blazier

2/7

Jesse Kipp

https://blog.cloudflare.com/author/jesse/
https://blog.cloudflare.com/author/jesse

3/7

On Wednesday, December 16, the RedDrip Team from QiAnXin Technology released their
discoveries (tweet, github) regarding the random subdomains associated with the
SUNBURST malware which was present in the SolarWinds Orion compromise. In studying
queries performed by the malware, Cloudflare has uncovered additional details about how
the Domain Generation Algorithm (DGA) encodes data and exfiltrates the compromised
hostname to the command and control servers.

Background

The RedDrip team discovered that the DNS queries are created by combining the previously
reverse-engineered unique guid (based on hashing of hostname and MAC address) with a
payload that is a custom base 32 encoding of the hostname. The article they published
includes screenshots of decompiled or reimplemented C# functions that are included in the
compromised DLL. This background primer summarizes their work so far (which is published
in Chinese).

RedDrip discovered that the DGA subdomain portion of the query is split into three parts:

<encoded_guid> + <byte> + <encoded_hostname>

An example malicious domain is:

7cbtailjomqle1pjvr2d32i2voe60ce2.appsync-api.us-east-1.avsvmcloud.com

Where the domain is split into the three parts as

Encoded guid (15 chars) byte Encoded hostname

https://mp.weixin.qq.com/s/v-ekPFtVNZG1W7vWjcuVug
https://twitter.com/RedDrip7/status/1339168187619790848?s=20
https://github.com/RedDrip7/SunBurst_DGA_Decode

4/7

Encoded guid (15 chars) byte Encoded hostname

7cbtailjomqle1p j vr2d32i2voe60ce2

The work from the RedDrip Team focused on the encoded hostname portion of the string, we
have made additional insights related to the encoded hostname and encoded guid portions.

At a high level the encoded hostnames take one of two encoding schemes. If all of the
characters in the hostname are contained in the set of domain name-safe characters
"0123456789abcdefghijklmnopqrstuvwxyz-_." then the
OrionImprovementBusinessLayer.CryptoHelper.Base64Decode algorithm, explained in

the article, is used. If there are characters outside of that set in the hostname, then the
OrionImprovementBusinessLayer.CryptoHelper.Base64Encode is used instead and

‘00’ is prepended to the encoding. This allows us to simply check if the first two characters of
the encoded hostname are ‘00’ and know how the hostname is encoded.

These function names within the compromised DLL are meant to resemble the names of
legitimate functions, but in fact perform the message encoding for the malware. The DLL
function Base64Decode is meant to resemble the legitimate function name base64decode,
but its purpose is actually to perform the encoding of the query (which is a variant of base32
encoding).

The RedDrip Team has posted Python code for encoding and decoding the queries,
including identifying random characters inserted into the queries at regular character
intervals.

One potential issue we encountered with their implementation is the inclusion of a check
clause looking for a ‘0’ character in the encoded hostname (line 138 of the decoding script).
This line causes the decoding algorithm to ignore any encoded hostnames that do not
contain a ‘0’. We believe this was included because ‘0’ is the encoded value of a ‘0’, ‘.’, ‘-’ or
‘_’. Since fully qualified hostnames are comprised of multiple parts separated by ‘.’s, e.g.
‘example.com’, it makes sense to be expecting a ‘.’ in the unencoded hostname and
therefore only consider encoded hostnames containing a ‘0’. However, this causes the
decoder to ignore many of the recorded DGA domains.

As we explain below, we believe that long domains are split across multiple queries where
the second half is much shorter and unlikely to include a ‘.’. For example ‘www2.example.c’
takes up one message, meaning that in order to transmit the entire domain
‘www2.example.c’ a second message containing just ‘om’ would also need to be sent. This
second message does not contain a ‘.’ so its encoded form does not contain a ‘0’ and it is
ignored in the RedDrip team’s implementation.

The quirk: hostnames are split across multiple queries

5/7

A list of observed queries performed by the malware was published publicly on GitHub.
Applying the decoding script to this set of queries, we see some queries appear to be
truncated, such as grupobazar.loca , but also some decoded hostnames are curiously
short or incomplete, such as “com”, “.com”, or a single letter, such as “m”, or “l”.

When the hostname does not fit into the available payload section of the encoded query, it is
split up across multiple queries. Queries are matched up by matching the GUID section after
applying a byte-by-byte exclusive-or (xor).

Analysis of first 15 characters

Noticing that long domains are split across multiple requests led us to believe that the first 16
characters encoded information to associate multipart messages. This would allow the
receiver on the other end to correctly re-assemble the messages and get the entire domain.
The RedDrip team identified the first 15 bytes as a GUID, we focused on those bytes and will
refer to them subsequently as the header.

We found the following queries that we believed to be matches without knowing yet the
correct pairings between message 1 and message 2 (payload has been altered):

Part 1 - Both decode to “www2.example.c”

 r1q6arhpujcf6jb6qqqb0trmuhd1r0ee.appsync-api.us-west-2.avsvmcloud.com
 r8stkst71ebqgj66qqqb0trmuhd1r0ee.appsync-api.us-west-2.avsvmcloud.com

Part 2 - Both decode to “om”
 0oni12r13ficnkqb2h.appsync-api.us-west-2.avsvmcloud.com

 ulfmcf44qd58t9e82h.appsync-api.us-west-2.avsvmcloud.com

This gives us a final combined payload of www2.example.com

This example gave us two sets of messages where we were confident the second part was
associated with the first part, and allowed us to find the following relationship where
message1 is the header of the first message and message2 is the header of the second:

Base32Decode(message1) XOR KEY = Base32Decode(message2)

The KEY is a single character. That character is xor’d with each byte of the Base32Decoded
first header to produce the Base32Decoded second header. We do not currently know how
to infer what character is used as the key, but we can still match messages together without
that information. Since A XOR B = C where we know A and C but not B, we can instead use
A XOR C = B. This means that in order to pair messages together we simply need to look for
messages where XOR’ing them together results in a repeating character (the key).

Base32Decode(message1) XOR Base32Decode(message2) = KEY

Looking at the examples above this becomes

https://github.com/bambenek/research/blob/main/sunburst/uniq-hostnames.txt

6/7

Message 1 Message 2

Header r1q6arhpujcf6jb 0oni12r13ficnkq

Base32Decode
(binary)

101101000100110110111111011
010010000000011001010111111
01111000101001110100000101

110110010010000011010010000
001000110110110100111100100
00100011111111000000000100

We’ve truncated the results slightly, but below shows the two binary representations and the
third line shows the result of the XOR.

101101000100110110111111011010010000000011001010111111011110001010011101
110110010010000011010010000001000110110110100111100100001000111111110000
011011010110110101101101011011010110110101101101011011010110110101101101

We can see the XOR result is the repeating sequence ‘01101101’meaning the original key
was 0x6D or ‘m’.

We provide the following python code as an implementation for matching paired messages
(Note: the decoding functions are those provided by the RedDrip team):

string1 is the first 15 characters of the first message
string2 is the first 15 characters of the second message
def is_match(string1, string2):
 encoded1 = Base32Decode(string1)
 encoded2 = Base32Decode(string2)
 xor_result = [chr(ord(a) ^ ord(b)) for a,b in zip(encoded1, encoded2)]
 match_char = xor_result[0]
 for character in xor_result[0:9]:
 if character != match_char:
 return False, None
 return True, "0x{:02X}".format(ord(match_char))

The following are additional headers which based on the payload content Cloudflare is
confident are pairs (the payload has been redacted because it contains hostname
information that is not yet publicly available):

Example 1:

vrffaikp47gnsd4a

aob0ceh5l8cr6mco

xorkey: 0x4E

Example 2:

vrffaikp47gnsd4a

7/7

vrffaikp47gnsd4a

aob0ceh5l8cr6mco

xorkey: 0x54

Example 3:

vvu7884g0o86pr4a

6gpt7s654cfn4h6h

xorkey: 0x2B

We hypothesize that the xorkey can be derived from the header bytes and/or padding byte of
the two messages, though we have not yet determined the relationship.

Update (12/18/2020):

Erik Hjelmvik posted a blog explaining where the xor key is located. Based on his code, we
provide a python implementation for converting the header (first 16 bytes) into the decoded
GUID as a string. Messages can then be paired by matching GUID’s to reconstruct the full
hostname.

def decrypt_secure_string(header):
 decoded = Base32Decode(header[0:16])
 xor_key = ord(decoded[0])
 decrypted = ["{0:02x}".format(ord(b) ^ xor_key) for b in decoded]
 return ''.join(decrypted[1:9])

Updated example:

Message 1 Message 2

Header r1q6arhpujcf6jb 0oni12r13ficnkq

Base32Decode Header (hex) b44dbf6900cafde29d05 d920d2046da7908ff004

Base32Decode first byte (xor key) 0xb4 0xd9

XOR result (hex) 00f90bddb47e495629 00f90bddb47e495629

Cloudflare Zero Trust Cloudflare Gateway Deep Dive

https://www.netresec.com/?page=Blog&month=2020-12&post=Reassembling-Victim-Domain-Fragments-from-SUNBURST-DNS
https://blog.cloudflare.com/tag/cloudflare-zero-trust/
https://blog.cloudflare.com/tag/gateway/
https://blog.cloudflare.com/tag/deep-dive/

