
1/7

Matthew Tennis December 17, 2020

SUPERNOVA: A Novel .NET Webshell
unit42.paloaltonetworks.com/solarstorm-supernova/

By Matthew Tennis

December 17, 2020 at 3:37 PM

Category: Unit 42

Tags: FireEye breach, SUPERNOVA

This post is also available in: 日本語 (Japanese)

Executive Summary

The actors behind the supply chain attack on SolarWinds’ Orion software have demonstrated
a high degree of technical sophistication and attention to operational security, as well as a
novel combination of techniques in the potential compromise of approximately 18,000
SolarWinds customers. As published in the original disclosure, the attackers were observed
removing their initial backdoor once a more legitimate method of persistence was obtained.

In the analysis of the trojanized Orion artifacts, the .NET .dll
app_web_logoimagehandler.ashx.b6031896.dll was dubbed SUPERNOVA, but little detail of
its operation has been publicly explored. NOTE: The SUPERNOVA webshell’s association
with the SolarStorm actors is now questionable due to the aforementioned .dll not being

https://unit42.paloaltonetworks.com/solarstorm-supernova/
https://unit42.paloaltonetworks.com/author/matthew-tennis/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/fireeye-breach/
https://unit42.paloaltonetworks.com/tag/supernova/
https://unit42.paloaltonetworks.jp/solarstorm-supernova/
https://www.sec.gov/ix?doc=/Archives/edgar/data/1739942/000162828020017451/swi-20201214.htm
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html


2/7

digitally signed, unlike the SUNBURST .dll. This may indicate that the webshell was not
implanted early in SolarWinds’ software development pipeline as was SUNBURST, and was
instead dropped by a third party. Additionally, Guidepoint Security conducted their own
research into SUPERNOVA, with similar conclusions.

In this blog, we will share an overview of its operation and function, tactics and techniques
that support the hypothesis of an advanced persistent threat (APT), and what protections
that Palo Alto Networks provides against trojanized SolarWinds instances:

Attackers created a sophisticated, in-memory webshell baked into Orion’s code, which
acted as an interactive .NET runtime API.
Webshell payload was compiled on the fly and executed dynamically, further
complicating endpoint and digital forensics and incident response (DFIR) analysis.
Anti-Spyware signature 83225 has been added to prevent SUPERNOVA traffic.

Technical Overview

In conventional webshell attacks, these server script pages are often some sort of interactive
frontend document that can be manipulated to process backend side effects, which is most
often some form of remote code execution (RCE). A webshell may be uploaded, downloaded
or deployed by either targeting a misconfiguration or vulnerability in the underlying server, or
dropped during post-exploitation as a means of secondary persistence. A webshell itself is
typically malware logic embedded in a script page and is most often implemented in an
interpreted programming language or context (most commonly PHP, Java JSP, VBScript and
JScript ASP, and C# ASP.NET). The webshell will receive commands from a remote server
and will execute in the context of the web server’s underlying runtime environment.

The SUPERNOVA webshell is also seemingly designed for persistence, but its novelty goes
far beyond the conventional webshell malware that Unit 42 researchers routinely encounter.

Although .NET webshells are fairly common, most publicly researched samples ingest
command and control (C2) parameters, and perform some relatively surface-level
exploitation. Some examples would be an attacker commanding the implant to dump
directory structures or operating system information, or to perform a network call to load
more exploitation tools.

SUPERNOVA differs dramatically in that it takes a valid .NET program as a parameter. The
.NET class, method, arguments and code data are compiled and executed in-memory. There
are no additional forensic artifacts written to disk, unlike low-level webshell stagers, and
there is no need for additional network callbacks other than the initial C2 request.

In other words, the attackers have constructed a stealthy and full-fledged .NET API
embedded in an Orion binary, whose user is typically highly privileged and positioned with a
high degree of visibility within an organization’s network. The attackers can then arbitrarily

https://www.guidepointsecurity.com/supernova-solarwinds-net-webshell-analysis/


3/7

configure SolarWinds (and any local operating system feature on Windows exposed by the
.NET SDK) with malicious C# code. The code is compiled on the fly during benign
SolarWinds operation and is executed dynamically.

This is significant because it allows the attacker to deploy full-featured – and presumably
sophisticated – .NET programs in reconnaissance, lateral movement and other attack
phases.

Implant Phase

The implant itself is a trojanized copy of app_web_logoimagehandler.ashx.b6031896.dll,
which is a proprietary SolarWinds .NET library that exposes an HTTP API. The endpoint
serves to respond to queries for a specific .gif image from other components of the Orion
software stack. The relatively high quality code that was added to the .dll is innocuous and
easily missed by defender automation, and even potentially by manual review.

The attackers have leveraged the benign file by adding four new parameters to the API and
a malicious method that executes the parameters in the context of the .NET runtime on the
Orion host. Figure 1 below demonstrates the normal or benign content of the Orion
component.

Figure 1. Benign SolarWinds code for handling the HTTP request and its response.
Line 42 defines the collection of the parameters supplied to the HTTP endpoint, in which only
id is valid and processed. However, the additional C2 parameters are added before this
snippet in the same method, ProcessRequest(), and the execution method is appended in
this same file. Figure 2 shows part of the malicious code (lines 27-41).



4/7

Figure 2. Four C2 parameters are processed and then passed to the malicious method
DynamicRun().
The four parameters depicted above – codes, clazz, method and args – passed via GET
query string to the trojanized logo handler component. These parameters are then executed
in a custom method, which differs from typical webshell behavior that simply invokes
underlying operating system or programming language functions.

C2
Parameter

Purpose

clazz C# Class object name to instantiate

method Method of class clazz to invoke

args Arguments are newline-split and passed as positional parameters to
method

codes .NET assemblies and namespaces for compilation

Note for defenders:

Any ingress traffic to logoimagehandler.ashx with a combination of these four parameters in
any order of the query string are strong indicators of compromise (IOCs). If a detection fires
on this combination in any order, please isolate and image your Orion instance immediately.
If the request came internal to the network, then it is highly probable that the user that
initiated the request has also been compromised.

Execution

Table 1. Command and control parameters



5/7

The attacker may send a request to the embedded webshell over the internet or through an
internally compromised system. The code is crafted to accept the parameters as
components of a valid .NET program, which is then compiled in-memory. No executable is
dropped (and thus the webshell’s execution evades most defender endpoint detections), and
the compiled assembly immediately invokes the specified class method.

The try/catch block beginning on line 27 that encompases the execution on line 37 has been
added to presumably prevent operator error from causing an unhandled exception in Orion,
which could trigger unwanted scrutiny. This is one small example of the attention paid by the
actors to technical and operational security.

Figure 3. DynamicRun() compiles the C2 parameters into a .NET assembly in-memory.
On lines 106 and 107, we can observe the innocuous compiler API flags that are subverted
to impede defenders. Line 115 instantiates the class object specified by the attacker, and on
line 116 the attacker code is executed.

This design pattern is known as dynamic code execution. In software engineering contexts,
this allows for the program to be flexible and extensible. In the context of a cyberattack, the
same is true for the attacker’s code and tools.

Tactics, Techniques and Procedures

In many ways, this webshell exhibits attributes common to other types of webshells. The
malware is secretly implanted onto a server, it receives C2 signals remotely and executes
them in the context of the server user.

However, SUPERNOVA is novel and potent due to its in-memory execution, sophistication in
its parameters and execution and flexibility by implementing a full programmatic API to the
.NET runtime.

In-memory execution of a malicious binary is not a new technique with regard to malware
behavior. That technique typically indicates an adversary’s attempt at foiling endpoint and
DFIR detections.



6/7

However, this is rarely encountered in webshell behavior, as typical webshells execute their
payloads either in the context of the runtime environment or by calling a subshell or process
(cmd.exe, PowerShell.exe or /bin/bash).

SUPERNOVA compiles the parameters on the fly and executes the resulting assembly in-
memory. Aside from evading detections, this indicates that the SolarStorm actors were adept
enough to purposely hide their traffic and behavior in plain sight and to avoid leaving trace
evidence behind.

Protections

Aside from the numerous protections offered across the Palo Alto Networks product suite,
Anti-Spyware signature 83225 has been created to detect any residual C2 infrastructure still
present in impacted networks.

Conclusion

The strategy of implanting webshells in vulnerable servers is not a new tactic for malicious
actors. However, the relative sophistication of the code compared to routine webshell
malware is surprising. Furthermore, the furor of the attacks against SolarWinds further
amplifies interest in novel techniques such as those used in SUPERNOVA.

The only way to catch advanced intrusions is a defense-in-depth strategy. Only by
orchestrating multiple security appliances and applications in a single pane can defenders
detect these attacks.

Palo Alto Networks customers are protected by the following:

Endpoint protection through Cortex XDR.
Malware sandbox detection through WildFire (Next-Generation Firewall security
subscription).
An array of defenses including IPS and AppID in Threat Prevention (Next-Generation
Firewall security subscription).
Threat intelligence with Cortex Data Lake.
Network defense orchestration with Cortex XSOAR.

Acknowledgements

The author would like to thank the following team members for their tireless efforts and
invaluable contributions to this research:

Durgesh Sangvikar, Chris Navarrete, Hui Gao, Rongbo Shao, Kyle Wilhoit, Derrick Chang,
Alex Krepelka, Byron Alvarez and KMAP Pena.

https://unit42.paloaltonetworks.com/fireeye-solarstorm-sunburst/
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/cortex/cortex-data-lake
https://www.paloaltonetworks.com/cortex/xsoar


7/7

Indicators of Compromise
SolarWinds Orion app_web_logoimagehandler.ashx.b6031896.dll

c15abaf51e78ca56c0376522d699c978217bf041a3bd3c71d09193efa5717c71

URI

logoimagehandler[.]ashx

HTTP Query String Params

clazz
method
args
codes

Get updates from 
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

