
1/14

December 17, 2020

Additional Analysis into the SUNBURST Backdoor
mcafee.com/blogs/other-blogs/mcafee-labs/additional-analysis-into-the-sunburst-backdoor/

Executive Summary

There has been considerable focus on the recent disclosures associated with SolarWinds,
and while existing analysis on the broader campaign has resulted in detection against
specific IoCs associated with the Sunburst trojan, the focus within the Advanced Threat
Research (ATR) team has been to determine the possibility of additional persistence
measures. Our analysis into the backdoor reveals that the level of access lends itself to the
assumption that additional persistence mechanisms could have been established and some
inferences regarding the intent from adversaries;

An interesting observation was the check for the presence of SolarWinds’ Improvement
Client executable and it’s version “3.0.0.382”. The ImprovementClient is a program that
can collect considerable information such as count of Orion user accounts by
authentication method and data about devices and applications monitored.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/additional-analysis-into-the-sunburst-backdoor/

2/14

Observation of the http routine was the search for certain keywords in the http-traffic
that might indicate the adversary was looking into details/access of Cloud and/or
wireless networks of their victims.
Even if a victim is using a Proxy-server with username and password, the backdoor is
capable of retrieving that information and using it to build up the connection towards
the C2.

Available Resources

Although this analysis will focus on the premise that the backdoor supports the feasibility of
establishing additional persistence methods we recognize the importance of providing
assurance regarding coverage against available indicators. To that end the following
resources are available:

KB93861: McAfee coverage for SolarWinds Sunburst Backdoor:
 https://kc.mcafee.com/corporate/index?page=content&id=KB93861

SUNBURST Malware and SolarWinds Supply Chain Compromise : Detailing the
protection summary, but also how to use MVISION EDR or MAR to search for
SUNBURST: https://www.mcafee.com/blogs/other-blogs/mcafee-labs/sunburst-
malware-and-solarwinds-supply-chain-compromise/
MVISION Insights Campaign: SolarWinds Supply Chain Attack Affecting Multiple
Global Victims With SUNBURST Backdoor. This resource provides up to date tracking
on the prevalence of available indicators based on geography and sector of potential
targets: https://www.mcafee.com/enterprise/en-us/lp/insights-preview.html#

Additional resources will become available as analysis both conducted by McAfee
researchers, and the wider community becomes available.

Backdoor Analysis

There exists excellent analysis from many of our industry peers into the SUNBURST trojan,
and the intention here is not to duplicate findings but to provide analysis we have not seen
previously covered. The purpose is to enable potential victims to better understand the
capabilities of the campaign in an effort to consider the possibility that there are additional
persistence mechanisms.

For the purposes of this analysis our focus centered upon the file
“SolarWinds.Orion.Core.BusinessLayer.dll“, this particular file, as the name suggests, is
associated with the SolarWinds ORION software suite and was modified with a class added
containing the backdoor “SunBurst”.

https://kc.mcafee.com/corporate/index?page=content&id=KB93861
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/sunburst-malware-and-solarwinds-supply-chain-compromise/
https://www.mcafee.com/enterprise/en-us/lp/insights-preview.html#

3/14

Figure 1 Added module and dependencies
A deeper dive into the backdoor reveals that the initial call is to the added class
“OrionImprovementBusinessLayer” which has the following functions:

Figure 2 Start of the

inserted class

4/14

The class starts with a check to see if the module is running and, if not, it will start the service
and thereafter initiate a period of dormancy.

Figure 3 Sleep sequence of backdoor
As was detailed by FireEye, this period of sleep can range from minutes up to two weeks.
The actual time period of dormancy is dependent on the checks that must be passed from
the code, like hash of the Orion process, write-times of files, process running etc. A sleep
period of this length of time is unusual and speaks to a very patient adversary.

The most important strings inside the backdoors are encoded with the DeflateStream Class
of the .NET’s Compression library together with the base64 encoder. By examining the block-
list, we discover findings that warrant further inspection. First entries are the local-IP address
ranges and netmasks:

10.0.0.0 255.0.0.0
172.16.0.0 255.240.0.0
192.168.0.0 255.255.0.0

Followed by the IPv6 local addresses equivalents:
 fc00::,fe00::, fec0::,ffc0::,ff00::,ff00::

Next, there is a list of IP-addresses and their associated subnetmasks. We executed a whois
on those IP-addressees to get an idea of whom they might belong to. There is no indication
as to the reason that the following IPs have been inserted into the blocklist, although the
netmasks implemented in certain entries are ‘quite’ specific, therefore we have to assume
the attackers were intentional in their desire to avoid certain targets.

5/14

Assuming that the victim is not within the block list, the sample will then proceed to create
the named pipe 583da945-62af-10e8-4902-a8f205c72b2e. This is done to ensure that only
one instance of the backdoor is running. We were able to verify this through replication we
carried out within our own environment.

Figure 4 Running of Backdoor
When we ran the backdoor, we were able to confirm that this value is hardcoded in the code,
and once the dormancy period passed the service is started and named pipe is created. At
this point, the backdoor will also create a unique UserID MD5 value for the system it is
installed on as depicted within figure 5.

6/14

Figure 5 Creation of User-ID
This particular routine will initially read the Device-info of the system but ignore the loopback
interfaces (part of the code of the ReadDeviceInfo routine that mentions “Select * From
Win32_NetworkAdapterConfiguration where IPEnabled=true”). The Device-info will then be
combined with the domain name, followed by a value from the registry key
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography). This information is then
used to create an MD5 value of that string.

The module will start the ‘update’ routine. This routine is a continuous loop designed for
verification against, for example, unwanted services that could potentially be used against
detection of the backdoor as depicted in figure 6.

7/14

Figure

6 Update Loop

Information Gathering

The backdoor gathers information from the system. The following information is gathered by
a routine called “CollectSystemDescription”, some examples include;

OS version, major /minor – is it 32 or 64 bits
Network configs, info on IP, NetBIOS, IPV6 etc.
Host, SID & Username & System directory. In particular the SID for the Administrator
account is searched for.

There exists other subroutines to collect additional data, for example enumerating the
information from the network-adaptors, the backdoor uses the
GetNetworkAdapterConfiguration routine. The routine is gathering the following information:

8/14

Figure 7 Gathering network information
In order to check if certain ‘unwanted’ services are running, the backdoor enumerates the
services, creates a hashlist and compares them with a hard-coded set of these values. The
‘update’ routine will exit once a ‘block-listed’ process id discovered. The backdoor will
attempt to stop these services by entering a value in the registry for that service that will
disable that service. The update routine will check again and continue this process until all
unwanted processes are disabled.

 Another capability of the backdoor is to start/stop tasks:

9/14

Figure 8 Kill/Run task routine
Other functionalities we observed in the code are:

SetTime
CollectSystemDescription
UploadSystemDescription
GetProcessByDescription
GetFileSystemEntries
WriteFile

10/14

FileExists
DeleteFile
GetFileHash
ReadRegistryValue
SetRegistryValue
DeleteRegistryValue
GetRegistrySubKeyAndValueNames
Reboot

An interesting observation was the check for the presence of SolarWinds’ Improvement
Client executable and it’s version “3.0.0.382”.

Figure 9 Searching for ImprovementClient
The ImprovementClient is a program that can collect the following information (source
SolarWinds) :

The SWID (SolarWinds ID) associated with any SolarWinds commercial licenses
installed
The email address provided to the installer during installation
Unique identifier of the downloaded installer
Versions of all Orion products installed
Operating system version
CPU description and count
Physical memory installed and percent used
Time zone
Dates when you logged in to the Orion website
Licensing information of other SolarWinds Orion products locally installed
Row counts for database tables
Count of monitored nodes by polling protocol
Count of Orion user accounts by authentication method
Network discovery scheduling information (not results)
Data about devices and applications monitored:

Vendor
Model
OS/Firmware version
Count
Abstract configuration information, such as number of websites hosted

https://support.solarwinds.com/SuccessCenter/s/article/Orion-Improvement-Program?language=en_US

11/14

Data about the SolarWinds product:
Feature usage statistics
Performance statistics
Hardware and OS platform description

Another observation of the http routine was the search for certain keywords in the http-traffic
that might indicate the adversary was looking into details/access of cloud and/or wireless
networks of their victims by using the SolarWinds’ modules that are installed to
monitor/administer these kinds of instances. Managing the network using SolarWinds’ Orion
is executed by using a browser and localhost that is hosting the webserver. Reading out the
certificate values and search for these keywords in the http-traffic would have gained this
information.

Figure 10 Search for keywords

Network / DGA

After all checks and routines have passed, the backdoor will use a domain generating
algorithm (hereafter DGA) to generate a domain. Example of the part of the DGA code:

Figure 11 DGA code example

12/14

When the domain is successfully reached, the routine called ‘Update’ contains a part that will
act on this and start a new thread firing off the routine “HttpHelper.Initialize”. In the below
screenshot we can observe that flow:

Figure 12 DGA, HttpHelper
The code shows that when the dnsrecord equals the domain and can be reached, the new
thread will start in the background.

The ‘HttpHelper’ class/routine is responsible for all the C2 communications:

Figure 13 HttpHelp

13/14

Even if a victim is using a Proxy-server with username and password, the backdoor is
capable of retrieving that information and using it to build up the connection towards the C2.
It then uses a routine called “IWebProxy GetWebProxy” for that:

Figure 14 Getting proxy username and pwd
The DGA-generated C2s are subdomains of: avsvmcloud[.]com.

 An example of how these domains would look:

02m6hcopd17p6h450gt3.appsync-api.us-west-2.avsvmcloud.com
039n5tnndkhrfn5cun0y0sz02hij0b12.appsync-api.us-west-2.avsvmcloud.com
043o9vacvthf0v95t81l.appsync-api.us-east-2.avsvmcloud.com
04jrge684mgk4eq8m8adfg7.appsync-api.us-east-2.avsvmcloud.com
04r0rndp6aom5fq5g6p1.appsync-api.us-west-2.avsvmcloud.com
04spiistorug1jq5o6o0.appsync-api.us-west-2.avsvmcloud.com

Inspecting the CNAME’s from the DGA-generated C2’s we observed the following domain-
names:

freescanonline[.]com
deftsecurity[.]com
thedoccloud[.]com
websitetheme[.]com
highdatabase[.]com
incomeupdate[.]com
databasegalore[.]com
panhardware[.]com
Zupertech[.]com
Virtualdataserver[.]com
digitalcollege[.]org

In the forementioned HTTP handler code, we discovered paths that might be installed on the
C2’s for different functions:

swip/upd/
swip/Events

14/14

swip/Upload.ashx

Once the backdoor is connected, depending on the objectives from the adversaries, multiple
actions can be executed including the usage of multiple payloads that can be injected into
memory. At the time of writing, details regarding the ‘killswitch’ against the above domain will
prevent this particular backdoor from being operational, however for the purpose of this
analysis it demonstrates the level of access afforded to attackers. While the efforts to
sinkhole the domain are to be applauded, organisations that have been able to identify
indicators of SUNBURST within their environment are strongly encouraged to carry out
additional measures to provide themselves assurances that further persistent mechanisms
have not been deployed.

Christiaan Beek Lead Scientist & Sr. Principal Engineer
Christiaan Beek is the Lead Scientist & Sr. Principal Engineer of the Enterprise Office of the
CTO. He is leading the strategic threat intelligence research with a focus on inventing...

https://www.mcafee.com/blogs/author/christiaan-beek/

