
1/15

December 15, 2020

Who is the Threat Actor Behind Operation Earth Kitsune?
trendmicro.com/en_us/research/20/l/who-is-the-threat-actor-behind-operation-earth-kitsune-.html

APT & Targeted Attacks

Recently, we uncovered the Operation Earth Kitsune campaign and published a detailed
analysis of its tactics, techniques, and procedures (TTPs). While analyzing the technical
details of this malware, which includes two new espionage backdoors, we noticed striking
similarities to other malware attributed to the threat actor known as APT37, also known as
Reaper or Group 123.

By: William Gamazo Sanchez December 15, 2020 Read time: (words)

Determining who is behind a malware campaign can be a challenging endeavor. Threat
actors generally don’t leave easily identifiable signatures in software designed to disrupt or
otherwise harm an adversary. However, by comparing key pieces of information with known
sources, it is possible to determine when a campaign was likely perpetrated by a certain
group. This is even more true when the group has existed for many years and has many
pieces of evidence to compare. Recently, we uncovered the Operation Earth Kitsune
campaign and published a detailed analysis of its tactics, techniques, and procedures
(TTPs). While analyzing the technical details of this malware, which includes two new

https://www.trendmicro.com/en_us/research/20/l/who-is-the-threat-actor-behind-operation-earth-kitsune-.html
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cyber-attacks/operation-earth-kitsune-tracking-slub-s-current-operations

2/15

espionage backdoors, we noticed striking similarities to other malware attributed to the threat
actor known as APT37, also known as Reaper or Group 123. We hope our thorough analysis
of Operation Earth Kitsune will help others with data points for attribution in the future.

By some accounts, this group has been active since 2012, so there are many examples
attributed to them to compare. It is important to note that previous analysis of suspected
APT37 activities from different security vendors date from 2016, and the captured samples
for the Operation Earth Kitsune have been developed recently. Because of this, finding code
similarity is unlikely. However, we were able to match some code reuse in one of the
espionage backdoor’s functionalities. In that sense, we are emphasizing TTPs correlation in
this case. In other words, even when the new samples are developed, the attacker may have
reused many of the operational techniques.

Another important consideration for attribution is that we have some historical background for
Operation Earth Kitsune. Previously, we uncovered two different campaigns in 2019 under
the name of SLUB malware. Operation Earth Kitsune is a continuation of those campaigns.
Consequently, some of the attribution indicators will span and include the previous SLUB
malware campaigns.

The following sections describe the different correlations and are divided into two main
categories:

Correlation related to the malware author developing environment
Correlation associated with TTPs

Note that some leads are stronger than others; however, when combined, they suggest that
the same threat actor behind malware previously attributed to APT37 is likely responsible for
Operation Earth Kitsune.

Malware author’s developer environment

When determining attribution, the most interesting leads are the ones that can deduce
information about the malware author’s working environment. Sometimes, these leads can
determine the preferred languages used in the developers’ environment. There are also
times when developers intentionally remove these associations and plant misleading
information to avoid attribution. That action by itself potentially introduces other leads that
developers may forget to clean.

Operating system language version

During the analysis of the samples captured from the previous campaign related to SLUB in
2019, one of the samples, the SLUB loader exploiting CVE-2019-0803, contained a version
resource section that included intentionally misleading planted data. Figure 1 shows this:

https://www.cfr.org/cyber-operations/apt-37
https://attack.mitre.org/groups/G0067/

3/15

4/15

5/15

Figure 1 Planted version information
This kind of misleading version data is quite common and does not have information relevant
to attribution. However, there is a secondary effect when the version resource is added to a
binary. For this, we are assuming this binary was compiled with a Visual Studio toolchain,
which is indicated for various compiler identification tools. When the version resource is
compiled into the binary, a language ID is generated and created not in the resource payload
but in the internal structure of the resource information that is not visible with Windows
Explorer. What is interesting is that this language ID is not determined by the Visual Studio
current language. Instead, it is determined by the operating system language at the time of
the version resource inclusion. Viewing this language ID requires the use of other tools.
Figure 2 shows the language ID for the SLUB dropper.

Figure 2. Language ID of the Version Resource
We found this type of OS language leak in prior samples attributed to APT37. One of the
previous malware families attributed to APT37 is known as Freenki. Some Freenki samples
had leaked the OS language ID through this same mechanism. The image (Figure 3) taken
from an analysis of Freenki shows that the same logic applies when the resource is compiled
into the binary.

Figure 3. Freenki embedded resource
We assume there are multiple developers within APT37, and not all of them follow the same
practices. As such, not all samples may have the embedded resource that leaks the same
OS language. However, this commonality is just the first of many that lead us to believe the
team attributed to the Freenki malware is the same team behind Operation Earth Kitsune.2

Leaked assert path and external blog references

https://malpedia.caad.fkie.fraunhofer.de/details/win.freenki

6/15

Sometimes, the malware authors know that releasing symbol information is dangerous from
an attribution point of view since it can reveal information about the working environment.
That information often gets stripped from binaries. However, that is not the only scenario
where malware developers leak path information about their environment. In some
instances, malware projects require external libraries, and some libraries used the “assert()”
mechanism to help the developers debug unexpected conditions. In these cases, the
compiler includes a path to the source code file along with those “assert()” calls. These paths
leak information about the third-party libraries’ installed paths. In our case, the samples from
the Operation Earth Kitsune implemented the Mattermost command and control (C2)
communication and leaked a local path. Figure 4 shows the leaked path.

Figure 4. Leaked assert() path
Public references to this path (the path to the c++ boost library) consist of Korean language
blogs explaining how to set up a developer environment configuration using the same path.
We can also determine that this configuration was created manually because the default
path installation does not support static compilation. Here is a translation of the relevant
section:

“Well, in the end, I modified the project configuration file as below, but it doesn't seem like
best practice. There seems to be a neat way to do it, but I seek advice from experienced
people.”

It is also important to note that the same paths leaked through all the SLUB samples. This
includes samples from the older SLUB campaign in 2019 and the new version that supports
Mattermost.

https://www.boost.org/

7/15

Figure 5. Public blog in the Korean Language
These two indicators reveal that the malware author used an “assert()” path and referenced
an external blog in the same manner as previously analyzed malware.

TTPs Correlation

8/15

In our previous detailed analysis of Operation Earth Kitsune, one of the delivery architecture
for the espionage backdoors is designed as shown in Figure 6.

Figure 6. Delivery architecture
While this mechanism may sound quite common in other campaigns, what is interesting is
the details they have in common with previous campaigns attributed to APT37. In 2017, Palo
Alto’s Unit 42 detailed their findings around the Freenki malware. Even though this analysis
was three years before Operation Earth Kitsune, the attackers appear to have reused the
same TTPs for delivering the malware.

Figure 7 shows delivery PowerShell script sections for both campaigns.

Figure 7. PowerShell scripts downloading JPG files
The following TTPs are common in both campaigns related to the scripts in Figure 7:

Both have compromised websites where the malware samples are hosted and
delivered to victim machines.
Both use PowerShell scripts to download and run the samples.
Both PowerShell scripts download multiple malware to the victim machine. It appears
the attacker is willing to implement multiple mechanisms for infecting the victim
machine once it is compromised.
Both use different samples for the multiple malware downloaded.
Both use JPG as a delivering extension.

https://unit42.paloaltonetworks.com/unit42-freemilk-highly-targeted-spear-phishing-campaign/#:~:text=In%20May%202017%2C%20Palo%20Alto,various%20individuals%20across%20the%20world.&text=individuals%20with%20indirect%20ties%20to%20a%20country%20in%20North%20East%20Asia

9/15

Multiple samples are delivered at the same time. In both cases, at least one sample
received command line arguments.

Another surprising similarity in the TTPs related to both campaigns is the path pointing to
“udel_ok.ipp,” as shown in Figure 7. This is a JavaScript file that executes with wscript.exe.
Figure 8 shows the partial source code for this JavaScript.

Figure 8. Javascript executing the malware.
What got our attention is that the samples were renamed to be similar to the naming
convention of Windows update files (i.e., “Windows-KB275122-x86.exe”). While analyzing
the samples that have been previously attributed to APT37, we noticed that the persistence
mechanism in Operation Earth Kitsune uses the same naming convention to auto-start itself
through the Windows run registry key. We also found that older samples from the previous
SLUB campaigns in 2019 used a similar naming convention. Figure 9 shows that SLUB used
“Windows-RT-KB-2937636.dll,” while Freenki used “Windows-KB275122-x86.exe.”

10/15

Figure 9 Naming convention for persistence.
We can see how the Freenki malware, previous SLUB campaigns, and Operation Earth
Kitsune share many common TTPs in their delivery and persistence mechanisms. However,
these are not the only commonalities. Again, on its own, this might not be coincidental.
However, our analysis shows further similarities that imply correlation.

GNUBoard compromised web sites

In the blog describing Operation Earth Kitsune, we noted sites using the GNUBoard Content
Management System (CMS) had been compromised and were used to host malware. The
malware campaigns previously attributed to APT37 also extensively used the exploitation of
web sites hosted with GNUBoard CMS. While analyzing multiple samples, we found
indicators of this strategy across the various campaigns. Figure 10 shows an example
attributed to APT37 and Operation Earth Kitsune as a comparison. The SLUB campaign also
exploited and used GNUBoard websites as part of the infrastructure.

Figure 10. Websites created using GNUBoard CMS

11/15

Exfiltration commands

As mentioned in the previous report on Operation Earth Kitsune, one of the espionage
backdoors, named agfSpy, received a “JSON” configuration with a list of native Windows
commands to execute. The output of those commands is exfiltrated back to the agfSpy
command and control (C2) server. While analyzing one malware previously attributed to
APT37, it executed practically the same command sequences including the paths and
extensions. Even when the threat actor was not using the “JSON” format, the commands
embedded in the various samples show a surprising amount of similarities. Figure 11 shows
a comparison of the exfiltration commands between malware previously attributed to APT37
and Operation Earth Kitsune. Note the following similarities:

The usage of paths C:\Users and D:\ are similar
The searching patterns are very similar
The extension list is very similar

Note that we are comparting a sample from 2016 with agfSpy, which is from 2020. It makes
sense that new campaigns coming from the same authors/groups will add new extensions
like “.xlsx” to support updated versions of Office documents. It is also clear that the actual
interest is on the “.hwp” extension for Korean Office document listing support during
exfiltration.

Figure 11. Exfiltration command similarities.

Code sharing

12/15

When doing attribution, finding code sharing between different samples is one of the most
desired discoveries. However, in our case, this was difficult as we are comparing samples
from 2016-2017 to those developed in 2020. At the same time, practically all code for the
SLUB malware was created from scratch. Also, dneSpy and agfSpy are based on custom
and newly developed code. That makes it difficult to match code similarities, and that is why
many of the indicators of code sharing are sparse across different samples.

However, one feature that is present in the previous malware attributed to APT37 and
Operation Earth Kitsune is the screenshot capture. We tried to find how this feature evolved
across previous samples and the older SLUB samples. During the analysis, we found a clear
indication of code sharing for the screenshot functionality. Figure 12 shows a comparison
between the two samples. While this code may have some related “internet code sharing
post” origin, both samples share it. They also have some changes that make sense, such as
removing the error “failed to take…,” since this is not required for the malware functionality. It
is likely a late refactor to the code.

Figure 12. Screenshot functionality comparison between SLUB and APT37

Working Hours

Analyzing the compile time of binaries between different samples can also provide a level of
correlation between samples. While malware authors can fake this, useful information can
still be gleaned with enough samples. In our case, we collected many samples across 2020,

13/15

and we found that the compile dates and times follow a logical timeline according to the
malicious activity. Based on our analysis, we believe the malware author did not fake the
compile times of the binaries. Other public references also used the compiled binary time of
samples attributed to APT37. When compared to the compile times seen in Operation Earth
Kitsune, there are several similarities.

The compile times that are listed on binaries provide an estimate of the threat actor's working
hours and help approximate possible time zones where the malware was developed. It is fair
to assume that the developers work on daily working times. When you have many samples
to analyze, you can refine that expectation over time. Figure 14 (below) shows a raw
comparison across many samples using two time zones. We can see how the UTC+9 time
zone matches those previously attributed to APT37 and those from Operation Earth Kitsune.
These both equate to the daily working times for that time zone.

Figure 13. Compile Time APT73 and Kitsune
During the capture of samples for Operation Earth Kitsune, we managed to dump information
about the Mattermost server using its API and the token used by the malware itself.
Mattermost was being used as a C2 channel for the malware. Part of the dumped
information contained the action of the user with administration roles on the system. That
user was doing manual activities the majority of the time. At the same time, we were able to
locate the Mattermost server hosted in Greece, and that gave us the current time zone of the
Mattermost server. Having that reference, we plotted the actions of all users whose
information we could obtain. It is important to remember that, except for the administrator
user, all other accounts were used as part of the malware deployment (SLUB malware).
Figure 15 shows a plot with “Y” representing the number of actions. For example, an action
for the SYSTEM_ADMIN could be to create a user, add a user to a channel, etc. The “X” axis
represents the hour of the day (in 24 hours). No months are plotted, so this figure is like
compressing all the activity across the full 2020-year in one day just to show the active hours
in a day. All the plots are located in UTC+9.

https://mattermost.com/

14/15

Figure 14. Mattermost server activity.
Figure 15 shows that User_3 and User_4 have like random counts. This is because those
accounts are actually the ones the malware used during the infection logging activities to the
Mattermost server. However, the SYSTEM_ADMIN account has a different pattern because
the actions are mostly due to manual administration activities. Unsurprisingly, the
SYSTEM_ADMIN hours perfectly line up with the daily working hours at UTC+9.

Conclusions

While no attribution is perfect, there are striking similarities between the malware attributed
to APT37 and Operation Earth Kitsune. Little can be gleaned from each individual piece, but
when viewed as a whole, the group behind Operation Earth Kitsune is likely the same one
behind the Freenki malware and other malware campaigns attributed to APT37. This is
somewhat surprising, considering Operation Earth Kitsune’s espionage tools were entirely
fresh-developed.

We can summarize the correlated indicators in a general form as:

Use of Korean language in the system environment of the developers
Reuse of multiple TTPs during operation deployments:
 GNUBoard compromised web sites
 Multiple malware samples deployed at the same time
 A similar organization in the deployment architecture
Reliance on public services and watering hole attacks to compromised victims
Some code reuse, even when the samples are completely different otherwise
Working hours for both matches
Exfiltration techniques and information interest are very similar if not fully matched

15/15

While it is always possible for another group to imitate the TTPs of a different group to
confuse attribution, there does not seem to be any indication of that here. Instead, what we
see in SLUB and Operation Earth Kitsune is the evolution of an advanced threat actor over
time: one that builds on what worked in the past to become more efficient in the present.

