
1/29

Dump-GUY

Reverse engineering KPOT v2.0 Stealer
github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.md

Malware-analysis-and-Reverse-engineering/kpot2/KPOT.md

Cannot retrieve contributors at this time

main

KPOT Stealer is a “stealer” malware that focuses on exfiltrating account
information and other data from web browsers, instant messengers, email,
VPN, RDP, FTP, cryptocurrency, and gaming software.

 Sample:[Virustotal]

At first it is usually good to start with a little recon about this sample. For
this purpose, I usually use browser extension called “Mitaka”
[https://github.com/ninoseki/mitaka]. This is very useful browser extension
for IOC OSINT search.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.md
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2
https://www.virustotal.com/gui/file/67f8302a2fd28d15f62d6d20d748bfe350334e5353cbdef112bd1f8231b5599d/detection
https://github.com/ninoseki/mitaka


2/29

To be more sure about first assumption that it could be a “kpot” stealer, it is
also good to perform a YARA scanning on this sample. I prefer YARA rules
from Malpedia. [https://malpedia.caad.fkie.fraunhofer.de/]

So where to start? Usually one of my first questions is: “Is it packed or
somehow encrypted?”

I would not be covering the whole – not so interesting static analysis of file,
but only focusing on the IAT of the sample and entropy which usually
unhide that the sample is packed.

Well in this case it looks like deterministic signatures cannot identify some
well-known packer.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/0156ec783088d3fe29a778c2c182e70e.png
https://malpedia.caad.fkie.fraunhofer.de/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/feda1f4d8d1e612eb2560b4200635c9d.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e422011bdad41a263d4e0757b3a73328.png


3/29

Let´s try something what works almost every time. Another picture is more
than words.

You can see that the sample has only 4 imports and the entropy of the .text
code section is too high – packed.

So for now we know that we have to deal with sample which is some kind
of stealer and it is probably encrypted or packed.

Let’s start Reversing !!!

After throwing the sample to IDA, we can clearly see that in the start
(entrypoint) there are 4 functions which should be in our interest.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/683bd174d3758bcc4c91c39000e2828f.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/9dbd53380727633148436d407101b01d.png


4/29

You can see also unresolved calls like “call dword_4151C0” – these calls
are pointing to some location in .data section which is now empty and
probably gets filled with addresses later.

So we have almost no imports and plenty of unresolved calls. Let’s start
with the 4 interesting functions mentioned before.

First function is sub_404477 – this function is not interesting at all. It is only
clearing 20 bytes in memory for call LoadUserProfileW.

So let’s continue to another call sub_4042FC. This function is locating PEB
exactly ProcessHeap and saving it to location dword_415224.

We can confirm it in windbg where we can easily parse PEB structure.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5e7525f21a56f6edf5c3445310460940.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d6e66d12006b66c5fd7c90f85f5fc0cb.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/bd3c988ced503f873281e616951466da.png


5/29

Move to the next function sub_4058FB. This function is the most
interesting where string decryption and API resolving happens.

At first, we will focus on the function sub_40C8F5 which you can see is
referenced from 69 locations.

We can see this function (sub_40C8F5) in the picture below. It looks like
some basic xor cipher. It also looks like that decompiler has some hard
time to produce us more pretty code so we help him.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/27a5f96906d7b47bc4ac03fa5c94be01.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/dd60347938dac3c6048ebffa40b0296d.png


6/29

So first of all, we check the arguments to this function and retype it
correctly. Function sub_40C8F5 takes 2 arguments, where the first one is
some hardcoded unsigned _int8 which looks like some kind of index and
the second one is a pointer to stack address.

From the decompiler view we can see that the second argument is actually
pointer to BYTE. If we set the types and names of variables correctly we
can see better but not the best results.

For better results, we must check also the nullsub_1 which is not a
function but address to array of structures. Let’s undefine the nullsub_1
firstly.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/3c020a034818e1c089e5574cb8241680.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e28a5ab9260987f1282b9d0847ffa4fa.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/eecd289e30887fd0b9aa1214d80621ea.png


7/29

You can see that the index variable is used for pointing to the specific
structure which would be probably 8bytes in size. We can confirm it when
we check the address .text:00401288 where we can see another 183
structures – 8 bytes in size.

When we check the address .text:00401288, it looks like the first BYTE
value “C3” is used as xor key, second BYTE value could be unidentified
(undefined), the WORD “0013” looks like length of string which will be
xored and the last DWORD (00403594) is the address where our
encrypted string is located. Let’s check that address (403594) if our
assumption is correct and if there is some kind of encrypted string with
length 13h (19).

Our first assumption was correct so let’s create a structure and apply it as
array of structures.

To apply our created structure “Decrypt_string_Struct” simply navigate to
location 00401288 and press ALT+Q and choose newly created structure.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ef34fd37cd4acc6fa27e3a9cdbf73ff7.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/7aa9ce79513811fec7c034d04c72f814.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f7ca9ddebbb3deabb517aef2c8585e58.png


8/29

Convert the structure to array with array size = 183.

And now we are ready to check our better decompiled function
String_Decrypt1. Below is comparing of decompiled function
String_Decrypt1 before and after modification.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f40e2852d36281f6d60faf03d64974c3.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/8859f218a9be22fd21db0efb6104b4e7.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/8b0d3363cc934da43aa0b61e5ad853cd.png


9/29

So this algorithm is very basic: First argument to this function is index of
the structure in array and second argument is location on stack where the
decrypted string is saved.

Key (BYTE) from the structure is xored with each BYTE in the location
(Encrypted_string_pointer) from our indexed structure, till it reaches the
length of encrypted string.

Let’s quickly confirm it for the first structure in array with python.

We were correct and obtained our first IOC.

Before jumping to IDAPython we forgot something. If you remember the
function String_Decrypt1 was referenced from 69 locations but our array of
structures contains 183 members.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f56cf910cf19411eb3d83f5c02139397.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/cb91528a6243c309a3f57745a1c8202b.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/6c4e17fc73710ad10ac928070baec73d.png


10/29

So we could check Xreferences to our array of structures if we could find
another String_DecryptX function.

We were right, there is another one. Quick checking that function
(sub_40C929) revealed that it is basically the same as function
String_Decrypt1. So we rename it to String_Decrypt2.

Now when we found both functions referencing our array of structures, we
can jump to IDAPython and write a decryptor.

The final decryptor could be something, what will find all location from
where our 2 string-decrypting functions (String_Decrypt1, String_Decrypt2)
are called. After it finds these locations it will grab the first argument as our
“INDEX” to structure, find and parse the structure[index]. This will serve us
for decrypting the current string so we could insert a comment to location
from where the string-decrypt function was called.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/be65f460c763ea6ca2f710f33c7a92e2.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ebf8df467337b5221561e51d6d6e1af8.png


11/29

During the creating of decryptor, I found one quite tricky problem with
locating the first argument value “INDEX” for our (String_Decrypt1,
String_Decrypt2) functions. You can see it on the picture below where I let
IDA with little help from IDAPython to print assembly line for all previous
instruction before our functions (String_Decrypt1, String_Decrypt2) get
called. The script part is self-explanatory.

You can find script “Find_previous_instruction.py” here
[Find_previous_instruction.py].

We must deal with locating the first argument during the string-decryptor
implementation. In the picture below is the string-decryptor script in
IDAPython for the “String_Decrypt1” function.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/2bd39bd218720fd7717e80a12b235143.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/IDAPython_scripts/Find_previous_instruction.py


12/29

String-decryptor script for the “String_Decrypt2” function is little different
only in area of searching and extracting the first argument VALUE (index)
to function String_Decrypt2.

You can find both scripts for decrypting functions (String_Decrypt1,
String_Decrypt2) here [Decrypt_KPOT_Strings1.py,
Decrypt_KPOT_Strings2.py].

After running these scripts, we get commented all location from where
(String_Decrypt1, String_Decrypt2) are called with decrypted strings in
both assembly view and decompile view.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5c700f1636b04e47e371b15578ccc419.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/50690840f808ec9c430bb564fde9103f.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2/IDAPython_scripts


13/29

In Output window we could see some information like: String_Decrypt1
function address, count of references and for each processed reference is
shown - current index value, current structure in hex, current xor KEY,
length of encrypted string, address where the encrypted string is located
and finally decrypted string.

As we are now able to see decrypted strings we are getting some ideas
about functionality of this sample. As you can see we were able to get 211
locations with decrypted strings. Some of them are referencing the same
string. We can clearly say that this sample is some kind of credential,
cryptocurrency stealer…

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f41139f0a8658ddb59cbe1d98a20ae9e.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/100ac2e792a1d080937e5421d383b390.png


14/29

So for now strings are decrypted and we can continue to resolve API calls.

We will continue with our string-decrypting and API resolving function
sub_4058FB to see what is going on next. We can see that there will be
probably some kind of API name hashing which after matching hash of API
name, the address of the API function will be saved to the hardcoded
memory location. In the picture below we can see the stack preparation for
the API name hashing and resolving.

After the stack is prepared two functions get called. Let’s check the first
function sub_406936.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/068f85e0ea9f799d54baef473292ea06.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/453d895a5a9aaa26710485287017190e.png


15/29

The function sub_406936 is basically parsing PEB structure and loading
base address of the kernel32.dll module. You can easily confirm it with
help of IDA _PEB struct or windbg as in the pictures below. It is finding the
PEB structure, _PEB_LDR_DATA where it finds first member in
InLoadOrderModuleList which is our sample kpot2.exe. After that, it finds a
location of the third loaded module (kernel32.dll) and extracts the base
address. This base address of kernel32.dll is passed to the next function
sub_4045DC so it will be used to find addresses of export functions.

We can move to the next function sub_4045DC which is responsible for
finding address of LoadLibraryA API function from kernel32.dll module.

This function (sub_4045DC) is not responsible only for finding address of
LoadLibraryA but it is able to find API address via hash value of its name
and base address of module as arguments.

So we can clearly rename it as function “Find_api_via_HASH”. With a little
help with tool like PEbear [https://github.com/hasherezade/pe-bear-
releases] we could properly annotate the function sub_4045DC -

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/a5cbccec7900ff96fbe6820795148aa6.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/acda6445d26ad9cef34a89b7f6697ceb.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/561e83277dc33df24c4e38a6fdac0b85.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d4c34785139bbd652e1d8e4bd809bd2a.png
https://github.com/hasherezade/pe-bear-releases


16/29

“Find_api_via_HASH”. In this case where arguments to the function are
kernel32.dll base address and API name hash 0x822FC0FA
(LoadLibraryA), it is parsing kernel32.dll and searching for export function
name which hash is 0x822FC0FA.

We can focus more on the function Api_hashing_func later.

Of course we can save some time and let IDA help you with defaultly
defined structs for PE. But I personally think that it is a needed skill to
understand and be able to parse PE manually.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/212c192bd5ea4ca06ba0ef34e68562d6.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ddb3905a21c0ecfd53e950063ba01c8c.png


17/29

So let´s jump to the function Api_hashing_func (0x403E1C) which you
could see in the picture below is implementing some probably modified
version of well-known hashing algorithm.

We could use a little help to find out what hash algorithm is implemented
from another excellent tool Capa [https://github.com/fireeye/capa]. This
gives us a hint that it could be hashing algorithm of type murmur3. We will
come back to this hashing algorithm later.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/60b4b42454c1897bb8451227da20557d.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/016cfded29c123b32ee5db884537c86c.png
https://github.com/fireeye/capa
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ddb4977b8e1155bd16dfbbe4b65b0b0f.png


18/29

So for now, we have more information and can come back and continue
with function sub_4058FB - picture below which I populated with all known
info. You can see that some another dlls are loaded and also another
function sub_40694A is called.

Function sub_40694A is parsing PEB where it returns ntdll.dll base
address.

So we can continue and finally reach the interesting part.

In the picture below, we can see the last part of sub_4058FB which we can
clearly rename now as “String_Api_Decrypt”. This last part as you can see
is responsible for resolving all API functions and saving them to .data
section in memory. All these resolved API functions addresses are later in
code referenced. You can see that there is a loop which is looping through
all API name hashes saved on stack before and calling
Find_api_via_HASH.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ab1159473fadb375b1e826eef3ff3353.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/3b07e8b09509707c709430c71fe599a4.png


19/29

So now we have more options to obtain and populate all resolved API
functions in our code. One of the option is to implement murmur3 hashing
algorithm and with help of IDAPython, find all API function name hashes to
process it with our algorithm. As we did some IDAPython scripting before
and I want to show you different methods you can only see that our
assumption about murmur3 hashing algorithm is right in the pictures
below:

According to our annotated code – the hash of API function name
LoadLibraryA is 0x822FC0FA

We are also able to find out that murmur3 is using Seed value
0x5BCFB733 by examining the code in function Api_hashing_func
(0x403E1C).

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/342b6d6af98dca258cb4cbe6da60ddb8.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d38bb70ec7af8595a20da6ff00cf3122.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e27b9b376cb5cfd6578fc9481e036ac1.png


20/29

To verify that it is really murmur3 hashing algorithm with seed
0x5BCFB733:

Our assumption about hashing algorithm is right so move next.

The another option to obtain and populate all resolved API functions in our
code is to debug the sample kpot2 and after API functions addresses get
resolved, apply plugin Scylla to reconstruct IAT – this sometimes does not
work well. Option we will use and which I am finding more interesting and
in this case perfectly suitable is to use tool “apiscout”
[https://github.com/danielplohmann/apiscout]. This tool is extremely useful
in situation like this.

When we have all information about how the API resolving works, we
could let the sample populate the resolved API function addresses in
debugger, dump the process from memory and after that, we need
something what is able to find in our dumped memory all populated API
function addresses and annotate it for us. This is the time when apiscout
comes to save the situation.

One of the feature of apiscout is creating of database of all API functions
(exports of module). We can let the apiscout build the database from all
dlls on our system or we can select only some of them. It is basically
parsing all modules exports and creating database with information like
name of API function, VA, ASLR offset etc…

Let’s start with dumping our kpot2.exe process from memory in debugger
like x64dbg after it populates the resolved API function addresses. We put
a breakpoint after the call sub_4058FB - “String_Api_Decrypt” and dump
the process. To find location of this function in debugger easily, do not
forget to disable ASLR in the optional header of kpot2.exe.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5a5dbed0f01bcd051daf4776ba8eb3ff.png
https://github.com/danielplohmann/apiscout


21/29

Locating our sub_4058FB - “String_Api_Decrypt function.

Dumping the kpot2.exe process from memory with plugin OllyDumpEx.

Confirmation in IDA that all referenced API addresses are already
populated in our kpot2 process dump “kpot2_dump.bin”:

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/2b13605a430c7f56d33571538654d756.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f324b40cb89c3c21726c5290a9c307f5.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/cfa843c30df5f88ee0554b19c4097b04.png


22/29

Apiscout is able to work also on system with ASLR enabled but in case we
want to choose apiscout option to ignore ASLR, we must disable the ASLR
before we perform the process dump of kpot2.exe – find registry key:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management]

Create a new dword value: “MoveImages” = dword:00000000 (without
quote)

Restart system.

If we do not want to create database of all dlls from our system, first of all
we should find and copy to some location all dlls which is our sample
kpot2.exe loading and processing:

We can see this information in debugger from where we can copy the
whole table to .txt file:

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/1be50ac0fffeb363b5381faf5b3f8515.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d51c135ad84347065febbef462787203.png


23/29

Extract dlls path with some regex, editors etc…

To copy all dlls from provided paths with powershell:

Now when we have all our needed dlls we start with apiscout –
“DatabaseBuilder.py” to create our database.

Now when we have build our kpot2_DB.json, before we apply it to our
previously created process dump file in IDA “kpot2_dump.bin”, we can
verify that apiscout is able to find all API functions in our dump according
to kpot2_DB.json. For this purpose, we use apiscout tool “scout.py” as you
can see in the picture below.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/6d7851313c42a9a9d484f616f2afad18.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/253ce7b2484416a245b5e8d3692e0e8a.png


24/29

We can see that apiscout was successful and there is more – something
called “WinApi1024 vector”. Basically speaking it is something like
ImpHash on steroids. You can read more about Apivector here:
[https://byte-atlas.blogspot.com/2018/04/apivectors.html]. As we get
WinApi1024 vector of our kpot2_dump.bin calculated, we can use it
against big database maintained on Malpedia which is covering big
amount of well-known malware families
[https://malpedia.caad.fkie.fraunhofer.de/apiqr/]. We can see that our
WinApi1024 vector is matched 100% with family “win.kpot_stealer” below.

To apply all previously annotated names of functions from previous IDA
database file to our newly created kpot2 process dump “kpot2_dump.bin”,
we could use IDA plugin called “rizzo”
[https://github.com/tacnetsol/ida/tree/master/plugins/rizzo].

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/afd0335548cbf3b1ef1e83e856cd4b79.png
https://byte-atlas.blogspot.com/2018/04/apivectors.html
https://malpedia.caad.fkie.fraunhofer.de/apiqr/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/525ed9ea701fa3cd8e2140f4cea7659c.png
https://github.com/tacnetsol/ida/tree/master/plugins/rizzo


25/29

After that, previously created IDAPython scripts for decrypting strings must
be run again (Decrypt_KPOT_Strings1.py, Decrypt_KPOT_Strings2.py)
[View here]

Now we are almost in the same state with “kpot2_dump.bin” as we were in
the original sample.

Let’s continue to apply our created database kpot2_DB.json to process
dump kpot2_dump.bin in context of IDA. We will use apiscout IDAPython
script “ida_scout.py” for that.

In the next window choose all of the found APIs and click “Annotate”.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2/IDAPython_scripts
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/a2c00dbc2431270ef7d60555f402a56c.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/99ddfb24ae3a37fcae9e555c586245ea.png


26/29

After apiscout is done we can check the results – all referenced API
addresses are annotated with their names and type.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/eb65e532b10eac159dbc28dbd5a014c5.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e18b1c17d48dd900c69a9603379c414b.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/9382972a579507d47cec99eedce2759d.png


27/29

Now we are in state were we have all strings decrypted, all API function
calls resolved and annotated so we are ready to benefit from it in analysis.

The analysis of the sample is now a simply task so for brevity, I will show
only some of functions. Capabilities of the functions are now usually self-
explanatory.

sub_40CB02 - is clearly "Namecoin" cryptocurrency stealer:

sub_4101AB – ping + delete main module (kpot2.exe) always called
before exit().

We can also easily rename wrapped functions when we have all API
functions resolved:

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/719ec061b7ead8ee375ca6a555ade1fc.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/72bb19b99dde1ad66f39447fb77bc17a.png


28/29

sub_40D5B3 - WinSCP 2 sessions information stealer.

Conclusion:

Kpot2 stealer is able to exfiltrate account information and other data from
web browsers, instant messengers, email, VPN, RDP, FTP, cryptocurrency,
and gaming software.

Most of them:

Firefox, Internet Explorer, cryptocurrency: (Ethereum, Electrum, Namecoin,
Monero) Wallets - Jaxx Liberty, Exodus, TotalCommander FTP, FileZilla,
WinSCP 2, Ipswitch ws_ftp, Battle.net, Steam, Skype, Telegram,
Discordapp, Pidgin, Psi, Outlook, RDP, NordVPN, EarthVPN.

It is almost impossible to cover all of stealing/exfiltrating functions here and
it wasn't even my intention. I wanted to cover some tricky techniques
during reversing and hope that anybody could find something from this
analysis useful or even interesting.

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/4a2daf83fbee673869b76f78b5b8239e.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f514d8227824b2935eae1e7d90bf0b72.png


29/29

If you find it useful and want to share it on your blog or somewhere else,
you can, just let me know if you would like to get it in better format for
sharing.

Thank you to everybody who was able to read it to the end.

Author:

[Twitter]

[Github]

Download:

[Download PDF]

https://twitter.com/vinopaljiri
https://github.com/Dump-GUY
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.pdf

