Reverse engineering KPOT v2.0 Stealer

O github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.md

Dump-GUY

Dump-GUY/Malware-
analysis-and-Reverse-...

Some of my publicly available Malware analysis and
Reverse engineering.

A1 OXN0 w410 % 80 O

Contributor Issues Stars Forks

main

Malware-analysis-and-Reverse-engineering/kpot2/KPOT.md

Cannot retrieve contributors at this time

KPOT Stealer is a “stealer” malware that focuses on exfiltrating account
information and other data from web browsers, instant messengers, email,
VPN, RDP, FTP, cryptocurrency, and gaming software.

Sample:[Virustotal]

At first it is usually good to start with a little recon about this sample. For
this purpose, | usually use browser extension called “Mitaka”
[https://github.com/ninoseki/mitaka]. This is very useful browser extension
for IOC OSINT search.

1/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.md
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2
https://www.virustotal.com/gui/file/67f8302a2fd28d15f62d6d20d748bfe350334e5353cbdef112bd1f8231b5599d/detection
https://github.com/ninoseki/mitaka

E 67f8302a2fd2815f62d6d20d748bfe3503: 112bd1f8231b5599d

62

(D 62 engines detected this file

myfileexe

. o
112bd11823105599d 79.00KB 2020-11-16 17:27:12 UTC 2 O
z 22 EXE

pesxe

DETECTION DETAILS RELATIONS BEHAVIOR communy @
Basic Properties
D5 7d7667ddcesidé9a0 o5 abooeniieia
SHA-1 087fc3e9a082983e 063, Y
SHA-256 e7fg302a2fdzndsfezay SeectAl oot
Vhash 0840366415601922'2 Search Google for “7d7667ddceBfd69..” Search this text on Censys
Search this text on PublicWWW
Imphash 3fcc7e61092407bbcads View Selection Source Search this hash on ANYRUN
Rich PE header hash Inspect P SRR
SSDEEP 1536UPOGIQMVWZZXZC Inspect Element (Q) Search this hash on Hashdd 51k
. TRSSEVEBIOIN oo ponatsr | Sechihishsh onHybridnlysis
Fie type . - ik " Sechitishsh on nQuet
. B Search this hash on Intezer
Meagic PE32 executable forMS %7 Gotanda N
. Search this hash on JoeSandbox
Win32 Dynamic Link Lib) &2 Taye o Screenshot
. J Search this hash on Malshare
D Win32 Executable (genc [l 8
Search this hash on Maltverse
TRD 0812 Executable (g . o &
Search this hash on MalwareBazaar
D Wins4 Executable (generic) (10.5%)
o Search this hash on Malwares
TRD Generic Win/DOS Executable (10.4%)
Search this hash on OpenTIP
File size 79.00 KB (80876 bytes) e
Search this hash on OTX
Search this hash on Pulsedive
History Search this hash on Scumware

Creation Time ~ 2019-04-16 18:29:27

First Submission 2019-04-24 09:08:40

Last Submission 2020-11-16 17:27:12
Last Analysis 20201116 17:27:12

Search this hash on ThreatMiner
Search this hash on Triage
Search this hash on VirusTotal
Search this hash on VMRay
Search this hash on VxCube

Search this hash on X-Force-Exchange
Search this hash on all

To be more sure about first assumption that it could be a “kpot” stealer, it is
also good to perform a YARA scanning on this sample. | prefer YARA rules
from Malpedia. [https://malpedia.caad.fkie.fraunhofer.de/]

So where to start? Usually one of my first questions is: “Is it packed or

somehow encrypted?”

| would not be covering the whole — not so interesting static analysis of file,
but only focusing on the IAT of the sample and entropy which usually
unhide that the sample is packed.

Well in this case it looks like deterministic signatures cannot identify some

well-known packer.

compiler Microsoft Visual C/C++(2010)

finker Microsoft Linker(10

Microsoft linker(19.
Compiler: Visual C/C++(1
Tool: Microsoft Visual Studio(2010 RTM

B Exeinfo PE -ver.005.3 by ASL- 1031+71 sign 20180825

Fle: |[koot2.bin

Entry pont <
y Fieofer: [oooemz]
€ e

Fie Size <[y

Image s 32bit executable

Fil
FrstBytes: [55.58.6C.63 £
SubSystem : [windons GUL_]
Overlay:

RES/OVL:0/0% 2013

[Vicrosoft Viusl G-+ ~v.7.10 - 10 - Vual 2010 1 scan gt

Lamer Info - Help Hint ~Unpadkino

[Not packed , try OllyDbg vz - www.olycbg.de or IDA v7 www.hexray] | @)@

2/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/0156ec783088d3fe29a778c2c182e70e.png
https://malpedia.caad.fkie.fraunhofer.de/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/feda1f4d8d1e612eb2560b4200635c9d.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e422011bdad41a263d4e0757b3a73328.png

Let’s try something what works almost every time. Another picture is more
than words.

You can see that the sample has only 4 imports and the entropy of the .text
code section is too high — packed.

So for now we know that we have to deal with sample which is some kind
of stealer and it is probably encrypted or packed.

Let’s start Reversing !!!

After throwing the sample to IDA, we can clearly see that in the start
(entrypoint) there are 4 functions which should be in our interest.

loc_4103D8:

3/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/683bd174d3758bcc4c91c39000e2828f.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/9dbd53380727633148436d407101b01d.png

You can see also unresolved calls like “call dword _4151C0” — these calls
are pointing to some location in .data section which is now empty and
probably gets filled with addresses later.

dword_4151CC dd ?

dword_4151D8 dd ?

So we have almost no imports and plenty of unresolved calls. Let’s start
with the 4 interesting functions mentioned before.

First function is sub_404477 — this function is not interesting at all. It is only
clearing 20 bytes in memory for call LoadUserProfileW.

So let’s continue to another call sub_4042FC. This function is locating PEB
exactly ProcessHeap and saving it to location dword_415224.

4/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5e7525f21a56f6edf5c3445310460940.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d6e66d12006b66c5fd7c90f85f5fc0cb.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/bd3c988ced503f873281e616951466da.png

Move to the next function sub_4058FB. This function is the most
interesting where string decryption and API resolving happens.

DA Vier e e [Enums

At first, we will focus on the function sub_40C8F5 which you can see is
referenced from 69 locations.

[52] xrefs to sub_40C8Fs

We can see this function (sub_40C8F5) in the picture below. It looks like
some basic xor cipher. It also looks like that decompiler has some hard
time to produce us more pretty code so we help him.

5/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/27a5f96906d7b47bc4ac03fa5c94be01.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/dd60347938dac3c6048ebffa40b0296d.png

So first of all, we check the arguments to this function and retype it
correctly. Function sub_40C8F5 takes 2 arguments, where the first one is
some hardcoded unsigned _int8 which looks like some kind of index and
the second one is a pointer to stack address.

sub_48CEFS
sub_a

From the decompiler view we can see that the second argument is actually
pointer to BYTE. If we set the types and names of variables correctly we
can see better but not the best results.

unsigned _ int8 IN

For better results, we must check also the nullsub_1 which is not a
function but address to array of structures. Let’s undefine the nullsub_1
firstly.

6/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/3c020a034818e1c089e5574cb8241680.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e28a5ab9260987f1282b9d0847ffa4fa.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/eecd289e30887fd0b9aa1214d80621ea.png

You can see that the index variable is used for pointing to the specific
structure which would be probably 8bytes in size. We can confirm it when
we check the address .text:00401288 where we can see another 183
structures — 8 bytes in size.

When we check the address .text:00401288, it looks like the first BYTE
value “C3” is used as xor key, second BYTE value could be unidentified
(undefined), the WORD “0013” looks like length of string which will be
xored and the last DWORD (00403594) is the address where our
encrypted string is located. Let’s check that address (403594) if our
assumption is correct and if there is some kind of encrypted string with
length 13h (19).

E‘ Jump to address

Jump address | 00403594]

OK. Cancel

Our first assumption was correct so let’s create a structure and apply it as
array of structures.

Decrypt_string_Struct struc

KEY db ?
1 Unidentified db ?

Length dw ?

Encrypted_str

Decrypt_string_Struct ends

To apply our created structure “Decrypt_string_Struct” simply navigate to
location 00401288 and press ALT+Q and choose newly created structure.

7/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ef34fd37cd4acc6fa27e3a9cdbf73ff7.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/7aa9ce79513811fec7c034d04c72f814.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f7ca9ddebbb3deabb517aef2c8585e58.png

Decrypt_string Struct <

| Decrypt_string

Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
ring
Yy ring
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt_string
Decrypt

And now we are ready to check our better decompiled function
String_Decrypt1. Below is comparing of decompiled function
String_Decrypt1 before and after modification.

8/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f40e2852d36281f6d60faf03d64974c3.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/8859f218a9be22fd21db0efb6104b4e7.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/8b0d3363cc934da43aa0b61e5ad853cd.png

So this algorithm is very basic: First argument to this function is index of
the structure in array and second argument is location on stack where the
decrypted string is saved.

Key (BYTE) from the structure is xored with each BYTE in the location
(Encrypted_string_pointer) from our indexed structure, till it reaches the
length of encrypted string.

Let’s quickly confirm it for the first structure in array with python.

stru_481288 Decrypt_string_Struct <

Decrypt_s

Decrypt string S

http://bendes.co.uk

We were correct and obtained our first IOC.

Before jumping to IDAPython we forgot something. If you remember the
function String_Decrypt1 was referenced from 69 locations but our array of
structures contains 183 members.

[52 xrefs to String_Decrypt1 O *

String_Decrypt]
String_D

Line 1 of 89

9/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f56cf910cf19411eb3d83f5c02139397.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/cb91528a6243c309a3f57745a1c8202b.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/6c4e17fc73710ad10ac928070baec73d.png

So we could check Xreferences to our array of structures if we could find
another String_DecryptX function.

_ Decrypt_string_Struct <

@ xrefs to stru_401288

We were right, there is another one. Quick checking that function
(sub_40C929) revealed that it is basically the same as function
String_Decrypt1. So we rename it to String_Decrypt2.

->Encrypted_string_pointer + i++));

Now when we found both functions referencing our array of structures, we
can jump to IDAPython and write a decryptor.

The final decryptor could be something, what will find all location from
where our 2 string-decrypting functions (String_Decrypt1, String_Decrypt2)
are called. After it finds these locations it will grab the first argument as our
“INDEX” to structure, find and parse the structure[index]. This will serve us
for decrypting the current string so we could insert a comment to location
from where the string-decrypt function was called.

10/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/be65f460c763ea6ca2f710f33c7a92e2.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ebf8df467337b5221561e51d6d6e1af8.png

During the creating of decryptor, | found one quite tricky problem with
locating the first argument value “INDEX” for our (String_Decrypt1,
String_Decrypt2) functions. You can see it on the picture below where | let
IDA with little help from IDAPython to print assembly line for all previous
instruction before our functions (String_Decrypt1, String_Decrypt2) get
called. The script part is self-explanatory.

You can find script “Find_previous_instruction.py” here
[Find_previous_instruction.py].

We must deal with locating the first argument during the string-decryptor
implementation. In the picture below is the string-decryptor script in
IDAPython for the “String_Decrypt1” function.

11/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/2bd39bd218720fd7717e80a12b235143.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/IDAPython_scripts/Find_previous_instruction.py

String-decryptor script for the “String_Decrypt2” function is little different
only in area of searching and extracting the first argument VALUE (index)
to function String_Decrypt2.

You can find both scripts for decrypting functions (String_Decrypt1,
String_Decrypt2) here [Decrypt KPOT_Strings1.py,
Decrypt KPOT_Strings2.pyl].

After running these scripts, we get commented all location from where
(String_Decrypt1, String_Decrypt2) are called with decrypted strings in
both assembly view and decompile view.

12/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5c700f1636b04e47e371b15578ccc419.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/50690840f808ec9c430bb564fde9103f.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2/IDAPython_scripts

T8 DA View-A 18 Pseudocode-A
int v
int v
int v
int v
int v

String_Decrypti(e
String Decrypti(¢

string Decrypti(e
String_Decrypti(¢
String Decryptl(¢
String_Decrypti(e
String Decrypti(¢
string Decrypti(e
string pecrypti (e
String Decrypti(¢
String_Decrypti(e
String Decrypti(¢
string_Decryptl(exs2

In Output window we could see some information like: String_Decrypt1
function address, count of references and for each processed reference is
shown - current index value, current structure in hex, current xor KEY,
length of encrypted string, address where the encrypted string is located
and finally decrypted string.

Bo utput window
Func String Decryptl addres

vl

mov eax, @A6h ; '}|'; index

wininet.c
XREF Func String Decryptl prev instruction: @x48591d mov eax, @A7h ; '§"; index

px9f Oxb Ox40
winhttp.dll

As we are now able to see decrypted strings we are getting some ideas
about functionality of this sample. As you can see we were able to get 211
locations with decrypted strings. Some of them are referencing the same
string. We can clearly say that this sample is some kind of credential,
cryptocurrency stealer...

13/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f41139f0a8658ddb59cbe1d98a20ae9e.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/100ac2e792a1d080937e5421d383b390.png

Comments List B

Comme;

>

String_Decrypt2;
ecrypt2:
String_Decrypt2; w
String_Decrypt2; com . blevel 000310g
String_Decrypt2; C
String_Decrypt2
String_Decrypt2
String_Decrypt2;
) Decrypt2;
String_Decrypt2;
call
call String_Decrypt2;
call ecrypt2:
call String_Decrypt2;
String_Decrypt2
String_Decrypt2
String_Decrypt2
String_Decrypt2;
String_Decrypt2
String_Decrypt2
String_Decrypt2;

String_Decrypt2;
ecrypt2:
String_Decrypt2; M
String_Decrypt2
String_Decrypt2; U
String_De

ftpini

So for now strings are decrypted and we can continue to resolve API calls.

We will continue with our string-decrypting and API resolving function
sub_4058FB to see what is going on next. We can see that there will be
probably some kind of APl name hashing which after matching hash of API
name, the address of the API function will be saved to the hardcoded
memory location. In the picture below we can see the stack preparation for
the APl name hashing and resolving.

h] BYREF
h] BYREF

5 mpr.d]

dword_815168

C;

After the stack is prepared two functions get called. Let’s check the first
function sub_406936.

14/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/068f85e0ea9f799d54baef473292ea06.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/453d895a5a9aaa26710485287017190e.png

The function sub_406936 is basically parsing PEB structure and loading
base address of the kernel32.dll module. You can easily confirm it with
help of IDA _PEB struct or windbg as in the pictures below. It is finding the
PEB structure, PEB_LDR_DATA where it finds first member in
InLoadOrderModuleList which is our sample kpot2.exe. After that, it finds a
location of the third loaded module (kernel32.dll) and extracts the base
address. This base address of kernel32.dll is passed to the next function
sub_4045DC so it will be used to find addresses of export functions.

B Pseudocode-A

struct LIST ENTRY *find kernel32 base()

I

L
o} return NtcurrentPeb()->Ldr->InLoadorderModulelist.Flink->Flink->Flink[3].Flink;
® .}
W8 DA View

nA L]

We can move to the next function sub_4045DC which is responsible for
finding address of LoadLibraryA API function from kernel32.dll module.

This function (sub_4045DC) is not responsible only for finding address of
LoadLibraryA but it is able to find APl address via hash value of its name
and base address of module as arguments.

So we can clearly rename it as function “Find_api_via_HASH”. With a little
help with tool like PEbear [https://github.com/hasherezade/pe-bear-
releases] we could properly annotate the function sub_4045DC -

15/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/a5cbccec7900ff96fbe6820795148aa6.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/acda6445d26ad9cef34a89b7f6697ceb.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/561e83277dc33df24c4e38a6fdac0b85.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d4c34785139bbd652e1d8e4bd809bd2a.png
https://github.com/hasherezade/pe-bear-releases

‘Find_api_via_HASH?. In this case where arguments to the function are
kernel32.dll base address and APl name hash 0x822FCOFA
(LoadLibraryA), it is parsing kernel32.dll and searching for export function
name which hash is 0x822FCOFA.

T8 DA View-A

unctions
meordinal

b

(_BYTE K RD *) (Addr v19));
tr_length(E 3
f (Api_hashing_func(Exports_function_name, size of_func_name) == HAS

(unsigned __int16 ssofNameordinals + 2

8 = str_length(
sub_413

° 3
@ kemelzz.dl Xis 2 a0 2 [kemebz2di Xienam s
e e 5 012343567009 AabcoD 8 DOS Header s 0123456769 ADCDE0123456785ABA
@ 00s stub ac £ 1€ A OE 00 84 05 €D 21 B 5045 00 00 4C 01 04 00 ¥4 87 OE 5E 00 T
v . NT Headers P e ¢ 20 00 00 00 £0 00 02 22 08 03 0 00 00
Signature sc 74 20 62 65 2 00 00 03 00 00 00 00 00 46 33 01 00 00
o s aze 90 00 0D 00 00 00 D& 7D 00 00 01 G0 00
File Header e &7 15 £ 4D 06 76 &S 4D 06 06 00 01 00 06 00 03 00 06 00 03 00 00
Optional Header < <
Section Headers Diasm General DOSH&r Rchdr FieHdr OptionalHdr Secton et General DOSHGr Rchdr Fierdr Optonalhdr Sectondrs 4[>
s e b - e .
o> EP= 13346 A Minimum extra paragraphs needed 0 o EP = 13346 Size of Stack Commit 1000
& data C Maximum extra paragraphs needed FFFF & down Size of Heap Reserve 100000
g E Inifil (relative) SS value 0 i Size of Heap Commit 1000
10 inifial SPvalue 88 Loader Flags 0
& reloc 2 Checsum 0 & reioc Number of RVAS and Sizes 10
14 Initial IP value 0 Export directory address Address Size
16 Initial (relative) CS value 0 NT headers + 0x78 ORIy (02(C. A9DF
18 File address of relocation table s i cacac 154
1A Overlay numoer 0 #0000 530
1 Reserved wordsi4] 0,000 0 0
_ |24 OEM identifier (for OEM information) 0 o o
S 26 OEM information OEM icentier specific 0 Gase Relocation Table 100000 AoEC
% 28 Reserved words[10] 190 Debug Directory DOABC 38 v

) eSS CTrew e hesger > e
INT headers = Base + 0x3¢ BFIR GUY\Desktop\ANALYZE\kpot2\dlis\kemel32.dil] - o
£} WEw _Compare Info

> D80 2w

7 8 kemnetzz.dl %X w280 s ©1234567854a8c0
DOS Header cozes [FAJGAIGENG 46 18 oC 00 5C 2D 6C 00 28 34 O
@ o0s s co2Pe 22 a7 0 00 AF A1 0C 00 Do AL o€ 00 20 52 o] R
stb coace [G6108168168)2C AF oF S ——n poy Cas0s Cs F0 02 00 24 CE G2 00 7% 60 03 00 54 €D of [4RY
[NT Headers cozpc 0100 00 00 55 05 00 00 o] el G 5 o1 0 O 09 20 0D 0D o e &
Signature cozEc 49 19 0 00 5C 20 oC 00 s al! file .. co3ze 60 D3 02 00 87 52 03 00 68 F5 08 00 23 A2 O
Coapc AF A1 0C 00 DO AL 0C 00 o opti < >
File Header cosoc 24 Cx 02 00 = €D 08 00 sect
Optional Header e e os o ection Genersl DOSKr Rehidr Fieddr Optonalhdr Sectonvdrs W Eports 4]
section Headers Name Value Meaning =
v Sections 00s Har Optonal e Sectonidrs Expers
3 Base 1
v % text -
= £ = 13346 3 Exportdirectory add| NumberOffunctions 555
" = > Name Value Meaning [RYtes)= Address QfF| 21 NumberOfNames 555
data coacc 5 AddressOffunctions coxr4
& e AddressOfN ciess
i 0200 TimeDateStamp SEOEAF2C pétek, 03.01.2020 03:04:12 UTC ressOfNames
reloc C02D4__ Majorversion 0 AddressOfNameOrdinals C209C .

Of course we can save some time and let IDA help you with defaultly
defined structs for PE. But | personally think that it is a needed skill to
understand and be able to parse PE manually.

16/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/212c192bd5ea4ca06ba0ef34e68562d6.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ddb3905a21c0ecfd53e950063ba01c8c.png

HEADERS = *(IMAGE_NT_HEADERS **)(

So let’s jump to the function Api_hashing_func (0x403E1C) which you
could see in the picture below is implementing some probably modified
version of well-known hashing algorithm.

* _ROLA_(-

of_func_name A v2 A (

We could use a little help to find out what hash algorithm is implemented
from another excellent tool Capa [https://github.com/fireeye/capal. This
gives us a hint that it could be hashing algorithm of type murmur3. We will
come back to this hashing algorithm later.

IDA View-A, FLARE capa explorer %

) Fu
File Rule:

Treeview | mire

block(loc 0040C90A)
block(loc 0040C93F)
M basic block(loc 0040CF8F)
M cncrypt data using RC4 PRGA
M function(String Decrypt2)

B execute anti-VM instructions (7 matches)
M basic block(loc 004016D4)

block(loc 0040329F)
(loc_004032A8)
(loc_0040330)

M basic block(loc_00403423)
M basic block(loc_00410B1F)

M execute anti-debugging instructions (2 matches)
M function(sub_4033C0)

M function(sub_403423)
M generate random numbers using a Mersenne Twister (2 matches)
M function(sub_4039C0)
n(s

M function(sub 406FBE)
hash data using murmur3
on(Api_hashing func)

subscope(basic block)
B parse PE header (2 matches)

M function(sub_4044E3)

M function(sub_4103F8)

738 E8: B

17/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/60b4b42454c1897bb8451227da20557d.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/016cfded29c123b32ee5db884537c86c.png
https://github.com/fireeye/capa
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ddb4977b8e1155bd16dfbbe4b65b0b0f.png

So for now, we have more information and can come back and continue
with function sub_4058FB - picture below which | populated with all known
info. You can see that some another dlls are loaded and also another
function sub_40694A is called.

Function sub_40694A is parsing PEB where it returns ntdll.dll base
address.

movwv
movw

mov
mov
mov
retn
sub_48694A endp

So we can continue and finally reach the interesting part.

In the picture below, we can see the last part of sub_4058FB which we can
clearly rename now as “String_Api_Decrypt”. This last part as you can see
is responsible for resolving all API functions and saving them to .data
section in memory. All these resolved API functions addresses are later in
code referenced. You can see that there is a loop which is looping through
all APl name hashes saved on stack before and calling
Find_api_via_HASH.

18/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/ab1159473fadb375b1e826eef3ff3353.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/3b07e8b09509707c709430c71fe599a4.png

i_via_HASH(v4, *v5);

000 00 & 00000

So now we have more options to obtain and populate all resolved API
functions in our code. One of the option is to implement murmur3 hashing
algorithm and with help of IDAPython, find all API function name hashes to
process it with our algorithm. As we did some IDAPython scripting before
and | want to show you different methods you can only see that our
assumption about murmur3 hashing algorithm is right in the pictures
below:

According to our annotated code — the hash of API function name
LoadLibraryA is 0x822FCOFA

1
= find_kernel32_|
gint (_s

o=
(A NN N R NN ENNNENNENRJ: |

We are also able to find out that murmur3 is using Seed value
0x5BCFB733 by examining the code in function Api_hashing_func
(0x403E1C).

19/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/342b6d6af98dca258cb4cbe6da60ddb8.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d38bb70ec7af8595a20da6ff00cf3122.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e27b9b376cb5cfd6578fc9481e036ac1.png

To verify that it is really murmur3 hashing algorithm with seed
Ox5BCFB733:

Our assumption about hashing algorithm is right so move next.

The another option to obtain and populate all resolved API functions in our
code is to debug the sample kpot2 and after API functions addresses get
resolved, apply plugin Scylla to reconstruct IAT — this sometimes does not
work well. Option we will use and which | am finding more interesting and
in this case perfectly suitable is to use tool “apiscout”
[https://github.com/danielplohmann/apiscout]. This tool is extremely useful
in situation like this.

When we have all information about how the API resolving works, we
could let the sample populate the resolved API function addresses in
debugger, dump the process from memory and after that, we need
something what is able to find in our dumped memory all populated API
function addresses and annotate it for us. This is the time when apiscout
comes to save the situation.

One of the feature of apiscout is creating of database of all API functions
(exports of module). We can let the apiscout build the database from all
dlls on our system or we can select only some of them. It is basically
parsing all modules exports and creating database with information like
name of API function, VA, ASLR offset etc...

Let’s start with dumping our kpot2.exe process from memory in debugger
like x64dbg after it populates the resolved API function addresses. We put
a breakpoint after the call sub_4058FB - “String_Api_Decrypt” and dump
the process. To find location of this function in debugger easily, do not
forget to disable ASLR in the optional header of kpot2.exe.

20/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/5a5dbed0f01bcd051daf4776ba8eb3ff.png
https://github.com/danielplohmann/apiscout

@ PE-bear v0:5.23 [C/Users/INFERNO/Downloads/kpot2.exe] |-
File Settings View Compare Info

4 [i kpot2.exe Allx|i=» 58 9 2 &
DOS Header P aliaslizis; @ compare. =
& DOS stub o NI [cusers/FeRNO/Downloads/kpot2exe ~ | [crusersanFeRNo/Downloadsoocexe E
NT Headers 10 B8 00 00 00 4 [kpotzeexe ~|[4 @ soocexe A
Signature 20 00 00 00 00 DOS Header DOS Header
File Header R @ 00s stb @ Dos stb
Optional Header 40 OF 1F 22 0F L
o e PIIR 20 o 4 B i i I
4 Sections 6 742062 6520 72 75 6E 20 63 6E 20 44 4F 53 20 ignature ignature
% et 70 D6 ea 65 2z op oD oA 24 00 00 00 00 00 00 00 File Header File Header -
Optional Header Optional Header
= EP = F782 Disasm General DOS Hdr Rich Hdr File Hdr | Optional Hdr | Section Hdrs.
Section Headers Section Headers
& data Offset Name Value Value 4 Sections il 4 Sections 8|S
o reloc 116 Image Ver. (Minor) 0 - -
4 [nocexe 118 Subsystem Ver. (Major) s Raw v | Hex View | Next Diff Raw v [Hex View] Next Diff
DOS Header 1A Subsystem Ver. Minor) 1
012354356709 ABcCcDE A 01234567003 A0cDE A
@ 00s stb 11C Win32 Version Value 0
= %o 0301000002 010000 1E 00 00 00 00 00 of J| |28 03 01 0a 00 00 2c 01 00 00 1E 00 00 00 00 00 of J
4 NT Headers 120 Size of Image 17000 2 200 o = 0 00 01
e s Po £20301000020 000000 0 02 00 00 00 40 0| [P8 2 03 01 00 00 20 00 00 00 40 01 00 00 00 40 o
Signature 2 108 00100000 00 02 00 00 05 00 02 00 00 00 00 01 ||108 00 10 00 00 00 62 00 00 05 0 01 00 00 00 00 Of
File Header 128 Checksum 5 &
L e : indows Gu1 138 050001000000 00 000070 02 00 00 04 00 0 [138 05 00 01 00 00 00 00 00 0D 70 01 00 00 04 00 Of
Optional Header R T —— 100000 2100 00 10 00 00 20 00 of
41 DL Characteristics
Section Headers 00 00 ot 0000 00 00 00 20 00 00
DLL can move
4 Sections 148 00 00 00 00 00 0t 00 70 39 01 00 50 00 00 O
100 Image is NX compatible
% text 18 000000 00 00 01+ 90 00 00 00 00 00 00 00 ot~
T, 8000 grminalServer aware & Rl
= 130 Size of StackReserve 100000
o+ data 134 Size of Stack Commit 1000
o reloc 138 Size of Heap Reserve 100000
13C Size of Heap Commit 1000
140 Loader Flags)
142 Number of RVAs and Sizes 10
. Data Directory Address
) 48 Export Directory 0
b 150 inpaituesion] 3570 0 [Changing DIl Characteristics from 8140 to 8100 to disable ASLR (Dl can move). Save as new file.
g 58 Resource Directory. 0 0 s

< || kpot2exe | woexe

Locating our sub_4058FB - “String_Api_Decrypt function.

kpot2.exe - PID: F14 - Module: kpot2.exe - Thread: Main Thread CC8 - x32dbg [Elevated]
g Trace Plugins
3

Graph B ® Cal Stack B scipt S Source ® References ® Threads & Handies

du

ord ptr d

ARIOR S
SGE &8

ebug Trace Plugns _Favourtes Options Hep _Oct 232019 OllyDUmpEX V170 - kpot2exe =

Module
moryMap # calStack °& SEH | Base: Module C\

SNFEFNODsskopkpol e 7| el

@ Memory (00400000 (00001000)/Imag /R {kpot2/PE

g
adess [odonnnn (Lowen |

push ListSection: @ Base Only () All Memary Address Range |00400000 - (03400000
all dw;w:m;::"p:r Dump Mode: ©) Rebuild Binary (Raw) Binary (Virtual)
3 Imege Source: (@) Memory Disk FieScan Memary
push Search
all dword ptr Search Area: @ Select All Memory (exclude listed module) Searchimage Format
"2 ord ptr SearchMode: (@ Stict Fuzzy (slow) e OPE
ord ptr .
hd ELF
35 Save Dump to File
ez @Ov 3 » INFERNO » Downloads » P [(Need Rescan)
dword pt
dvor fructure
h Organize ~ New folder - 9
775 0 push duord p ~ L.
7715 14104000 a1 dword pi 7~ [, o 5
8sct 4 Favorites Name Date modified Type Size ImageBase Change) i
M Deskiop PE-bear_0.5.23 x64_win_vs17 56 File folder
4 Downloads
€5 Ferrerre FLARE DeSelectil
€8 223¢¢FrF [
E8 1CSSFFFF <» Recent Places
€8 EEFFIF > &
775 b Utilities boe
#715 cos14100 bod
600 bod
(D (CED 4] Libraries hag
3300
, Documents
= [s 4. Music b2 K] I D
o
File name: | [FTeNGY -
® Dump2 W Dump3 ™ Dump4 ™ Dump5 & Watchl Save as type: [Excautable file (*exe)

“ Hide Folders

Cancel l

Confirmation in IDA that all referenced API addresses are already
populated in our kpot2 process dump “kpot2_dump.bin”:

21/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/2b13605a430c7f56d33571538654d756.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f324b40cb89c3c21726c5290a9c307f5.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/cfa843c30df5f88ee0554b19c4097b04.png

dword_41516@

dword

dword_a15168

dword_41516C

dword 415170

dword_415174
dword_415:
dword

dword_ 415180

dword_415184

Apiscout is able to work also on system with ASLR enabled but in case we
want to choose apiscout option to ignore ASLR, we must disable the ASLR
before we perform the process dump of kpot2.exe — find registry key:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management]

Create a new dword value: “Movelmages” = dword:00000000 (without
quote)

Restart system.

If we do not want to create database of all dlls from our system, first of all
we should find and copy to some location all dlls which is our sample
kpot2.exe loading and processing:

We can see this information in debugger from where we can copy the
whole table to .txt file:

B log B Notes Breakpoints = MemoryMap W Cal Stack seH N scipt & Symbols Source

Party |Path Status
System indows\SysWOW64\profapi.dll
downlevel-user32-11-1-@.d1 System indow KOk i-ms-win- Folow in Disassembler Enter
downlevel-shlwapi-11-1-0.d System i W i-ms- = Folow Entry Point in Disassembler
dounlevel -version-11-1-8.d System indows\SysWOWEA\ap1-ms-uin-¢ £ coyn in Memory Map
kpot2.exe User \Users\TNFERNO\Desktop\kpot2. ¢)
n-downlevel-normaliz-11-1-@. System indows\SysWOWs4\api -m: 3 Dovnioad Symboks for Ths Moduie
11 System indows\SyskOW64 \norma: 1 Download Symbols for Al Modules
o api- n-dounlevel-advapi32-11-1-. System indows\SysHOW64\api -ms - Copy Fie Path Ciri+C
netutils.dll System indows\SyshOW64\netutils.dl] =
System indows\SysWOW64\wkscli.dll
downlevel-ole32-11-1-8.d11 System
downlevel-advapi32-12-1-8. System
downlevel-shlwapi-12-1-0.d System indows\SysWOWe4\api-ms-win-¢ §
System indows\SysWOW64\srvcli.dll -
System indows\SysWOW64\RpcRtRemote
System indows\SyshOW6d\sechost.d11
System indows\SysWOW64\samc1i.d11
@ napinsp.dll System indows\SysHOW64\NapiNSP . d11 ——
devobj.dll System indows\SysWoW64\devobj . d11 Unloaded Cropped Table
cryptsp.dll System indows\SysWOW64\cryptsp.d11 Unloaded Ful Table
) rsaenh.dl1 System indows\SysWOW64\rsaenh.d11 Unloaded
) winhttp.dll System indows\SysWOW64\winhttp.d11 Unloaded
webio.dll System indows\SysWOW64\webio. d11 Unloaded Cropped Table, To Log
System indows\SysWoWe4\cryptbase.d1l Ful Table, To Log
System indows\SysWOW64\urlmon.d1l Unloaded
System indows\SysWOW64\propsys .d11 Unloaded
System indows\winsxs\x86_microsoft.windows.gdiplus_6595b64144cc- Unloaded Module
9 wshtcpip.dll System indows\SysWOW6A\WSHTCPIP.DLL Unloaded Party
9 wshipb.dll System indows\SysWOW64\wship6.d11 Unloaded Path

Browse in Explorer

Line

Line, To Log

Base

Search: T st

22/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/1be50ac0fffeb363b5381faf5b3f8515.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/d51c135ad84347065febbef462787203.png

Extract dlls path with some regex, editors etc...

To copy all dlls from provided paths with powershell:

(©]-> XIETD
Organize » Includeinlibrary + Sharewith ~ New folder
Favorites Rame
M Desktop dlils
% Downloads dlls_table.txt
FLARE
% Recent Places
Utilities Length Name
dils
Libraries
CoeTES path in (gc d11s_table. txt)){Copy-Ttem
&)=k » xor ais
Organize Includeinlibrary » Sharewith ~ New folder
Favorites = Name
M Desktop 3 advapi32.dil
% Downloads api-ms-win-downlevel-advapi32-11-1-0.
FLARE api-ms-win-downlevel-advapi32-12-1-0.
<» Recent Places ‘api-ms-win-downlevel-normaliz-11-1-0.d
Utilldes api-ms-win-downlevel-ole32-11-1-0ll
i api-ms-win-downlevel-shiwapi-11-1-0.dl
libraries . e
77 items

Now when we have all our needed dlls we start with apiscout —
“‘DatabaseBuilder.py” to create our database.

Users\INFERNO\D:
usage: DatabaseBui

scout-master\apiscout\db_bui
filter] [—-auto] [~
tf JTPUT_FILE] [-—igno
1

lder>py -3 DatabaseBuilder.py
P IP 11

)
filtel
auto

--paths P [P] awl for DLLs (None -

——outfile OUTPUT_FILE

o put th ulting APT DB

of ASLR offs:

scout\db_bu paths C:\Users\INFERNO\Desk d11 ignore_aslr outfile kpot2_DB.json

pi
INFERNO\Desktop

s\INFERNO\Desk tor 1-1-0.d11
s\INFERNO\Desk C a 1 dll

0.d11

Now when we have build our kpot2_DB.json, before we apply it to our
previously created process dump file in IDA “kpot2_dump.bin”, we can
verify that apiscout is able to find all API functions in our dump according
to kpot2_DB.json. For this purpose, we use apiscout tool “scout.py” as you
can see in the picture below.

23/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/6d7851313c42a9a9d484f616f2afad18.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/253ce7b2484416a245b5e8d3692e0e8a.png

We can see that apiscout was successful and there is more — something
called “WinApi1024 vector”. Basically speaking it is something like
ImpHash on steroids. You can read more about Apivector here:
[https://byte-atlas.blogspot.com/2018/04/apivectors.html]. As we get

WinApi1024 vector of our kpot2_dump.bin calculated, we can use it
against big database maintained on Malpedia which is covering big
amount of well-known malware families
[https://malpedia.caad.fkie.fraunhofer.de/apiqgr/]. We can see that our
WinApi1024 vector is matched 100% with family “win.kpot_stealer” below.

mahpxiia % Fraunhte
Inventory Statistics Usage ApiVector Login

Ap QR []
You are looking at the results for: U .l
A19BAAGA3gABATEASEATAL0CAQAGIQASCA4GA3TAACAATAMACAQASGABAAKINQAATAQIB_gAABAEAAQEAAFAAGAEMYGQAKE -] ‘
u | |
IwIp, ACMkKqyFA*AWNRIQU+COychvic -~ .l L]
u
l. |
f |
LEL
H =
nput another ApiVector =
| |
u 1

On the right side you can see a visualization of this ApiVector as generated by the ApiScout library. Solid
squares indicate the presence of the respective Windows API function in the vector.

The table below shows the results of matching against the ApiVectors of all currently dumped samples ™
in Malpedia

ds P

Match Results:
Top 10 Family Matches

Family Score

win.kpot_stealer

win.azorult

win raccoon

To apply all previously annotated names of functions from previous IDA
database file to our newly created kpot2 process dump “kpot2_dump.bin”,
we could use IDA plugin called “rizzo”
[https://github.com/tacnetsol/ida/tree/master/plugins/rizzo].

24/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/afd0335548cbf3b1ef1e83e856cd4b79.png
https://byte-atlas.blogspot.com/2018/04/apivectors.html
https://malpedia.caad.fkie.fraunhofer.de/apiqr/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/525ed9ea701fa3cd8e2140f4cea7659c.png
https://github.com/tacnetsol/ida/tree/master/plugins/rizzo

After that, previously created IDAPython scripts for decrypting strings must
be run again (Decrypt KPOT _Strings1.py, Decrypt KPOT _Strings2.py)
[View here]

[TT R N H-| i X i vag! o o

st ® B :]

_aulldiv
_aullrem

etUserDefaultLangID
au_re_Heapfree
au_re_PathCombineW

cripting language

Run Bgort | Import

Now we are almost in the same state with “kpot2_dump.bin” as we were in
the original sample.

Let’s continue to apply our created database kpot2_DB.json to process
dump kpot2_dump.bin in context of IDA. We will use apiscout IDAPython
script “ida_scout.py” for that.

Av APIDBS
Filename

¥ o

Information Line 10f 3 151
.
itLangID 41517C;

‘om anather location

41503C;

W
TR_GUY\Desktop|\ANALYZ

In the next window choose all of the found APIs and click “Annotate”.

25/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/tree/main/kpot2/IDAPython_scripts
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/a2c00dbc2431270ef7d60555f402a56c.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/99ddfb24ae3a37fcae9e555c586245ea.png

¥ IDA ApiScout (Results) X

ct to anno

API
3800000 (32bit) ShellExecuteW
7760000 (32bi GetSidSubAuthority
53000000 (32bit) HitpOpenRequestW
kernel32.dl1_0x7dd60000 (32bit) arToMultiByte

rnel32.dll_(

us.dll_0;
nhttpdil_Oxeae WinHttpOpen

kernel32.dI|_0x7dd60000 (32bit) ExpandEnvironmentStrin
emel32.dl1_0x7dd60000 (32bit) VirtualAllocEx
api32.dIL0; E RegCloseKey

SiPlus.di_0x25¢ (GdipCreateBitmapFromHBITMAP
ninet.dil_0x63 InternetOpen\.
kernel32.d1|_0x7dd60000 (32bit) UnmapViewOffile

ole32.d1l_0x72540000 (32bit) CoCreatelnstance

kernel32.dll (6 it) teFileW

kernel32.dI|_0x7dd60000 (32bit) GetLocalTime
WinHttpQueryOption
WinHttpSendRequest
PathFindEx

kernel32.dlL_(

kernel32.dI|_0x7dd60000 (32bit)

0x4147b8 (ntdIl.dil_0x7de70000 (32bit) RtlGetVersion

of 159

Apply Fiter

After apiscout is done we can check the results — all referenced API
addresses are annotated with their names and type.

18 DA View-8
e 8 L _ stdcall GetFileAttributesExW(LPCWSTR lpFileName, GET_FILEEX_INFO_L
Get TokenInformation GetFileAttributeskxw dd
H L _ stdcall GetTokenIn: mation(DLE TokenHandle, TOKEN_INFO TION_
IR £ GetTokenInformation dd |
hcombinew 5 DWORD __ all NetUserEnum(LPCWSTR servername, DWORD level, DWORD filter
B ind xtension NetUserEnum dd

olderpathiv

FindClose

GetPrivateProfilestringw dd

3 DLE stdcall createFileMa
CreateFileMappingW dd

; DWORD __stdcall WNetEnumRe:
WNetEnumResoL
cryptung
validur .
BitBlt dd
; DWORD __ stdcall GetTempPathW(DWORD nBufferLength, LPWSTR 1pBuffer)
GetTempPathi

GetVolumeInformationW dd

1
e
SHGetFolderpathy

Lexecutew

25
unloaduserprofile;
Loaduserprofil
letOpenEnumi;
14077
etEnumResourcel;

unloaduserprofile
WiletOpenEnumd
WetEnunResourcen

WietcloseEnum

(int)IsvaliduRL;
find_kernel32_base();
(int (_ stdcall *)(_DWORD))Find_api_via_HASH(ke

LoadLib

5
3 IpLibFilename Loadllibi
(int)v29;
10;
LoadLibi

Loaduibrarya

L]
[]
[]
L]
[]
[]
L]
L]
[]
[]
L]
[]
[]
L]
[]
[]
L]
[]
[]
L]
L]
[]
[]
L]
[]
[]
L]
[]
[]
L]
[]
[]

26/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/eb65e532b10eac159dbc28dbd5a014c5.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/e18b1c17d48dd900c69a9603379c414b.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/9382972a579507d47cec99eedce2759d.png

Now we are in state were we have all strings decrypted, all API function
calls resolved and annotated so we are ready to benefit from it in analysis.

The analysis of the sample is now a simply task so for brevity, | will show
only some of functions. Capabilities of the functions are now usually self-
explanatory.

sub_40CBO02 - is clearly "Namecoin" cryptocurrency stealer:

sub_4101AB — ping + delete main module (kpot2.exe) always called
before exit().

int _ cdecl ping_and_delete(LPWSTR main_module name)
{
int result;

String Decrypt2(
String Decrypt
Wrapper wvnsprintfW(31e, S st WCHA) umets, main module name);
1t = ExpandEnvironmentStringsw
1t)

We can also easily rename wrapped functions when we have all API
functions resolved:

27/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/719ec061b7ead8ee375ca6a555ade1fc.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/72bb19b99dde1ad66f39447fb77bc17a.png

adFile1(LPCWSTR lpFileName, DWORD *a2)

Conclusion:

Kpot2 stealer is able to exfiltrate account information and other data from
web browsers, instant messengers, email, VPN, RDP, FTP, cryptocurrency,
and gaming software.

Most of them:

Firefox, Internet Explorer, cryptocurrency: (Ethereum, Electrum, Namecoin,
Monero) Wallets - Jaxx Liberty, Exodus, TotalCommander FTP, FileZilla,
WinSCP 2, Ipswitch ws_ftp, Battle.net, Steam, Skype, Telegram,
Discordapp, Pidgin, Psi, Outlook, RDP, NordVPN, EarthVPN.

It is almost impossible to cover all of stealing/exfiltrating functions here and
it wasn't even my intention. | wanted to cover some tricky techniques
during reversing and hope that anybody could find something from this
analysis useful or even interesting.

28/29

https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/4a2daf83fbee673869b76f78b5b8239e.png
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/media/f514d8227824b2935eae1e7d90bf0b72.png

If you find it useful and want to share it on your blog or somewhere else,
you can, just let me know if you would like to get it in better format for
sharing.

Thank you to everybody who was able to read it to the end.

Author:

[Twitter]

[Github]

Download:

[Download PDF]

29/29

https://twitter.com/vinopaljiri
https://github.com/Dump-GUY
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering/blob/main/kpot2/KPOT.pdf

