
1/16

Security Lab December 15, 2020

QakBot reducing its on disk artifacts
hornetsecurity.com/en/threat-research/qakbot-reducing-its-on-disk-artifacts/

Summary

QakBot has been updated with more evasion techniques. QakBot’s configuration is now
stored in a registry key instead of a file. The run key for persistence is not permanently
present in the registry but only written right before shutdown or reboot, and deleted
immediately after QakBot is executed again. QakBot’s executable is also not stored
permanently on the file system anymore, but similarly to the run key registry entry, dropped
onto the file system before reboots and deleted afterwards. This way security software can
only detect QakBot artifacts on disk, right before system shutdown, and shortly after system
boot. However, at that time security software itself is shutting down and booting up, hence
may not detect QakBot’s new persistence method.

Other changes include dynamic just-in-time decoding and destruction of strings at runtime.
So any string used in the malware is only decoded at runtime into memory only and
destroyed right afterwards.

The delivery method for the observed QakBot campaigns identified via the regular
expression pattern of abc[0-9]+ is still XLM macro documents as reported previously.

Background

QakBot (also known as QBot, QuakBot, Pinkslipbot) has been around since 2008. It is
distributed via Emotet, i.e., Emotet will download QakBot onto victims that are already
infected with Emotet but it is also distributed directly via email. To this end, it uses email
conversation thread hijacking in its campaigns , i.e., it will reply to emails that it finds in its
victim’s mailboxes. QakBot is known to escalate intrusions by downloading the ProLock
ransomware or lately the Egregor ransomware.

The observed QakBot campaigns identified by campaign ID abc use XLM macro
documents for infection. We previously reported on their low detection.

An overview of the current chain of infection used by the QakBot campaign with identifiers
following the regular expression pattern of abc[0-9]+ can be seen in the following flow
graph.

1

2

3

https://www.hornetsecurity.com/en/threat-research/qakbot-reducing-its-on-disk-artifacts/

2/16

Technical Analysis

In the following analysis we briefly analyze the infection chain of QakBot after being
downloaded and launched by the malicious Excel document.

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_chain_en.png

3/16

Evasion

QakBot uses various evasion techniques to avoid detection by anti-virus software.

PE header manipulation

We observed some QakBot DLLs with a manipulated PE header. The message text This
program cannot be run in DOS mode. has been altered.

This seems like an attempt to circumvent some static detection rules matching for this
message in the legacy MS-DOS stub of PE binaries.

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_process_injection_tree.png
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_pe_header_manipulation.png

4/16

Code signing

First, the initial downloaded and executed DLL is signed with a (at the time the analyzed
sample was distributed) valid code signing certificate.

$ chktrust 904400.jpg
Mono CheckTrust - version 6.8.0.123
Verify if an PE executable has a valid Authenticode(tm) signature
Copyright 2002, 2003 Motus Technologies. Copyright 2004-2008 Novell. BSD licensed.

WARNING! 904400.jpg is not timestamped!
SUCCESS: 904400.jpg signature is valid
and can be traced back to a trusted root!

The signing CA is Sectigo and the organization is given as Aqua Direct s.r.o., which is an
existing company.

5/16

$ osslsigncode verify 904400.jpg
Current PE checksum : 00091021
Calculated PE checksum: 00091021

Message digest algorithm : SHA1
Current message digest : 632DCB214EE9FB08441C640D240F672A7ABA6EB1
Calculated message digest : 632DCB214EE9FB08441C640D240F672A7ABA6EB1

Signature verification: ok

Number of signers: 1
 Signer #0:
 Subject: /C=CZ/postalCode=619 00/L=Brno/street=\xC5\xBDelezn\xC3\xA1
646/8/O=Aqua Direct s.r.o./CN=Aqua Direct s.r.o.
 Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo
RSA Code Signing CA

Number of certificates: 4
 Cert #0:
 Subject: /C=CZ/postalCode=619 00/L=Brno/street=\xC5\xBDelezn\xC3\xA1
646/8/O=Aqua Direct s.r.o./CN=Aqua Direct s.r.o.
 Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo
RSA Code Signing CA
 Cert #1:
 Subject: /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA
Certificate Services
 Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA
Certificate Services
 Cert #2:
 Subject: /C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST
Network/CN=USERTrust RSA Certification Authority
 Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA
Certificate Services
 Cert #3:
 Subject: /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo
RSA Code Signing CA
 Issuer : /C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST
Network/CN=USERTrust RSA Certification Authority

Succeeded

It is unknown whether the certificate was obtained from Sectigo by giving false information,
the certificate was stolen from Aqua Direct s.r.o., or whether the certificate was obtained from
Sectigo by giving stolen information from Aqua Direct s.r.o..

QakBot is known to steal victim emails and use them in future malspam campaigns. So it is
likely that they also use stolen victim data to obtain code signing certificates. However, the
actors behind QakBot can also buy the code signing certificate from a (malicious) third party.

Strings only decoded at runtime

QakBot will decode its strings only at runtime into memory. After usage the decoded strings
are removed from memory again.

6/16

Processes

QakBot uses CreateToolhelp32Snapshot and Process32{First,Next}W to enumerate
the running processes.

It checks for the following processes:

CcSvcHst.exe

avgcsrvx.exe

avgsvcx.exe

avgcsrva.exe

MsMpEng.exe

mcshield.exe

avp.exe

kavtray.exe

egui.exe

ekrn.exe

bdagent.exe

vsserv.exe

vsservppl.exe

AvastSvc.exe

coreServiceShell.exe

PccNTMon.exe

NTRTScan.exe

SAVAdminService.exe

SavService.exe

fshoster32.exe

WRSA.exe

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_list_processes_api_log.png

7/16

vkise.exe

iserv.exe

cmdagent.exe

ByteFence.exe

MBAMService.exe

mbamgui.exe

fmon.exe

QakBot will set specific bits in a bit mask for each running process it finds. Depending on the
resulting bit mask the further infection path is altered, e.g., if avp.exe has been
encountered. QakBot will later inject its code into mobsync.exe instead of explorer.exe .
Because the searched process names are related to security solutions, we believe that this
way QakBot tailors its execution path to evade detection by specific vendors.

Then in another loop, again using CreateToolhelp32Snapshot and
Process32{First,Next}W , it checks for:

srvpost.exe

frida-winjector-helper-32.exe

frida-winjector-helper-64.exe

If it detects any of those processes the execution flow will run into a loop continuously calling
WaitForSingleObject(handle, 0x1fa) on a handle previously generated via
CreateEvent(NULL, FALSE, FALSE, ...) , i.e., it runs in an infinite loop.

Device drivers

Next, QakBot uses SetupDiGetDeviceRegistryPropertyA (querying properties
SPDRP_DEVICEDESC and SPDRP_SERVICE) to check for device drivers containing the

following strings:

VBoxVideo

Red Hat VirtIO

QEMU

A3E64E55_pr

We believe the search for A3E64E55_pr is used to detect an artifact of the ANY.RUN
sandbox. Alternatively, but unlikely, it could be used to detect an artifact of the long ago
defunct xCore Complex Protection AV solution using a similar driver with the name
A3E64E55_pr.sys .

If it detects any of those device drivers the execution flow will run into the same infinite loop
continuously calling WaitForSingleObject(handle, 0x1fa) on a handle previously
generated via CreateEvent(NULL, FALSE, FALSE, ...) , as previously mentioned.

4

8/16

Process injection

QakBot starts C:\Windows\SysWOW64\explorer.exe in suspended state and injects a DLL
into it using CreateProcessInternalW , NtMapViewOfSection ,
NtAllocateVirtualMemory , WriteProcessMemory , memcpy ,
NtProtectVirtualMemory and NtResumeThread .

9/16

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_process_injection_api_log.png

10/16

The injected DLL can be extracted via PE-sieve or other tools for simplyfied further analysis.

Depending on whether the previous process enumeration yielded results on the list, QakBot
will inject into mobsync.exe (e.g., in case a avp.exe process is found running) instead of
explorer.exe . But for simplicity we will only follow the explorer.exe process injection

path we observed in our analysis environment.

C2 communication

After avoiding detection, the injected QakBot code within explorer.exe will start
communicating with the C2 servers.

5

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_process_injection_api_log.png
https://github.com/hasherezade/pe-sieve
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_pe_sieve.png
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_c2_procmon.png

11/16

Like in previous versions of QakBot the C2 IP list is stored RC4 encrypted in resource
section 311 . The first 20 bytes of the section contains the RC4 key with which the rest of
the section is decrypted. The first 20 bytes of the decrypted data will contain the SHA1 sum
calculated over the rest of the decrypted data. It is used as a verification for correct
decryption. Unlike in previous version, the C2 list is now stored in binary form and not as
ASCII text anymore.

For details on how to extract the C2 list and QakBot’s configuration see the Python3 script in
the appendix. The input to the script is the path to the DLL that QakBot injected into
explorer.exe , which we previously extracted via PE-sieve .

The configuration is stored using the same RC4 encryption scheme in resource section
308 . In it we can see the bot and/or campaign ID abc103 that is associated with the

analyzed sample. It is still stored in plain ACSII text. For each campaign the number is

5

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_c2_storage.png
https://github.com/hasherezade/pe-sieve
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_qakfixtractor.png

12/16

increased by one. This allows the operators behind QakBot to keep track to which campaign
each victim connecting to their C2 server belongs to. Another currently observed identifier is
tr02 . This identifier, however, stayed the same over multiple malspam campaigns.

Via the C2 connection the operators behind QakBot can remote control the malware and
deploy additional malicious modules.

QakBot will not store its configuration and C2 list on disk anymore. It will use the registry for
storage.

Wiping

The previous QakBot version used to overwrite its initial executable with a copy of
cmd.exe . This version will overwrite the portion of the initially downloaded DLL after the PE

header with zeros.

Here is the entropy of the QakBot DLL as downloaded.

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_config_reg.png
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_ent_before.png

13/16

The zeroing of data after the header can be clearly seen when comparing the previous plot
against a plot of the DLL file after wiping.

Persistence

The persistence mechanism of QakBot has also changed. While it still uses a run key
registry entry under HKCU\Software\Microsoft\Windows\CurrentVersion\Run , this key
is only set right before the system is shutdown, rebooted or put to sleep. The corresponding
DLL is also only dropped to disk right before shutdown, rebooted or sleep.

After the system boots up again, QakBot is started via the run key. The execution tree also
starts via regsvr32.exe -s ... like the initial execution from Excel. QakBot follows the
same steps as previously outlined resulting in process injection into explorer.exe .

QakBot will then delete the run key registry entry and delete the DLL it dropped to disk prior
to the reboot.

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_ent_after.png
https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_reboot_tree.png

14/16

This way QakBot’s persistence can not be detected at runtime.

Egregor

While we have previously reported on QakBot deliverying the ProLock ransomware, latests
reports indicated that QakBot is now used to deliver the Egregor ransomware. We previously
reported on the Egregor ransomware as part of an article on ransomware leaksites in which
we explain the practice of ransomware operators stealing their victims data before encrypting
it to extort them not only with decryption but also public release of the stolen data.

Conclusion and Countermeasures

From our analysis we can conclude that QakBot is trying to avoid persistent file artifacts. In
previous version the configuration and QakBot executable were permanently stored on disk.
This made it easy for security tools to detect them. The new version tries to avoid
permanently leaving its artifacts on disk. While QakBot is not going fully fileless, it new
tactics will sure lower its detection.

But even though QakBot has changed, the delivery mechanism behind the QakBot “ abc[A-
Z]+ ” campaign did not. Hence, an infection by this threat actor can be successfully
prevented by blocking the initial emails.

Hornetsecurity’s Spam Filter and Malware Protection, with the highest detection rates on the
market, already detects and blocks the outlined threat. Hornetsecurity’s Advanced Threat
Protection extends this protection by also detecting yet unknown threats.

References

Indicators of Compromise (IOCs)

Hashes

The hashes of the analyzed QakBot samples are:

2

6

https://www.hornetsecurity.com/wp-content/uploads/2020/12/20201215T1337_reboot_cleanup.png
https://www.hornetsecurity.com/en/security-information/qakbot-malspam-leading-to-prolock/
https://www.hornetsecurity.com/en/security-informationen-en/leakware-ransomware-hybrid-attacks/
https://www.hornetsecurity.com/en/services/spam-filter/
https://www.hornetsecurity.com/en/services/advanced-threat-protection/

15/16

MD5 Filename Description

6bc0584f6cbb74714add1718b0322655 904400.jpg QakBot DLL as downloaded
by XLM macro

e23bc27212f61520cfb130185d74cfb1 26e0000.dll Extracted QakBot DLL

MITRE ATT&CK

The tactics and techniques used by QakBot as defined by the MITRE ATT&CK framework
are as follows:

Tactic Technique

TA0001 – Initial Access T1566.001 – Phishing: Spearphishing Attachment

TA0001 – Initial Access T1566.002 – Phishing: Spearphishing Link

TA0002 – Execution T1027 – Obfuscated Files or Information

TA0002 – Execution T1204.002 – User Execution: Malicious File

TA0003 – Persistence T1547.001 – Boot or Logon Autostart Execution: Registry Run
Keys / Startup Folder

TA0004 – Privilege
Escalation

T1053.005 – Scheduled Task/Job: Scheduled Task

TA0005 – Defense
Evasion

T1027.002 – Obfuscated Files or Information: Software Packing

TA0005 – Defense
Evasion

T1055 – Process Injection

TA0005 – Defense
Evasion

T1055.012 – Process Injection: Process Hollowing

TA0005 – Defense
Evasion

T1070 – Indicator Removal on Host

TA0005 – Defense
Evasion

T1497.001 – Virtualization/Sandbox Evasion: System Checks

TA0006 – Credential
Access

T1003 – OS Credential Dumping

TA0006 – Credential
Access

T1110.001 – Brute Force: Password Guessing

16/16

Tactic Technique

TA0006 – Credential
Access

T1555.003 – Credentials from Password Stores: Credentials
from Web Browsers

TA0011 – Command
and Control

T1071.001 – Application Layer Protocol: Web Protocols

TA0011 – Command
and Control

T1090 – Proxy

TA0011 – Command
and Control

T1090.002 – Proxy: External Proxy

Appendix

Qakbot configuration extraction Python3 script

import sys
import pefile
from arc4 import ARC4

pe = pefile.PE(sys.argv[1])
c2list = []
for entry in pe.DIRECTORY_ENTRY_RESOURCE.entries:
 for e in entry.directory.entries:
 n = e.name.string.decode()
 data = pe.get_data(e.directory.entries[0].data.struct.OffsetToData,
e.directory.entries[0].data.struct.Size)
 data = ARC4(data[:20]).decrypt(data[20:])[20:]
 if n == '311':
 for i in range(1,len(data),7):
 c2 = list(data[i:i+6])
 c2list.append("%d.%d.%d.%d:%d" % (c2[0],c2[1],c2[2],c2[3],(c2[4]
<<8)+c2[5]))
 elif n == '308':
 config = data.decode().split()
print("# QakBot Config\n\n```\n" + "\n".join(config) + "\n```\n")
print("# QakBot C2\n\n```\n" + "\n".join(c2list) + "\n```\n")

