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Introduction

Threat Actors make use of packers when distributing their malware as they remain an
effective way to evade detection and to make them more difficult to analyze. Manual analysis
can defeat these protections and help to develop tools that allow the unpacking of the
malware. To develop these tools, it is necessary to know how the process of unpacking for
those malware samples is done in order to replicate their functionality. This can be a costly
task, and the modification of the unpacking algorithm by the Threat Actor would entail to
study the malware and modify the tools again.

At Blueliv, an Outpost24 company, we track Threat Actors like TA505, who also make use of
packers in their malware distribution campaigns. Regarding TA505, there are currently tools
like TAFOF-Unpacker able to successfully unpack their samples replicating the unpacking
algorithm process.

In this blogpost, we are going to show how to unpack TA505 packed samples using the
Qiling Framework emulator version 1.2, which will allow us to do so, without needing to
study and replicate all the implementation details of the unpacking algorithm.

TA505 Packer

Our goal is to dump the unpacked payload from TA505 packed samples using emulation. As
we said before, this approach allows us to circumvent the study of every implementation
detail of the unpacking algorithm. However, we still need to manually analyze the packer to
find a way of getting the unpacked content and dump it.

In the case of TA505 packer, we could differentiate 3 stages.

First stage

This stage consists of executing useless instructions and loops in order to obfuscate and/or
slow down the analysis. It also makes use of some anti-emulation techniques to avoid being
studied by this kind of software.

https://outpost24.com/blog/using-qiling-framework-to-unpack-ta505-packed-samples/
https://outpost24.com/blog/category/research-and-threat-intel/
https://github.com/Tera0017/TAFOF-Unpacker
https://www.qiling.io/
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Use of useless loops to slow down emulation tasks:

Figure 1. Anti-Emulation used in sample
e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e

Dummy functions in different samples:

Figure 2. Dummy function used in sample
e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e

Figure 3. Dummy function used in sample
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee
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Figure 4. Dummy function used in sample
4b0eafcb1ec03ff3faccd2c0f465f5ac5824145d00e08035f57067a40cd179d2

GetLastError() Anti-Emulation technique

We can see that between different samples, the dummy and useless functions vary.
However, the anti-emulation technique remains the same in all of them, being present in the
GetLastError() function. From the Official Windows API documentation:

“Retrieves the calling thread’s last-error code value. The last-error code is maintained
on a per-thread basis. Multiple threads do not overwrite each other’s last-error code.”

This technique is used with different expected return values across different malware
samples (using different API calls before the GetLastError() occurs), for example:

SetClipboardData:

Figure 5. Anti-Emulation used in sample
ad320839e01df160c5feb0e89131521719a65ab11c952f33e03d802ecee3f51f

GetWindowContextHelpId:

https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror
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Figure 6. Anti-Emulation used in sample
e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e

Figure 7. Anti-Emulation used in sample
4b0eafcb1ec03ff3faccd2c0f465f5ac5824145d00e08035f57067a40cd179d2

Figure 8. Anti-Emulation used in sample
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee

For instance, last figure shows the malware calls GetLastError() and the only instruction
executed before this one that could have set an error value is the execution of the API call
GetWindowsContextHelpId(). From the Official Windows API Documentation:

“Retrieves the Help context identifier, if any, associated with the specified window.”

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getwindowcontexthelpid
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Given that the window handle used in this function is invalid, the sample expects this last
call to set error value to 0x578 (ERROR_INVALID_WINDOW_HANDLE), (which is what
would happen in a non-emulated environment), and then continues execution. We will
have to code this behavior so that the emulation can detonate the actual sample, because
the emulator is not able to predict the value corresponding to GetLastError() by itself, since
it does not have the real running context of an operating system.

Second stage

Unpacks an encrypted shellcode in a newly allocated memory in the heap and transfers
execution to it. This shellcode contains the actual Stub of the packer. This stage may also
contain junk and useless code to difficult the malware analysis.

Figure 9. Unpacking Packer Stub
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee

Third stage

This is the TA505 Packer Stub (piece of code containing the decryption routine), that will act
as a loader for the final payload, which is written in heap memory and executed. It starts by
storing some strings in the stack that will use to find the Windows APIs needed to unpack
itself: VirtualAlloc, VirtualProtect, LoadLibraryA, VirtualFree and VirtualQuery.

https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes--1300-1699-
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Figure 10. TA505 packers store strings in the stack to resolve Windows API functions.

It relies on a self-modifying unpacking technique, trying to acquire a block of writeable,
executable memory, unpacking (decrypting and writing) code to the newly allocated memory
and finally, transferring execution to the unpacked code in the newly allocated memory.
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Figure 11. Packer Stub
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee

As it is shown in the last screenshot. The Stub calls VirtualFree() after having written the
decrypted payload in the newly allocated memory. Our strategy should consider saving the
allocated blocks of memory and dump them once VirtualFree() is executed (at this point we
have seen that the malware is just about to start running the unpacked payload and it’s in the
state which is going to be executed; it is safe to dump now). Before VirtualFree() happens,
we can see the unpacked layer in the last allocated block of memory that we’ve named
allocated2.
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Figure 12. Unpacked payload
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee

We should be able, with emulation, to guide the execution until this point and then dump right
away the contents of the last allocated code to get the next unpacked layer. This is what we
are going to try with Qiling Framework v1.2. Executing the sample using Qiling
Framework would allow it to be unpacked automatically, and we would only have to put
hooks into specific Windows API functions to get the unpacked binary.

Qiling Framework

Qiling Framework is an advanced open source binary emulation Framework, with binary
instrumentation and API emulation being its main focus and priority. It is designed as a cross-
platform binary instrumentation and binary emulation framework and has support for multi-
architecture. Code interception and arbitrary code injection before or during a binary
execution are one of its powerful features, as well as being able to patch a binary during
execution.

https://www.qiling.io/
https://github.com/qilingframework/qiling
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The advantage of using the Qiling Framework for this purpose is that changes made to the
unpacking algorithm will not prevent the samples from being unpacked. This is because we
are obviously not implementing the decryption algorithm itself, but emulating it instead.
However, we also find some obstacles when using emulators, as packers can also make
use of anti-emulation techniques. In this case we would need to understand how the
packer detects the emulator in order to bypass the countermeasures.

For what we have seen during the analysis of the packer. We would need to:

1. Bypass anti-emulation techniques to execute the Packer Stub
2. Store dynamically allocated blocks of memory information (address and size)
3. Dump the unpacked PE once it is ready. (For example, before VirtualFree() gets

executed)

Bypass anti-emulation techniques

Bypass GetLastError() anti-emulation technique

TA505 packer makes use of GetLastError() call to avoid unpacking if it is running in an
emulated environment. To bypass this measure, we need to find out which API call is meant
to set the expected error code in the packer, this will usually happen just before the actual
call to GetLastError(). Once found, we should add a hook to this API call and force the
return of the expected error code. This way, when GetLastError() gets emulated, it will
receive the value we want, and continue the execution.

Most of the analyzed samples, make use of the call GetWindowContextHelpId() in an
“obfuscated” way. They load the string “SetWindowContextHelpId” and replace the first
letter with a “G” before making the call.
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Figure 13. bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee
calling GetWindowContextHelpId as part of its anti-emulation technique

Other samples may use different approaches, but all based on the GetLastError()
technique. For example, the sample
e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e makes use of
the API call SetClassLongA(). From the Official Windows API Documentation:

“Replaces the specified 32-bit (long) value at the specified offset into the extra class
memory or the WNDCLASSEX structure for the class to which the specified window
belongs.”

When being used like in these samples, the expected behavior (as it is using an invalid
Window Handle) is to get an error 0x578 (ERROR_INVALID_WINDOW_HANDLE).

Figure 14. e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e anti-
emulation techniques before unpacking the Packer Stub

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setclasslonga
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/ns-winuser-wndclassexa
https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes--1300-1699-
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Once identified those API calls, we can reimplement them with Qiling to make sure they set
the proper error codes so that the next call to GetLastError() jumps to the correct branch of
the code. Qiling Framework allows us to reimplement these API calls easily:

GetWindowContextHelpId() hook implementation:

DWORD GetWindowContextHelpId( HWND Arg1 );

@winsdkapi(cc=STDCALL, dllname=”user32_dll”) def hook_GetWindowContextHelpId(ql,
address, params): ERROR_INVALID_WINDOW_HANDLE = 0x578 ql.os.last_error =
ERROR_INVALID_WINDOW_HANDLE return 0

SetClassLongA() hook implementation:

DWORD SetClassLongA( HWND hWnd, int nIndex, LONG dwNewLong );

@winsdkapi(cc=STDCALL, dllname=”user32_dll”) def hook_SetClassLongA(ql, address,
params): ERROR_INVALID_WINDOW_HANDLE = 0x578 ql.os.last_error =
ERROR_INVALID_WINDOW_HANDLE return 0

We have to set API hooks before calling “ql.run()“.

ql.set_api(“GetWindowContextHelpId”, hook_GetWindowContextHelpId)
ql.set_api(“SetClassLongA”, hook_SetClassLongA)

Qiling Framework emulator is constantly evolving. However, there might be some API
calls still not present in the code. In those cases, we will have to reimplement them, although
we could also just give to the caller what he expects in order to bypass the different anti-
emulation techniques (not emulating the actual Windows call, but leaving what the sample
needs, like the error code in this case, instead).

This is the case of some API calls that need to be “emulated” so that the malware can
continue with its execution. For instance, the following Figure shows a packed sample where
the interesting “GetLastError()” anti-emulation technique is inside an if statement. We need
to make sure that the sample takes the correct conditional path. To do so, we need to
reimplement “ImageList_Add()” as by the time of writing this Blogpost, this is not emulated
by default by Qiling.

https://docs.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-imagelist_add


12/17

Figure 15. bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee anti-
emulation techniques before unpacking Packer Stub

ImageList_Add() hook implementation:

int ImageList_Add( HIMAGELIST himl, HBITMAP hbmImage, HBITMAP hbmMask );

@winsdkapi(cc=STDCALL, dllname=”comctl32_dll”) def hook_ImageList_Add(ql, address,
params): ret = 0xFFFFFFFF return ret

The same happens in sample
bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee with
__wgetmainargs:

__wgetmainargs() hook implementation:

int __wgetmainargs ( int *_Argc, wchar_t ***_Argv, wchar_t ***_Env, int _DoWildCard,
_startupinfo * _StartInfo )

@winsdkapi(cc=STDCALL, dllname=”msvcrt_dll”) def hook___wgetmainargs(ql, address,
params): return 0

The sample 74c5ae5e64d0a850eb0ebe3cbca4c6b92918a8365f2f78306643be9cffc32def
also makes use of some API calls that need to be reimplemented to get the malware to
execute the unpacking Stub.

CoReleaseMarshalData() hook implementation:
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HRESULT CoReleaseMarshalData( LPSTREAM pStm );

@winsdkapi(cc=STDCALL, dllname=”ole32_dll”) def hook_CoReleaseMarshalData(ql,
addrss, params): E_INVALIDARG = 0x80070057 return E_INVALIDARG

NOTE: During the development of this tool, we found out that the hooks for
CoReleaseMarshalData and ImageListAdd where not working. Apparently, these functions
are properly declared in Qiling Framework version 1.2, but when we try to run our tool we got
a “Windows API implementation error“. This is because Qiling is missing some references
in its const.py file. More precisely, it is missing the references for:

“HBITMAP”: “HANDLE”, “HIMAGELIST”: “HANDLE”, “LPSTREAM” : “POINTER”

A pull request to the Qiling project has already been accepted and commited to the
development branch which solves this issue.

ShellExecuteA() hook implementation:

HINSTANCE ShellExecuteA( HWND hwnd, LPCSTR lpOperation, LPCSTR lpFile, LPCSTR
lpParameters, LPCSTR lpDirectory INT nShowCmd );

@winsdkapi(cc=STDCALL, dllname=”shell32_dll”) def hook_ShellExecuteA(ql, address,
params): return 0

CreateEventA() hook implementation:

HANDLE CreateEventA( LPSECURITY_ATTRIBUTES lpEventAttributes, BOOL
bManualReset, BOOL bInitialState, LPCSTR lpName );

@winsdkapi(cc=STDCALL, dllname=”kernel32_dll”) def hook_CreateEventA(ql, address,
params): return 0

VirtualQuery hook implementation:

VirtualQuery also seems to give problems when running those samples. The easiest way to
make these samples continue with their execution is reimplementing this API call too so that
it gives the sample what it wants. In the case of TA505 Packer, the unpacking Stub just
checks if the return value of this call is a positive value. We can consider then:

SIZE_T VirtualQuery( LPCVOID lpAddress, PMEMORY_BASIC_INFORMATION lpBuffer,
SIZE_T dwLength );

@ winsdkapi(cc=STDCALL, dllname=”kernel32_dll”) def hook_VirtualQuery(ql, address,
params): return params[‘dwLength’]

Bypass useless loops to slow down emulation tasks

https://github.com/qilingframework/qiling/blob/1.2/qiling/os/const.py
https://github.com/qilingframework/qiling/pull/594
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Some TA505 Packed samples make use of another anti-emulation technique. They execute
long useless loops that makes emulation take forever (as these loops execute fast in non-
emulated environments). Long loops with calls to Windows Api calls can also be used as an
anti-sandbox technique. This can be seen in the following figure:

Figure 16. Anti-Emulation technique used in
e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e

To bypass this with Qiling in an “automated” way, we could obviously manually patch the
binary or use Qiling search pattern to add this functionality in our unpacking script.

def patch_binary(ql): patches = [] ”’ Original 81 7D B4 40 42 0F 00 cmp [ebp+var_4C],
1000000 Patch: 81 7D B4 00 00 00 00 cmp [ebp+var_4C], 0 ”’ patch_ = { ‘original’:
b’\x81\x7D\xB4\x40\x42\x0F\x00′, ‘patch’: b’\x81\x7D\xB4\x00\x00\x00\x00′ }
patches.append(patch_) for patch in patches: antiemu_loop_addr =
ql.mem.search(patch[‘original’]) if antiemu_loop_addr: ql.nprint(D_INFO, ‘Found Anti-
Emulation loop at addr: {}’.format(hex(antiemu_loop_addr[0]))) try:
ql.patch(antiemu_loop_addr[0], patch[‘patch’]) ql.nprint(D_INFO, ‘Successfully patched!’)
return except Exception as err: ql.nprint(D_INFO, ‘Unable to patch binary: {}’.format(err))

Store dynamically allocated blocks of memory information (address and
size)

As we said previously, the unpacked malware will be written into a new allocated block of
memory. It will use VirtuAlloc() and VirtualAllocEx() to allocate space for the unpacking
Stub and the payload. We will need to keep track of these allocations in order to be able to
dump them when VirtualFree() gets called. We could reimplement VirtualAlloc() and
VirtualAllocEx() for the unpacking in this way:

LPVOID VirtualAllocEx( HANDLE hProcess, LPVOID lpAddress, SIZE_T dwSize, DWORD
flAllocationType, DWORD flProtect );
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@winsdkapi(cc=STDCALL, dllname=”kernel32_dll”) def hook_VirtualAllocEx(ql, address,
params): dw_size = params[“dwSize”] addr = ql.os.heap.alloc(dw_size) fl_protect =
params[“flProtect”] if fl_protect in [0x1, 0x2, 0x4, 0x8,0x10, 0x20, 0x40, 0x80]:
ql.nprint(D_INFO, “VirtualAllocEx start: {} – size: {}”.format(hex(addr), hex(dw_size)))
mem_regions.append({“start”: addr, “size”: dw_size}) return addr

LPVOID VirtualAlloc( LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType,
DWORD flProtect );

@winsdkapi(cc=STDCALL, dllname=”kernel32_dll”) def hook_VirtualAlloc(ql, address,
params): dw_size = params[“dwSize”] addr = ql.os.heap.alloc(dw_size) fl_protect =
params[“flProtect”] if fl_protect in [0x1, 0x2, 0x4, 0x8,0x10, 0x20, 0x40, 0x80]:
ql.nprint(D_INFO, “VirtualAlloc start: {} – size: {}”.format(hex(addr), hex(dw_size)))
mem_regions.append({“start”: addr, “size”: dw_size}) return addr

Dump the unpacked PE once it is ready

Now the last thing left to do is to dump the contents of the last allocated block once we reach
the execution of VirtualFree():

def dump_memory_region(ql, address, size): ql.nprint(D_INFO, “Read memory region at
address: {} – size: {}”.format(hex(address), hex(size))) try: excuted_mem =
ql.mem.read(address, size) except Exception as err: log.warning(‘Unable to read memory
region at address: {}. Error: {}’.format(hex(address), err)) return ql.nprint(D_INFO, “Dump
memory region at address: {} – size: {}”.format(hex(address), hex(size))) with
open(“unpacked_”+hex(address)+”.bin”, “wb”) as f: f.write(excuted_mem) # write extracted
code to a binary file

BOOL VirtualFree( LPVOID lpAddress, SIZE_T dwSize, DWORD dwFreeType );

@winapi(cc=STDCALL, params={ “lpAddress”: POINTER, “dwSize”: SIZE_T, “dwFreeType”:
DWORD }) def hook_VirtualFree(ql, address, params): global mem_regions lpAddress =
params[“lpAddress”] ql.nprint(D_INFO, “VirtualFree called for address:
{}”.format(hex(lpAddress))) ql.nprint(D_INFO, “Memory regions stored:
{}”.format(mem_regions)) try: if mem_regions: unpacked_layer = mem_regions[-1] #
Unpacked layer is in the last allocated block start = unpacked_layer[“start”] size =
unpacked_layer[“size”] dump_memory_region(ql, start, size) except Exception as err:
ql.nprint(D_INFO, ‘Unable to dump memory region: {}’.format(err)) ql.os.heap.free(lpAddress)
ql.emu_stop() return 1

Proof of Concept

You can find our proof of concept in our repository.

https://github.com/Blueliv/unpack-ta505packer-qiling
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IOC

SHA256 Packed samples:

SHA256 Unpacked samples:

Malware: AZORULT

e4eb1a831a8cc7402c8e0a898effd3fb966a9ee1a22bce9ddc3e44e574fe8c5e

103084a964d0b150e1268c8a1a9d8c2545f7f0721e78a1b98b74304320aeb547

Malware: GELUP

bb5054f0ec4e6980f65fb9329a0b5acec1ed936053c3ef0938b5fa02a9daf7ee

6d15cd4cadac81ee44013d1ad32c18a27ccd38671dee051fb58b5786bc0fa7d3

Malware: SILENCE

4b0eafcb1ec03ff3faccd2c0f465f5ac5824145d00e08035f57067a40cd179d2

b9a0bde76d0bc7cc497c9cd17670d86813c97a9f8bed09ea99d4bf531adafb27

Malware: AMY RAT

ad320839e01df160c5feb0e89131521719a65ab11c952f33e03d802ecee3f51f

8a30f4c59d111658b7f9efbd5f5b794228394cd53d22a1fb389fd3a03fc4d1f7

Malware: TINYMET

74c5ae5e64d0a850eb0ebe3cbca4c6b92918a8365f2f78306643be9cffc32def

6831fc67ca09d9027fef8b3031a11e9595fc1df1cb547c6f587947d13dad151a

Conclusion

As has been seen throughout the article, incorporating Qiling Framework as one of your
reverse engineering tools facilitates the tasks of malware analysis. In this case, it allows us
to easily and quickly unpack samples packed with TA505Packer without needing to have
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extensive knowledge about its implementation details. Moreover it is cross-platform.

From Blueliv we encourage other researchers to make use of Qiling Framework and we
hope this project continues growing.

For more details about how we reverse engineer and analyze malware, visit our targeted
malware module page.

Visit our threat intelligence product page
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