Decrypting strings with a JEB script

m cryptax.medium.com/decrypting-strings-with-a-jeb-script-1af522fa4979
@cryptax December 17, 2020

!
@cryptax

Dec 17, 2020

4 min read

In this article, we unpacked a malicious version of the “Tous Anti Covid” application. We
know the main entry point of the payload DEX is dad.calm.invest.qusalkrlkyy .

<activity android:name="dad.calm.invest.qusalkrlkyy">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.app.role.SMS"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
the main entry point is located in the payload DEX (decrypted and dynamically loaded by the
malware)

Encrypted strings

Using the decrypted payload DEX we unpacked in the previous article, we quickly notice in
that class there are several encrypted strings. In this article, we'll see how to create a JEB
script to decrypt the strings.

protected void onCreate(Bundle arg7) {
super.onCreate(arg7);
Point v7 = new Point();
this.getWindowManager().getDefaultDisplay().getSize(v7);
this.a.e(this, this.c.ao, v7.x);
this.a.e(this, this.c.ap, v7.y);
try {
if(this.a.j(this, this.c.R).contains(this.a("YzVL0Dc2NTE="))) {
this.a.a(this.d, this.a("ZWJ10TcwNDEOMjczMzZ1ZTdhZmE4NzdhYWMXY2YzYTA4MGZ1NjM4MTkxZDA3Ng=="))

}

catch(Exception unused ex) {
this.a.a(this.d, this.a("ZWJ10TcwNDEOMjczMzZ1ZTdhZmE4NZzdhYWMXY2YzYTA4MGZ1INjM4MTkxZDM3Ng=="));
e v0 = this.a;

The strings are Base64 encoded + encryption by a()

1/4

https://cryptax.medium.com/decrypting-strings-with-a-jeb-script-1af522fa4979
https://cryptax.medium.com/?source=post_page-----1af522fa4979--------------------------------
https://cryptax.medium.com/?source=post_page-----1af522fa4979--------------------------------
https://cryptax.medium.com/unpacking-an-android-malware-with-dexcalibur-and-jeb-59bdd905d4a7
https://cryptax.medium.com/unpacking-an-android-malware-with-dexcalibur-and-jeb-59bdd905d4a7

a() is a method which first decodes Base64 and then decrypts data using a custom
algorithm. This algorithm is initialized with a hard coded key. Below, | show a “de-obfuscated”
version of a() :

private String decrypt(String encrypted_string) { try { return new String(new
DecryptionAlgo(this.c.key.getBytes())

.decrypt(e.createByteArray(new String(
Base64.decode(encrypted_string, 0), “UTF-8")))); }...

Implementing the decryption algo in Python

| want to decrypt encrypted strings, ok? To do so, | need to understand the decryption
algorithm, and automate that in a JEB script. JEB scripts are written in Python, so I'll have to
port Java code to Python.

The first thing a() does is Base64 decoding. This is easily done in Python with the
base64 package and b64decode() .

Then, the code converts the base64 string to a byte array and decrypts the byte array using
b() .

public final byte[] b(byte[] arg7) {

byte[] v0 = new byte[arg7.length];

int v1;

for(vl = 0; vl < arg7.length; ++vl) {
this.b = (this.b + 1) % 0x100;
int[] v3 = this.a;
int v4 = this.b;
this.c = (this.c + v3[v4]) % 0x100;
DecryptionAlgo.a(v4, this.c, v3);
vO[vl] = (byte)(this.a[(this.a[this.b] + this.a[this.c]) % 0x180] "~ arg7[vl]);

}

return vO;
}
this is the (obfuscated) decryption algo
This decryption algorithm can quite easily be ported to Python:

1. No need for explicit memory allocations in Python such as new byte . We simply
need tosay vo isanarray [] .

2. The for loop is transformed to for i in range(..) .

3. In Python, you cannot “assign a value to an array” with ve[vi]=... . Rather, we can
“append” a value to an array.

4. The algorithm calls another method a() . If you look at its code, it simply swaps the
values of indices v4 and this.c inarray v3 . That's easy to implementin Python
too.

2/4

decrypt(, buf):
result = []
i in range(0, len(buf)):
b= .b 4+ 1) % 0x100
.transformed_key
.b

.c=(.C + v3[v4]) % 0x100
swap values(v4, .C, v3)
result.append(.transformed_key[(.transformed_key| b] + .transformed
key[.C]) % 0x100] ~ bufi]);
*.join([chr(c) C result])

The same algorithm, ported to Python. Here, decrypt is part of a Python class.

The other part we need to take care of is the algorithm’s key. We see the code instantiates a
decryption object with a hard-coded key (its value is “dcpmeyucapxy”). The object
constructor prepares the key with a custom algorithm (see below).

private static int[] c(byte[] arg5) {
int[] vl = new int[0x100];

int v2 = 0;

int v3;

for(v3d = 0; v3 < 0x100; ++v3) {
v1l[v3] = v3;

}

int v3 1 = 0;

while(v2 < 0x100) {
v3 1= (v3 1+ vl[v2] + arg5[v2 % arg5.length] + 0x100) % 0x100;
DecryptionAlgo.a(v2, v3 1, vl);
++V2;

}

return vl;

}

This method is called by the decryption object constructor (dad.calm.invest.c.c). It needs to
be ported to Python.
The port of the method is not a problem, as modulo operator exist both in Java and Python.

Wrapping the algorithm into a JEB script

Once all elements of the decryption algorithm are implemented (we can testitin a
standalone script), we need to wrap this up in a JEB script. JEB experts could do wonders,
automatically recognize the strings, decrypt them and replace by the decrypted value (see
scripts such as this one). However, | am not an expert, and | can’t spend hours on writing a
script either. So, we’ll do something simpler: the JEB user is expected to select the string to
decrypt, the script will automatically decrypt the string and add a comment next to it with the
decrypted version. My script will not handle error cases, feel free to enhance &.

3/4

https://github.com/pnfsoftware/jeb2-samplecode/blob/master/scripts/JavaASTDecryptStrings.py

class tous_decrypt(IScript):
def run(self, ctx):
f = ctx.getFocusedFragment()
if not f:
print("[-] Select a text (no focused fragment)")
return

sel = f.getSelectedText() or f.getActiveItemAsText()
if not sel:
print("[-] Select a text (no selected text)")
return

h64encoded_string = sel.strip(' \'\"")
decrypted_string = self.do_decrypt(b64encoded_string)
print("Decrypting: {} --> {}".format(b64encoded_string, decrypted_string))

a = f.getActiveAddress()

if a and isinstance(f.getUnit(), IInteractiveUnit):
comment® = f.getUnit().getComment(a)
comment = decrypted_string + '\n' + comment® if comment® else decrypted_string
f.getUnit().setComment(a, comment)

Creating a JEB script. The main class must derive from IScript (defined in package
com.pnfsoftware.jeb.client.api that we must import) , and the class must implement a method
named run()
The JEB script (1) gets the selected string (getSelectedText or

getActiveItemAsText), (2) then we send that string to the decryption algorithm we
implemented. The result is the decrypted string. Finally, (3) we add that string as a comment
(setComment). | largely inspired my code from this one to do that.

Source code script to decrypt strings (GitHub).

Running the script

Finally, put the Python script somewhere JEB can access it. Then, select a string to decrypt.
Then, File > Scripts > Run Script. Select the script. And it should work :) The print commands
go to JEB'’s logger console, the decrypted string is added as comment. For next times, you
can simply use F2 to run the same script.

Very handy! Have a look at the video to see it in action.

| use F2 key to run the JEB script
— cryptax

4/4

https://github.com/pnfsoftware/jeb2-samplecode/blob/master/scripts/TranslateString.py
https://github.com/cryptax/misc-code/blob/master/tous_decrypt.py

