ContiUnpacker

O github.com/cdong1012/ContiUnpacker

cdong1012

cdongl1012/
ContiUnpacker

An automatic unpacker for a Conti sample

A1 ® 1 w9 ¥ 4 O

Contributor Issue Stars Forks

An automatic unpacker for a Conti sample

Context

e This was inspired by James Bennett's blog post on how to programmatically unpack
malware.

e This unpacker unpacks this specific Conti ransomware | found on MalwareBazaar.

Requirement

e Python 3
e Speakeasy

How it works

o The unpacker uses the Speakeasy Emulation Framework to run and unpack the
sample.

e When | manually unpacked this, | noticed that the sample called VirtualAlloc to
allocate memory, wrote the unpacked PE file to it, and called VirtualProtect on the
.text region before executing it.

1/3

https://github.com/cdong1012/ContiUnpacker
https://www.fireeye.com/blog/threat-research/2020/12/using-speakeasy-emulation-framework-programmatically-to-unpack-malware.html
https://bazaar.abuse.ch/sample/03b9c7a3b73f15dfc2dcb0b74f3e971fdda7d1d1e2010c6d1861043f90a2fecd/
https://github.com/fireeye/speakeasy

¢ From this, | halted the simulation at the first VirtualProtect call, dumped the PE file out,
and mapped it accordingly to fix the IAT.

Usage

Running with Command Prompt

python ContiUnpacker.py -f conti.dll -o <output_file>

GetCommandLine

1

WAL

eeedd3
Bxfecedd3

[*] Dump Address: @
] Found walid PE file
¥16661e57: 'KERNEL32.VirtualProtec , B , Bx48,] > Mone

2/3

https://github.com/cdong1012/ContiUnpacker/blob/main/image/ContiUnpacker1.png

@ PE-bear v0.5.0 [C:\Users\User\ Desktop\conti\unpacked bin] - O X

File Settings Compare Info

~ [unpacked.bin x = 5 & =9
D05 Header e 012 3 45678 9 ABCTDEF 0123456789ABCDEF &
@ DOSstub 10519 ES DB 04 00 00 ES 7A FE FF FF 55 8B EC FE 45 08 e . U . i
~ NT Headers 1C929 01 56 BB F1 C7 06 DO CL 45 00 74 OA €A OC 56 E8
Signature 1C939 F3 FA FF FF 53 53 98 Ce 5E 5D G2 04 00 55 8B EC
File Header 10949 56 FF 75 08 8B FL E8 7F F7 FF FE C7 0€ D3 CL 45
Optional Header 1C959 00 BB CE SE 5D C2 04 00 83 €1 04 00 6B C1 83 €1

Section Headers 1C369 08 00 C7 41 04 EOC1 45 00 C7 01 D8 C1 45 00 C3

~ Sections 1C$79 55 8B EC 83 EC OC 2D 4D F4 B 34 F7 FF FF €8 40
v 3 et ' ' i '
=> Disasm: . text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs 9 mports B9 Resources B BaseReloc, B9 Debug |»|
EP = 1C919
-+
45 rdata
o data Offset Name Fune. Count Bound? OriginalFirstThun TimeDateStamp Forwarder MameRVA FirstThunk
offf rsrc 2D6E4 KERMEL3Z.dll 65 FALSE 20734 0 0 2D87E 28000
o reloc 2D6F8 USER32.dlI 1 FALSE 2D83C 0] 20898 28108
2D70C Ws2_32.dll 2 FALSE 20844 0] 2DeAs 28110
< >

KERMEL32.dIl [63 entries]

Call via Name Ordinal Original Thunk Thunk Forwarder Hint @
28000 CloseHandle - 2D850 FEEEODO1 - 86
28004 GetLocalTime = 2D85E FEEEODO2 = 262
28008 VirtualAlloc - 2D86E FEEEDDD3 - 5C6
2800C WriteConsoleW - 2DD0A FEEEODO4 = 611
% 28070 CreateFileW - 2DCFC FEEEODOS - CB
E 28014 SetFilePointerEx - 2DCES FEEEDDDG = 523
wm (28018 UnhandledExce.. - 2D8B0 FEEEDDOT - 34D
g 2801C SetUnhandledE... - 2D8cC FEEEQDDS = 56D v

Check for updates

Note

Please don't actually run this malware | included unless you know what you're doing.
I'm not responsible if you end up encrypting your machine!

Also, | noticed that the function calls are a bit different on Speakeasy emulator compared to
when running on x64dbg. During the VirtualProtect call, everything should technically be
written into the allocated memory already, but that's not the case...

Apparently, only parts of the .rdata section is written, so the dumped executable won't be
able to run.

| can't figure out why this is happening because Speakeasy is pretty weird, so this unpacker
does not work 100%.

However, I'll still keep it here in case anyone wants to refer to this when writing their own
unpacker using Speakeasy!

Acknowledgement

James T. Bennett - https://www.fireeye.com/blog/threat-research/2020/12/using-speakeasy-
emulation-framework-programmatically-to-unpack-malware.html

FireEye's Speakeasy Emulation Framework - https://github.com/fireeye/speakeasy.

3/3

https://github.com/cdong1012/ContiUnpacker/blob/main/image/ContiUnpacker2.png
https://www.fireeye.com/blog/threat-research/2020/12/using-speakeasy-emulation-framework-programmatically-to-unpack-malware.html
https://github.com/fireeye/speakeasy

