JPCERT Coordination Center official Blog

J blogs.jpcert.or.jp/en/2020/12/quasar-family.html

December 10, 2020

Attack Activities by Quasar Family

<u>Quasar</u>

- <u>Email</u>

Quasar [1] is an open source RAT (Remote Administration Tool) with a variety of functions. This is easy to use and therefore exploited by several APT actors. JPCERT/CC has confirmed that a group called APT10 used this tool in some targeted attacks against Japanese organisations.

As Quasar's source code is publicly available, there are many variants of this RAT seen in the wild (referred to as "Quasar Family" hereafter). Some of them have been used in attacks against Japanese organisations, and they are seen as a threat as well as Quasar itself. This article introduces the details of Quasar and Quasar Family.

Quasar overview

Quasar offers many functions which are intended for purposes such as device management, support operation and employee monitoring. Figure 1 describes Quasar's functions and its supported environment as specified on GitHub.

Features

 TCP network stream (IPv4 & IPv6 support) 	.NET Framework 4
 Fast network serialization (Protocol Buffers) 	Supported operation
 Compressed (QuickLZ) & Encrypted (TLS) communication 	• Windows 10
UPnP Support	 Windows Serv
Task Manager	 Windows Serv
File Manager	 Windows 8/8.
Startun Manager	 Windows Server
Barrata Dasktan	 Windows 7
Remote Desktop	 Windows Service
Remote Shell	 Windows Vist
Remote Execution	For older systems
System Information	
Registry Editor	
 System Power Commands (Restart, Shutdown, Standby) 	
Keylogger (Unicode Support)	
Reverse Proxy (SOCKS5)	
 Password Recovery (Common Browsers and FTP Clients) 	
 and many more! 	

Supported runtimes and operating systems

- .5.2 or higher
- ing systems (32- and 64-bit)
 - /er 2019
 - /er 2016
 - 1
 - er 2012
 - /er 2008
- please use Quasar version 1.3.0

Figure 1: Quasar's functions and supported environment

This tool was called "xRAT" at the time of its initial release, however, it was renamed as "Quasar" in August 2015. The latest version is v1.4, released in June 2020.

Figure 2: Quasar versions

As v1.3 and the earlier are still used in recent attacks, this article explains the functions of both v1.3 and v1.4.

Communication protocol

Quasar v1.3 uses its custom protocol which combines AES and QuickLZ. In v1.4, however, Protocol Buffer (developed by Google) is used for data serialisation instead. In addition, the entire communication is encrypted with TLS1.2.

Figure 3 shows the comparison of the communication format in v1.3 and v1.4.

Figure 3: Quasar's communication format

Communication flow

In v1.3, once a client connects to a server, authentication is performed. After that, the main body of data including the commands are exchanged. On the other hand, the authentication is replaced by a TLS handshake in v1.4, and the data exchange begins after that. Figure 4 illustrates Quasar's communication flow between a client and a server.

Figure 4: Quasar's communication flow

Configuration

Quasar possesses its configuration in itself. It is encrypted by the combination of AES and BASE64 encoding. It is decrypted with the value specified in "ENCRYPTIONKEY" in the configuration when executed.

Figure 5: Quasar configuration

Base64

salt, 50000).read(16)	AES_KEY = PBKDF2(ENCRYPTIONKEY
· · · · · · · · · · · · · · · · · · ·	salt, 50000).read(16)

HMAC(32byte)	IV(16byte)	AES(mode CBC)
--------------	------------	---------------

Figure 6: Configuration format

Table 1 details the configuration for Quasar.

Table 1: Configuration

VERSION	INSTALL	LOGDIRECTORY (1.3)
HOSTS	STARTUP	SERVERSIGNATURE (1.4)
PORT (xRAT only)	MUTEX	SERVERCERTIFICATESTR (1.4)
RECONNECTDELY	STARTUPKEY	SERVERCERTIFICATE (1.4)
KEY	HIDEFILE	HIDELOGDIRECTORY (1.3)
AUTHKEY	ENABLEUACESCALATION (xRAT only)	HIDELOGSUBDIRECTORY (1.3)
DIRECTORY	ENABLELOGGER	INSTALLPATH (1.4)
SUBDIRECTORY	ENCRYPTIONKEY	LOGSPATH (1.4)

INSTALLNAME TAG (1.3)

Commands

In v1.3, command sets are defined for "typeof" calls. Figure 7 shows some examples of commands defined in Quasar.

Ż	public class Commands	127	COMMAND_SET = {
	// Token: 0x06000377 RID: 887	128	1: "GetConnectionsResponse",
	public static Type[] command()	129	5: "ReverseProxyDisconnect",
	(return new Tune[]	130	7: "ReverseProvyData"
	return new Type[]	131	8: "PevenseProvyConnectPesponse"
	typeof(GetAuthentication),	131	2. Reverserroxyconnecticesponse ,
	typeof(DoClientDisconnect),	132	13: "Addressfamily",
	typeof (DoClientReconnect),	133	15: "ReverseProxyConnect",
	typeof (DoWebcamStop).	134	16: "GetChangeRegistryValueResponse",
	typeof (DoAskElevate),	135	19: "GetRenameRegistryValueResponse",
	typeof(DoDownloadAndExecute),	136	20: "GetDeleteRegistryValueResponse",
	typeof(DoUploadAndExecute),	137	21: "GetCreateRegistryValueResponse".
	typeof (GetProcesses)	138	22: "GetRenameRegistryKeyResponse".
	typeof (DoProcessKill).	120	23: "GatDalataDagistryKayPasponse"
	typeof(DoProcessStart),	139	23. detDeleteregistrykeyResponse ,
	typeof(GetDrives),	140	24: "GetCreateRegistryKeyResponse",
	typeof (GetDirectory),	141	27: "GetRegistryKeysResponse",
	typeof(DoMouseEvent)	142	29: "GetPasswordsResponse",
	typeof (DoKeyboardEvent).	143	31: "GetKeyloggerLogsResponse",
	typeof(GetSystemInfo),	144	32: "GetStartupItemsResponse",
	typeof(DoVisitWebsite),	145	33: "DoShellExecuteResponse".
	typeof (DoShowMessageBox),	146	34: "GetWebcamResponse"
35	typeof (DocifentOpdate),	147	25. "CathlabeameDeenance"
36	typeof (GetWebcams),	147	35: Getwebcamskesponse ,
	typeof(GetWebcam),	148	42: "GetMonitorsResponse",
38	typeof(DoShellExecute),	149	<pre>43: "GetSystemInfoResponse",</pre>
	typeof(DoPathKename),	150	<pre>44: "DoDownloadFileResponse",</pre>
	typeof (DoShutdownAction).	151	45: "GetDirectoryResponse",
	typeof (GetStartupItems).	152	47: "GetDrivesResponse",
	typeof(DoStartupItemAdd),	153	48: "GetProcessesResponse"
44	typeof(DoStartupItemRemove),	154	50. "GetDecktonPeeponse"
45	typeof (DoDownloadFileCancel),	134	50. Getbesktopkesponse ,
40	typeof (DollploadFile).	155	51: "SetUserStatus",
	typeof (GetPasswords),	156	53: "SetStatusFileManager",
	typeof (DoLoadRegistryKey),	157	54: "SetStatus",

Quasar Family

Table 2 is the list of Quasar Family derived from Quasar which JPCERT/CC confirmed.

Table 2: Quasar Family

Name	Category	Configuration	Communication protocol	Use in attacks in the wild
Golden Edition	Clone	Identical	Identical	Confirmed
XPCTRA	Clone	Custom	Identical	Confirmed
CinaRAT [2]	Clone	Identical	Identical	Confirmed

Name	Category	Configuration	Communication protocol	Use in attacks in the wild
Xtremis 2.0 [<u>3]</u>	Clone	Identical	Identical	Not confirmed
QuasarStrike [<u>4]</u>	Clone	Identical	Identical	Not confirmed
VenomRAT	Clone	Identical	Identical	Not confirmed
RSMaster [5]	Partially copied	Custom	Identical	Not confirmed
Void-RAT	Partially copied	Custom	Identical	Confirmed
AsyncRAT [<u>6]</u>	Partially copied	Custom	Identical	Confirmed

* "Clone" in the category refers to variants which uses the entire source code of Quasar with some functions added or modified. "Partially copied" refers to variants created as a new RAT using parts of the original source code.

Figure 8 shows the comparison of commands embedded in XPCTRA and Quasar.

12	namespace VERMELH0265M0NARCA.Core.Packets	6	namespace xClient.Core.Packets	
13	{	7		
1.4	public class PacketRegistery	8 public class PacketRegistery		
15	I	9 {		
1.5	<pre>ublic static Tuna[] GatDackatTunar()</pre>	10	<pre>public static Type[] GetPacketTypes()</pre>	
10	f	11		
17	l antina anti Time(76)	12	return new Type[]	
18	return new type[/6]	13		
1.9		14	<pre>typeof (Packets.ServerPackets.GetAuthentication),</pre>	
20	typeof (GetAuthentication),	15	<pre>typeof (Packets.ServerPackets.DoClientDisconnect),</pre>	
21	typeof (DoClientDisconnect),	16	<pre>typeof (Packets.ServerPackets.DoClientReconnect),</pre>	
22	<pre>typeof (DoClientReconnect),</pre>	17	<pre>typeof (Packets.ServerPackets.DoClientUninstall),</pre>	
23	<pre>typeof (DoClientUninstall),</pre>	18	<pre>typeof (Packets.ServerPackets.DoWebcamStop),</pre>	
24	typeof (DoWebcamStop),	19	<pre>typeof (Packets.ServerPackets.DoAskElevate),</pre>	
25	typeof (DoAskElevate),	20	<pre>typeof (Packets.ServerPackets.DoDownloadAndExecute),</pre>	
26	typeof (DoDownloadAndExecute),	21	<pre>typeof (Packets.ServerPackets.DoUploadAndExecute),</pre>	
27	typeof (DoUploadAndExecute),	22	<pre>typeof (Packets.ServerPackets.GetDesktop),</pre>	
28	typeof (GetDesktop),	23	<pre>typeof (Packets.ServerPackets.GetProcesses),</pre>	
29	typeof (GetProcesses),	24	<pre>typeof (Packets.ServerPackets.DoProcessKill),</pre>	
30	typeof (DoProcessKill),	25	<pre>typeof (Packets.ServerPackets.DoProcessStart),</pre>	
31	typeof (DoProcessStart),	26	<pre>typeof (Packets.ServerPackets.GetDrives),</pre>	
32	typeof (GetDrives).	27	<pre>typeof (Packets.ServerPackets.GetDirectory),</pre>	
33	typeof (GetDirectory).	28	<pre>typeof (Packets.ServerPackets.DoDownloadFile),</pre>	
3.4	typeof (DoDownloadFile).	29	<pre>typeof (Packets.ServerPackets.DoMouseEvent),</pre>	
35	typeof (DoMouseEvent).	30	<pre>typeof (Packets.ServerPackets.DoKeyboardEvent),</pre>	
3.6	typeof (Dokodycereney)	31	<pre>typeof (Packets.ServerPackets.GetSystemInfo),</pre>	
37	typeof (GotSystemTofo)	32	<pre>typeof (Packets.ServerPackets.DoVisitWebsite),</pre>	
30	typeof (decoystemano);	33	<pre>typeof (Packets.ServerPackets.DoShowMessageBox),</pre>	
30	typeof (DotherMassarePau)	34	<pre>typeof (Packets.ServerPackets.DoClientUpdate),</pre>	
39	typeor (Doshownessagebox),	35	<pre>typeof (Packets.ServerPackets.GetMonitors),</pre>	
40	typeor (Doclientupdate),	36	<pre>typeof (Packets.ServerPackets.GetWebcams),</pre>	
41	typeof (GetMonitors),	37	<pre>typeof (Packets.ServerPackets.GetWebcam),</pre>	
42	typeof (GetWebcams),	38	<pre>typeof (Packets.ServerPackets.DoShellExecute),</pre>	
43	typeof (GetWebcam),	39	<pre>typeof (Packets.ServerPackets.DoPathRename),</pre>	
44	typeof (DoShellExecute),	40	<pre>typeof (Packets.ServerPackets.DoPathDelete),</pre>	
45	typeof (DoPathRename),	41	<pre>typeof (Packets.ServerPackets.DoShutdownAction),</pre>	

Figure 8: Comparison of commands (Left: XPCTRA / Right: Quasar)

In the comparison above, it is clear that commands in XPCTRA are mostly identical to those in Quasar.

Figure 9 shows the comparison of the salt value in AsyncRAT and Quasar.

Figure 9: Comparison of salt value

(Above: AsyncRAT / Below: Quasar)

The salt value in AsyncRAT is identical to that in Quasar.

As Quasar Family applies some parts of the source code of Quasar, its configuration and communication protocol are also identical. In some cases, some functions are customised, and as a result, some new configuration and commands are added.

Attack campaigns using Quasar

Quasar has been used in many attack campaigns. Table 3 lists the differences of Quasar used by each attack group.

Table 3: Example of Quasar used by attack group

Attack group	Quasar version	Customisation	Obfuscation
APT33	1.3.0.0	No	ConfuserEx v1.0.0
Gorgon Group	-	No	
APT-C-09	2.0.0.0 RELEASE3	No	

Attack group	Quasar version	Customisation	Obfuscation
DustySky	1.1.0.0	No	
APT10	2.0.0.0(Custom Version)	Yes	ConfuserEx v1.0.0

The original Quasar with the default configuration value was used in most cases. Figure 10 shows an example configuration of Quasar used by APT 33.

[+] Detect malware by) [+] Process Name [+] Process ID [+] Malware name [+] Base Address(VAD) [+] Size	Yara rules. : a23c18.exe : 6660 : Quasar) : 0x1F80000 : 0x57000	Client Builder				_	×
Process: a23c18.exe (66 [Config Info] VERSION : HOSIS : KEY (Base64) : AUTHKEY (Base64) : SUBDIRECTORY : INSTALLNAME : MITEY : STARTIPKEY	660) : nywinnetwork.ddns.net:80; : k4EaOcde7hd7+Ytx2xhLHw== : R4WSDIGysgjiC0jFGVpFz3Y3gZ6n9yS5m5HqjtkK8; : SubDir : Client.exe : OSE MUTEY_Bjrwb11Logf7P0Fq0F Windows Session Manager	Basic Settings Connection Settings Installation Settings Surveillance Settings	Installation Location Install Client Install Directory: Install Subdirectory: Install Name: Set file attributes to hidden Installation Location Provine	SubDir Client	User Application D Program Files System	exe	
ENCRYPTIONNEY TAG LOGDIRECTORYNAME	: StodAcewoodbruitgUTAGD : Office04 : Logs		C:\Users\kanri\AppData\Roami Autostart Run Client when the compi Startup Name:	ng\SubDir\ iter starts Quasar C	(Client.exe lient Startup]	

Figure 10: Configuration of Quasar used by APT33

In most parts, the default values of the builder generating Quasar are used as is, except for STARTUPKEY. This way, attacker groups use the default values as per the original to avoid leaving any distinctive evidence.

In some cases, attackers customise Quasar. For example, APT 10 updated some features and used it in some attacks. The following sections will cover the details of this custom Quasar.

Configuration

Quasar used by APT 10 (hereafter "custom Quasar") has the following additional values in the configuration.

- DOWNLOAD_URL
- PROXY

Figure 11 shows the comparison of configuration in the custom Quasar and the original Quasar.

Figure 11: Comparison of configuration

(Left: custom Quasar / Right: original Quasar)

In "PROXY", a proxy server URL can be configured. This ensures that the custom Quasar is able to communicate with a C2 server even if the target's environment uses proxy servers. While the original Quasar uses CBC mode when encrypting configuration with AES, the custom Quasar uses CFB mode.

Figure 12: Comparison of AES code (Left: custom Quasar / Right: original Quasar)

Added/deleted commands

There are some changes to the commands in the custom Quasar. Figure 13 shows the comparison of commands in the custom Quasar and the original Quasar.

48 1	typeof(object),	50	typeof (GetPasswords).
	typeof (DoLoadRegistryKey),	51	typeof (Dol oadRegistryKey).
	typeof(DoCreateRegistryKey).	50	typeof (DeCreateRegist rul(av))
	typeof(DoDeleteRegistryKey),	52	typeof (DoDolotoRogistry/(ov))
	typeof (DoRenameRegistryKey).	50	typeor (DoDereteregistrykey),
	typeof (DoCreateRegistryValue).	54	typeot (Dorenamerkegist rykey),
	typeof(DoDeleteRegistryValue).	22	typeot (Doureatekegistryvalue),
	typeof (DoRenameRegistryValue).	56	typeof(UoDeleteRegistryValue),
	typeof (DoChangeRegistryValue).	57	typeot(DoRenameRegistryValue),
	typeof (SetAuthent icat ionSuccess).	58	typeot(DoChangeRegistryValue),
	typeof(GetConnections).	59	typeot (SetAuthenticationSuccess),
	typeof (DoCloseConnection).	60	typeof(GetConnections),
	typeof (GetAuthenticationResponse).	61	typeof(DoCloseConnection),
	typeof (SetStatus).	62	typeof(GetAuthenticationResponse),
	typeof(SetStatusFileManager).	63	typeof(SetStatus),
	typeof (object).	64	typeof(SetStatusFileManager),
	typeof (GetDesktopResponse).	65	typeof (SetUserStatus),
	typeof (GetProcessesResponse).	66	typeof(GetDesktopResponse),
	typeof(GetDrivesResponse).	67	typeof(GetProcessesResponse),
	typeof (GetDirectoryResponse).	68	typeof(GetDrivesResponse).
	typeof(DoDownloadFileResponse).	69	typeof(GetDirectoryResponse)
	typeof(GetSystemInfoResponse).	70	typeof (DoDown LoadFileResponse).
	typeof(GetMonitorsResponse).	71	typeof(GetSystemInfoResponse).
	typeof(object).	72	typeof (GetMonitorsResponse).
	typeof(object).	73	typeof (GetWebcamsResponse).
	typeof (DoShellExecuteResponse),	74	typeof (GetWebcamResponse)
	typeof(object).	75	typeof (DoShell EveryteResponse)
	typeof(object),	76	tuneof (GetStartun ItereRecoonce)
	typeof(object).	77	tupeof (GetKeyLorgerLogsResponse)
	typeof (GetRegistryKeysResponse),	70	tupoof (CotPoogue rdpPoopooo)
	typeof(GetCreateRegistryKeyResponse).	50	tupeof (CetPagiet p//augPagpagpag)
	typeof(GetDeleteRegistryKeyResponse),	60	tune of (Cot Croot o Pagi at m Vor Pagnange)
	typeof(GetRenameRegistryKeyResponse),	00	typeor (GetUreateresistrykeykesponse),
	typeof(GetCreateRegistryValueResponse),		typeor (GetDereteregistrykeykesponse),
	typeof(GetDeleteRegistryValueResponse),	86	typeor (GetRenamerkeg ist rykeykesponse),
	typeof(GetRenameRegistryValueResponse),	83	typeor (GetUreateregistryValueresponse),
	typeof(GetChangeRegistryValueResponse),	84	typeof (GetDeleteRegistryValueResponse),
	typeof(ReverseProxyConnect),	80	typeot (Getkenamekegistryvaluekesponse),
	typeof(ReverseProxyConnectResponse),	86	typeof (GetUhangeRegistryValueResponse),
	typeof(ReverseProxyData),	87	typeot (Reverse roxyConnect),
	typeof(ReverseProxyDisconnect),	88	typeot (KeverseProxyConnectResponse),
	typeof(GetConnectionsResponse)	89	typeof(ReverseProxyLata),
	typeof(DoPluginResponse),	90	typeof(ReverseProxyDisconnect),
	typeof(DoPlugin)	81	typeof (GetConnect i onsResponse)
	1;	86 1	

Figure 13: Comparison of commands

(Left: custom Quasar / Right: original Quasar)

In the custom Quasar, new commands DoPlugin and DoPluginResponse are added while some including keylogger are deleted.

With DoPlugin, new functions can be added by loading additional plugin modules. These new modules can be deleted with DoPluginResponse.

This change enables Quasar to dynamically extend its functions with commands while maintaining Quasar itself as simple as it can be. This suggests the attacker's intention to avoid detection by anti-virus software.

Error log creation

The custom Quasar has a function to create error logs. The file path of the error logs is hardcoded in itself.

Figure 14: Error log creation

Communication protocol

The encryption algorithms for communication with a C2 server also differs in the custom Quasar. While the original Quasar uses AES and QuickLZ, the custom Quasar also uses XOR encoding. Figure 15 shows the XOR encoding process added to the custom Quasar.

Figure 15: XOR encoding process

For AES encryption, the custom Quasar uses CFB mode instead of CBC mode, as seen in the configuration. The encryption methods are as follows:

- Original Quasar: QuickLZ + AES (mode CBC)
- Custom Quasar: QuickLZ + AES (mode CFB) + XOR

C2 server activities

JPCERT/CC investigated the activities of Quasar Family C2 servers based on the characteristics discussed above. As of November 2020, 76 IP addresses running as C2 servers have been identified. Figure 16 shows the distribution of Quasar Family C2 servers which were revealed in this investigation.

Figure 16: C2 server distribution

Multiple C2 servers are still running in different countries, which indicates its activeness.

In closing

Besides Quasar, other open source RATs are being used in ongoing attack cases [7]. Attackers are taking advantage of these tools to make attribution difficult and reduce the cost for developing attack infrastructure. It is estimated that this attack trends may continue. A tool to support Quasar analysis (compatible with Quasar v1.3 only) is available on <u>GitHub</u>. We hope you find it useful.

- Kota Kino, Shusei Tomonaga
- In cooperation with Tomoaki Tani (Translated by Yukako Uchida)

Reference

[1] GitHub: Quasar https://github.com/quasar/Quasar

[2] GitHub: CinaRAT https://github.com/wearelegal/CinaRAT

[3] GitHub: Xtremis 2.0 https://github.com/pavitra14/Xtremis-V2.0

[4] GitHub: QuasarStrike https://github.com/Q-Strike/QuasarStrike

[5] GitHub: RSMaster https://github.com/Netskyes/rsmaster

[6] GitHub: AsyncRAT https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp [7] Japan Security Analyst Conference 2020 (Opening Talk): Looking back on the incidents in 2019

https://jsac.jpcert.or.jp/archive/2020/pdf/JSAC2020_0_JPCERT_en.pdf

- ٠
- <u>Email</u>

Author

<u>喜野 孝太(Kota Kino)</u>

Kota Kino is Malware/Forensic Analyst at Incident Response Group, JPCERT/CC since August 2019.

Was this page helpful?

0 people found this content helpful.

If you wish to make comments or ask questions, please use this form.

This form is for comments and inquiries. For any questions regarding specific commercial products, please contact the vendor.

please change the setting of your browser to set JavaScript valid. Thank you!

Related articles

FAQ: Malware that Targets Mobile Devices and How to Protect Them

Malware WinDealer used by LuoYu Attack Group

Malware Gh0stTimes Used by BlackTech

<u>Back</u> <u>Top</u> <u>Next</u>

•