
1/12

See what it's like to have a partner in the fight.
redcanary.com/blog/threat-research-questions

In a recent blog post, we introduced you to AtomicTestHarnesses, one of the ways Red
Canary’s threat research team iteratively improves detection coverage. In this post, we will
highlight the philosophy and methodology that goes into understanding an attack technique,
defining its scope, and developing test harness code for the purpose of validating detection
pipelines. This process encourages analysts to ask more specific, mindful questions in
pursuit of their detection and prevention goals.

Attack technique research workflow in action

Long before implementing code, you should have a good sense of the scope of the
technique at hand, and that’s what this research process helps to uncover. Continuing the
thread from our last blog post, using MSHTA as our example, we’ll want to ask ourselves,
“from a detection perspective, how would we think about detecting suspicious usage of
MSHTA?” That being a very broad question, we need to scope the problem to avoid going
down too many research rabbit holes that may ultimately deviate from the technique at
hand.

So to start scoping, we ask ourselves the following question: what exactly, at a technical
level, do we define MSHTA to be?

Step 1: Define and scope the technique

https://redcanary.com/blog/threat-research-questions
https://redcanary.com/blog/introducing-atomictestharnesses/
https://github.com/redcanaryco/AtomicTestHarnesses
https://attack.mitre.org/techniques/T1218/005/

2/12

In order to define what MSHTA is, we start with what we implicitly know it to be and then ask
leading questions from there. The easiest way to start with what we know is to look to open
source intelligence and identify how attackers abuse MSHTA. For example, we know that
attackers execute malicious code with MSHTA using both mshta.exe —the supported,
built-in utility for doing so—and rundll32.exe , which appears (“appears” being an
intentionally speculative word requiring clarification) to be a non-standard method of
executing HTA content by calling the RunHTMLApplication function within mshtml.dll .

So is MSHTA defined by mshta.exe and rundll32.exe (and nothing else)? Well, not
quite, since rundll32.exe is a general purpose utility used to execute specifically crafted
DLL export functions. The rundll32.exe execution, however, can offer a hint as to the
core of what makes MSHTA… MSHTA. Some light reversing of mshta.exe reveals that
the executable is no more than a simple wrapper for the RunHTMLApplication function in
mshtml.dll :

The common component that invokes HTA functionality appears to be the
RunHTMLApplication function. After arriving to that conclusion, we now have the required

vocabulary to ask the following questions to help further refine our scope:

Can any other built-in utilities be used to invoke RunHTMLApplication
functionality?
What advantage, if any, would an attacker have in building their own tool to
interface with the RunHTMLApplication function?

Expand the scope beyond in-the-wild usage

https://thisissecurity.stormshield.com/2014/08/20/poweliks-command-line-confusion/
https://web.archive.org/web/20170907093135/https://support.microsoft.com/en-us/help/164787/info-windows-rundll-and-rundll32-interface

3/12

Can any other built-in utilities be used to invoke HTA functionality? The short answer is, no.
We performed a sweep of all binaries that might invoke the RunHTMLApplication function
and found no additional binaries that would yield direct execution of HTA script code. Does
that mean that no such binary exists? Of course not. But we were content with the level of
due diligence applied to answer the question at the time it was posed. And if anyone
discovered another signed HTA host binary that could be easily weaponized, we could very
quickly improve our coverage by incorporating that variant into our existing automation of
the technique. With threat research and detection engineering, as with any other discipline,
we must always remain mindful to not let perfect be the enemy of good. “Perfection”
comprises an infinite number of rabbit holes for which there is no fixed destination.

With threat research and detection engineering, we must always remain mindful to not
let perfect be the enemy of good. “Perfection” comprises an infinite number of rabbit
holes for which there is no fixed destination.

Finalize the initial scope

From an evasion perspective, we pondered what advantage an attacker would have in
building their own tool to interface with the RunHTMLApplication function. As trivial as it
would be for an attacker to implement their own code to invoke malicious HTA content, we
were unclear on what it would buy them if they already have the means to execute arbitrary
code. In other words, what additional evasion opportunities would it buy an
adversary? We couldn’t come up with a compelling evasion justification.

Now, because we arrived at this conclusion, does that mean that we should not care about
attackers directly interfacing with the RunHTMLApplication function? Absolutely not. In
fact, were an attacker to do such a thing, we might be able to detect such behavior as an
anomaly. Ultimately though, as Jeffrey Snover eloquently puts it, “to ship is to choose.”

To decide on what HTA functionality to automate, we needed to define the scope of what
would be implemented. After considering our questions and subsequent investigations, we
decided to focus automation of HTA script code around only mshta.exe and
rundll32.exe . We are confident in this decision; it buys us a ton of coverage, and we can

easily extend our automation to support new variations should they become operationally
viable.

Step 2: Identify technique variations

With the scope defined, now what? This is where the fun begins! Now that we’ve narrowed
our scope down to automating HTA script execution via mshta.exe and rundll32.exe ,
we can now ask more targeted questions. Specifically, what inputs does an attacker have
control over to influence execution and potentially evade naive detections? This

https://twitter.com/jsnover

4/12

question often involves more in-depth research, and in the interest of time, we won’t delve
into the technical specifics. Through the course of our efforts, we honed in on the following
attributes that an attacker had direct control over:

1. The HTA filename can be any name and any file extension that isn’t associated with
the “text/plain” MIME type (e.g., an extension of .txt will result in displaying but not
executing HTA script content).

2. A URI can be specified from where HTA content is first downloaded. It turns out that a
URI in Windows terminology is an instance of a protocol handler, a piece of code that
is responsible for parsing and interpreting strings that begin with the following format:
“handler_name:” (e.g., “https:”, “javascript:”, “about:”, etc.)

3. Different script engines can be supplied in HTA content. We needed to determine
what script engines were available and which ones facilitated the execution of
arbitrary code. This script engine dictates a specific DLL image load that would occur
(e.g., vbscript.dll , jscript9.dll , jscript.dll , etc.).

4. Protocol handlers (e.g., “vbscript”, “javascript”, “about”) can be specified to influence
how inline HTA content can be executed, i.e., without needing to drop HTA content to
disk. We needed to enumerate the available protocol handlers and then identify which
ones led to direct code execution.

5. HTA content can be embedded and executed from within other file formats. Learning
of this is also what led to our discovery of CVE-2020-1599.

6. HTA content can be executed remotely via UNC paths.
7. HTA exposes a COM interface that is remotely accessible, making HTA execution a

viable option for lateral movement.
8. .hta files have a default file handler, meaning that they can be executed by double

clicking on them or invoking them with “explorer.exe foo.hta”.
9. An attacker has full control over the path and filename of mshta.exe and

rundll32.exe .

Every single one of the variations in which an attacker realistically has control over inputs to
influence HTA script execution with mshta.exe and rundll32.exe ought to be
automated in a way that is sufficiently abstracted to allow non-subject matter experts control
over those points of influence. And this is exactly what we implemented in the HTA test
harness in AtomicTestHarnesses, Invoke-ATHHTMLApplication .

https://tools.ietf.org/html/rfc1521#section-7.1.2
https://docs.microsoft.com/en-us/windows/win32/search/-search-3x-wds-extidx-prot-implementing
http://blog.sevagas.com/?Hacking-around-HTA-files
https://twitter.com/mattifestation/status/1326228491302563846
https://codewhitesec.blogspot.com/2018/07/lethalhta.html

5/12

Taking stock in what aspects of a technique an attacker has control over, you may get a
better sense of two things:

1. Potentially naive detection logic that an attacker could easily evade
2. The variables that an attacker has less or no control over

In an ideal scenario, the most robust detection logic accounts for everything an attacker has
little or no control over. Without performing this level of due diligence with technique
research, it can be very difficult to comprehend or quantify how a robust detection would
take shape. A robust detection has an arbitrarily longer shelf life than one that does not take
attacker-controlled inputs into account.

The most robust detection logic accounts for everything an attacker has little or no
control over.

6/12

Step 3: Identify technique “choke points”

Now that we have a clearer sense of the set of inputs an attacker has to make use of an
attack technique, let’s talk about outputs. What is the set of outputs that a technique
might generate that we can potentially use to build detections from? This is another
one of those questions that is overly broad and requires a little bit of deliberate scoping. A
more specific question that we might consider first is, what conditions must be satisfied
in order to successfully make use of an attack technique? In the case of MSHTA, within
our established scope of mshta.exe and rundll32.exe , the following conditions must
be met:

1. mshta.exe or rundll32.exe must execute.
2. Command-line arguments are supplied to mshta.exe or rundll32.exe .
3. mshtml.dll must load as a first step in order to execute script content.
4. One of the DLLs associated with script execution will load depending upon the script

engine specified in the HTA. This will be either vbscript.dll or jscript.dll
based on our investigation.

Having a clearer sense of the components required enables us to more narrowly focus
potential detection logic and to have a better idea of what, if any, options are available to
prevent this technique from being abused. After all, if any link of this chain can be severed,
the technique fails. We refer to these “minimum viable” components as attack technique
“choke points.”

From a detection perspective, now that we know the necessary components, we can start
to identify some potential data needs:

1. We’ll need process creation optics that ideally include optics related to the aspects of
the technique that an attacker has control over, which include—but are not limited to—
the following:

Executable filename: So that we can identify when mshta.exe or
rundll32.exe run and whether or not the adversary attempts to rename the

file.
Executable path: So that we can identify if mshta.exe or rundll32.exe are
executing from an expected directory or copied to a location in an attempt to
evade naive detection logic.
Process command line: Because we scoped our research to mshta.exe and
rundll32.exe execution, command-line optics are crucial since an attacker

must supply their malicious HTA script code via the command line. Are there
methods of evading command-line logging? Yes, but that is a separate attack
technique that would warrant its own dedicated research and detection initiative.
Remember that we must not fall into too many rabbit holes.

7/12

2. It could be useful to have insight into processes that load mshtml.dll . While the
loading of mshtml.dll is implied in our current scope of mshta.exe and
rundll32.exe (in the case of RunHTMLApplication being executed), this insight

would facilitate future threat hunting. For example, how do we know that attackers will
only ever use or abuse mshta.exe or rundll32.exe ?

3. Having insight into processes that load related scripting engine components could be
useful down the line, but currently would only be used to differentiate VBScript versus
JScript execution. However, knowing that these DLLs load does point to the ability of
WSH script components to log script content via the AMSI interface.

From a prevention perspective, we have an initial idea of what components could possibly
be blocked. For example, would it be possible to block the execution of mshta.exe or
rundll32.exe within a specific organization? Aside from outright blocking executables

though, we must consider other preventative mechanisms. Through reverse engineering the
RunHTMLApplication function in mshtml.dll (again, the core component required to

invoke HTA functionality), we discovered that if Windows Defender Application Control
(WDAC) is in enforcement mode, HTA execution is outright banned. This means that even if
an attacker discovered another executable that invoked HTA functionality, or if they
interfaced with the RunHTMLApplication itself, by default, HTA execution would be
blocked. That, in our book, is a very robust mitigation.

Conclusion

In summary, this research methodology offers the following outcomes:

The research process focuses as much on the constant refinement of scope as it
does gaining further understanding of the technique at hand.
Enumeration of attack technique variations serves to offer clear insight into the
aspects of a technique that an attacker has direct control over and, conversely, what
they have little-to-no control over. In an ideal scenario, a detection engineer has the
opportunity to build the most robust detection (i.e., resilient against evasion) using
logic that depends as little as possible on aspects of a technique that an attacker has
control over.
Tactical identification of attack technique “choke points” determines the minimum set
of technical components required where, if any one of those links in the chain breaks,
weaponization of the technique fails.
Knowledge of attack technique choke points further refines the scope of research,
which further refines scope for detection and prevention.

While we used MSHTA as an illustrative example, this research process can be applied
equally to any attack technique. Effective research is built on a foundation of asking
specific, deliberate questions in an attempt to reduce a broad objective (e.g., “can we detect
technique X?”) into something more achievable, measurable, and resilient against evasion.

https://posts.specterops.io/antimalware-scan-interface-detection-optics-analysis-methodology-858c37c38383
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://twitter.com/mattifestation/status/1106650783028838401

8/12

Appendix

Here is a sampling of the ad-hoc scripts we wrote during our research process to answer
some of the questions that arose. Please excuse the lack of cleanliness, as these were
designed as one-time use scripts to answer very specific questions.

Identifying built-in utilities that incorporate HTA functionality

The following code was used to identify any other built-in application beyond mshta.exe
that calls RunHTMLApplication :

Get-CimInstance -ClassName CIM_DataFile -Filter 'Drive = "C:" AND (Extension = "dll"
OR Extension = "exe")' -Property 'Name' | % { Get-Item $_.Name |Select-String -
Pattern 'RunHTMLApplication' -Encoding ascii }

The above one-liner found no other built-in utilities that make native use of the
RunHTMLApplication function outside of mshta.exe and rundll32.exe . Had this

yielded any candidate executables, a manual review process would have been required to
assess feasibility of its use to execute attacker-supplied HTA script code.

Identifying available WSH script engines

While running a procmon trace, we observed that the presence of an “OLEScript” subkey
within the HKEY_CLASSES_ROOT registry hive is an indication that the WSH scripting
engine is being used. It’s known that you can specify VBScript and JScript as the scripting
language in HTA, but it was unclear if any other scripting engines were supported. We wrote
the following PowerShell function to enumerate other possible WSH scripting engines:

9/12

function Get-OLEScriptingEngine {
 Get-ChildItem -Path 'Registry::HKEY_CLASSES_ROOT\' | % {
 $Key = $_ | Get-Item

 $HasOLEScript = $Key.GetSubKeyNames() | ? { $_ -contains 'OLEScript' }

 if ($HasOLEScript) {
 # Pull the CLSID of the corresponding script engine
 $CLSID = Get-ItemPropertyValue -Path "Registry::$($Key.Name)\CLSID" -
Name '(Default)'

 $EnginePath = Get-ItemPropertyValue -Path
"Registry::HKEY_CLASSES_ROOT\CLSID\$CLSID\InprocServer32" -Name '(Default)'

 [PSCustomObject] @{
 EngineName = $Key.PSChildName
 CLSID = $CLSID
 EnginePath = $EnginePath
 }
 }
 }
}

The PowerShell function yielded the following results:

10/12

EngineName CLSID EnginePath
---------- ----- ----------
ECMAScript {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
ECMAScript Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.1 {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.1 Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.2 {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.2 Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.3 {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JavaScript1.3 Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JScript {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JScript Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JScript.Compact {cc5bbec3-db4a-4bed-828d-08d78ee3e1ed}
C:\Windows\System32\jscript.dll
JScript.Compact Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
JScript.Encode {f414c262-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
LiveScript {f414c260-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
LiveScript Author {f414c261-6ac0-11cf-b6d1-00aa00bbbb58}
C:\Windows\System32\jscript.dll
VBS {B54F3741-5B07-11cf-A4B0-00AA004A55E8}
C:\Windows\System32\vbscript.dll
VBS Author {B54F3742-5B07-11cf-A4B0-00AA004A55E8}
C:\Windows\System32\vbscript.dll
VBScript {B54F3741-5B07-11cf-A4B0-00AA004A55E8}
C:\Windows\System32\vbscript.dll
VBScript Author {B54F3742-5B07-11cf-A4B0-00AA004A55E8}
C:\Windows\System32\vbscript.dll
VBScript.Encode {B54F3743-5B07-11cf-A4B0-00AA004A55E8}
C:\Windows\System32\vbscript.dll
VBScript.RegExp {3F4DACA4-160D-11D2-A8E9-00104B365C9F}
C:\Windows\System32\vbscript.dll
XML {989D1DC0-B162-11D1-B6EC-D27DDCF9A923}
C:\Windows\System32\msxml3.dll

11/12

Not all of these scripting engines support the full functionality that VBScript and JScript
would, so we didn’t prioritize testing them (e.g., XML, VBScript.RegExp). The primary
takeaway here is that while script code can be reflected in different ways based on the
script engine, detection artifacts will remain the same (i.e., same DLL loads and same
structure to the HTA document). Selection of the scripting engine will affect, however,
malicious script analysis. For example, a decoder would be required to interpret
JScript.Encode and VBScript.Encode content.

HTTP[S] hosting of HTA content

It took us a while to realize that HTA content could not be hosted on GitHub and
downloaded/executed by mshta.exe because GitHub uses a “text/plain” MIME type and
HTA content will only display and not execute in that case. To address this, we hosted
sample HTA content from a static site where we had control over the MIME type and
discovered that not only did specifying a MIME type of application/HTA cause the HTA
content to execute, but any MIME type that’s not text/plain appears to cause the content to
execute. This finding is relatively significant because it reveals that one actor was hosting
HTA content appended to a .crl file and the MIME type used was “application/x-x509-ca-
cert”, which blends in quite well over the network. This finding also helped confirm that any
file extension containing HTA content can be downloaded and executed.

The following code was used to enumerate built-in MIME types and their corresponding file
associations:

Get-ChildItem -Path 'Registry::HKEY_CLASSES_ROOT' | Where-Object {
$_.GetValueNames() -contains 'Content Type' } | ForEach-Object { [PSCustomObject] @{
Extension = $_.PSChildName; ContentType = (Get-ItemPropertyValue -Path
"Registry::HKEY_CLASSES_ROOT\$($_.PSChildName)" -Name 'Content Type') } } | Sort-
Object -Property ContentType

This code didn’t produce any significant findings but it satiated a curiosity around what
MIME types are associated with an array of file extensions in Windows by default.

References

The following resources were indispensable to our understanding of HTA tradecraft and
helped reduce the amount of time required to fully contextualize the technique:

Related Articles

Detection and response

12/12

ChromeLoader: a pushy malvertiser

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

Subscribe to our blog

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.

 X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

https://redcanary.com/privacy-policy

