Rana Android Malware

blog.reversinglabs.com/blog/rana-android-malware

Blog Author
Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

1/15

https://blog.reversinglabs.com/blog/rana-android-malware
https://blog.reversinglabs.com/blog/tag/threat-research
https://blog.reversinglabs.com/blog/author/karlo-zanki

Introduction

On September 17th, the U.S. Department of the Treasury’s Office of Foreign Assets Control
imposed sanctions on Iranian cyber threat group APT39, also known as Chafer, Cadelspy,
Remexi, and ITGO7. On the same day, the FBI released a public threat analysis report
describing several tools used by Rana Corp, a front company backed by the Iranian Ministry
of Intelligence and Security (MOIS) which is behind the malicious cyber activities conducted
by the APT39 group.

The tools described in the aforementioned report are implemented using different
technologies including VisualBasic and Autoit scripts, Android applications and the more
common PE executables. According to the report, the focus of Rana’s cyber activities is
tracking the movements of individuals whom the MOIS considers a threat. In today’s world,
the most valuable source of such information are smartphones. You carry a smartphone
almost the entire time, and, besides being the main tool for everyday communication,
smartphones also provide a large set of secondary functionalities, including visual and audio
recording and location services. Because of all these capabilities, gaining control over
someone’s smartphone provides the malicious actor with a powerful espionage tool. For
these reasons, we decided to take a better look at the information and I0Cs provided in the
referenced report to see if there is anything more to be found about this Android malware.

Related samples

2/15

https://home.treasury.gov/news/press-releases/sm1127
https://www.ic3.gov/Media/News/2020/200917-2.pdf

The report provided one sample hash of the malware APK file, and a YARA rule which can
be used to search for additional samples. The first encountered problem was that the
provided YARA rule wasn'’t triggered on the provided APK sample. It was triggered only on
the .dex file contained inside the APK. This means that the APK sample can pass
undetected if its contents are not extracted.

So, we had to take a different approach to find additional samples. Luckily, the Titanium
Platform provides multiple ways to search for related samples based on metadata extracted
from Android applications. The provided sample was signed with a self-signed certificate.
Since searching for samples signed with the same certificate (based on the certificate

thumbprint) didn’t give any results, a more generic search query was required.
T 0c23f62ba98ebfa2c062c485e...

I Preview Sample
Size:185.6KB
Type: Binary / Archive
Format: Android:Generic
Threat: @ Android. Trojan.Dingwe
First seen (cloud): 2020-09-17 22.06 UTC &
Last seen (local): 2020-10-16 09:13 UTC

Certificate Trust Chain ~

N & Company Name

M £ S|CNER: Company Name

User uploads: 1)
Serial Mumber 763FAAG2
n Summary Subject Country Name Country Code
° State Orprovince...5tate
O TitaniumCore Locality Name Location
v Info Organization Na... Organisation
« File Organizational U... Organisational Unit
« Hashes Common Name Company Name
« Package
« Validation Issuer Country Name Country Code
» Statistics State Orprovince...State
sy o 2
v Application (Android) Locality Name Location
« Capabilities :
P Organization Na... Organisation
« Package . .
% Organizational U... Organisational Unit
« Activities E e
« Services Common Name Company Name
« Receivers
o Expired No
» Permissions ‘
Valid 2018-12-23 23:47 UTC to 2073-09-25 23:47 UTC
« Features
~ Certificates wersion G
« Signer information Thumbprint Algorithm sha256
v Classification Value 531F740 (519 Abd1 BS60 Fed Ffe239 E3
* Scanners Dc235 (9941 DO D121126557 B3 (d8543
» Tags B0 DO

Certificate details

Looking at the certificate details reveals that malicious actors didn’t even try to make the
certificate look the least bit legitimate. They decided to leave all the default values for the

fields describing the certificate receiver. These certificate fields look specific enough and can
be used to detect related samples. We used a modified search query to find all Android APK

files signed with a certificate issued to an organizational unit “Organisational Unit” in a

company with the country “Country Code”.

3/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-1.jpg

format:Binary/Archive/Android AND cert-subject-country:"Country Code” AND cert-subject-unit:"Organisational Unit" @T < ¥ Help E

Local (2) - | iz Export
FirstSeen v Threat Name Format Files Size
& @ 4yearsago Android. Trojan.Dingwe c2694dae46fd2846368731d92e810132c2c9a2f9 Binary/Archive/A... 1 12178 =
& @ dysarsago Android. Trojan.Boogr c552f74bf2321142807fabl41a72db9073a ag722 Binary/Archive/A... 1 1216KB =
& @ 4yearsago Android. Trojan.Dingwe 28fag354bebceS03ee7c1f76515a26cdd98d7b801 Binary/Archive/A 1 1815kB =

1 Sresults

Search based on certificate data

This resulted in three new samples. Analyzing these samples with the Titanium Platform
showed that all of them had the same “com.android.providers.optimizer” package name
as the sample provided in the report. We can assume that these are samples of the same
malware. Comparing the time when the samples were first seen in the ReversinglLabs cloud
with the time of validation of the certificates used for signing the APK binaries can give us a

clue about the evolution of the malware.

Sample SHA1

Cert valid from

First seen

28fa9354bebce503ee7c1f7615a26cdd99d7b801

2016-01-04 13:14

2016-06-21 16:39

€2694dae46fd2846368731d92e810f32c2c9a2f9

2016-06-01 00:11

2016-11-19 05:59

c552f74bf23211428b7fab141a72db9073a98729

2016-06-26 11:09

2016-10-15 20:57

0c23f62ba98ebfa2c062c485e5704f193909e421

2018-12-23 23:47

2020-09-17 22:06

Time relations between malware samples

Reversing the sample

The found samples are obviously older versions of malware, which were analyzed and
compared to the version described in the report. A brief static analysis shows that the older
samples require a more extensive list of permissions, and that they don’t include the
libOptimizer.so file which is, as described in the report, responsible for the generation of the
AES key. Older versions also don'’t include the tmp.tmp resource referenced by the

mentioned libOptimizer.so file.

4/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-2.jpg

Permissions

android.permission. ACCESS_COARSE_LOCATION
android.permission.ACCESS_FINE_LOCATION
android.permission. ACCESS_NETWORK_STATE
android.permission.CAMERA
android.permission.INTERNET
android.permission.READ_CALENDAR
android.permission.READ_CONTACTS
android.permission.READ_EXTERNAL_STORAGE
android.permission.READ_PHONE_STATE
android.permission.READ_SMS
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.RECORD_AUDIO

Permissions

android.permission ACCESS_COARSE_LOCATION
android.permission. ACCESS_FINE_LOCATION
android.permission. ACCESS_NETWORK_STATE
android.permission. ACCESS_WIFI_STATE
android.permission.BLUETOOTH
android.permission.BLUETOOTH_ADMIN
android.permission.CALL_PHONE
android.permission.CAMERA
android.permission.CHANGE_NETWORK_STATE
android.permission.CHANGE_WIFI_STATE
android.permission.GET_TASKS
android.permission.INTERNET
android.permission.MODIFY_AUDIO_SETTINGS
android.permission.PROCESS_OUTCOING_CALLS
android.permission.READ_CALENDAR
android.permission.READ_CONTACTS
android.permission.READ_EXTERNAL_STORAGE
android.permission.READ_LOGS
android.permission.READ_PHONE_STATE
android.permission.READ_SMS
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.RECEIVE_SMS
android.permission.RECORD_AUDIO
android.permission.SEND_SMS
android.permission. WAKE_LOCK
android.permission.WRITE_CALENDAR
android.permission.WRITE_CONTACTS
android.permission. WRITE_EXTERNAL_STORAGE
android.permission.WRITE_SETTINGS
android.permission.WRITE_SMS
com.android.browser.permission.READ_HISTORY_BOOKMARKS

Permissions requested by the newer and the older version

For a better understanding of the malware’s capabilities, the Dalvik bytecode inside
classes.dex file was converted to a corresponding .jar file with the open-source tool Dex2jar.

The contents of the .jar file were then decompiled to original Java source code with the Java

Decompiler. As mentioned in the report where the same procedure was performed, the

decompiled output included around 200 classes and almost 600 methods, all with obfuscated

names. This obfuscation is performed at the moment when APK files are generated, and is

most often done using tools like ProGuard.

When analyzing such a big number of generically named methods (method a, b, c...) some
interesting functionality can often remain undetected. Finding an older malware sample that

didn’t use obfuscation would make the analysis much easier. For some lucky reason, sample

28fa9354bebceb03ee7c1f7615a26cdd99d7b801 was not obfuscated. This made the

5/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-3.jpg
http://java-decompiler.github.io/

analysis much simpler. The Java source code contained all the original class and method

» £ providers.optimizer

» & commons

s Configuration.class
u CryptoManager.class
s FileManager.class
T Helper.class
% Order.class
fab Status.class
iy XMLTools.class
s ZipUnzipTools.class
35 5 ActivityCheckerThread.class
4 ActivitySaverThread.class
¥ i AlarmsManager.class
4 AutoAnswerlntentService.class
4 AutoAnswerReceiver.class
b Bluetooth.class
2 BluetoothReceiver.class
b BootReceiver.class
» & BootService.class
» % BuildConfig.class
(28 Y CalendarManager.class
» fn CallLogUtility.class
» % CallManager.class
» % CameraManager.class
» s CameraView.class
»
»
| 4
P
»
b
»
| 4
4
>
b
»
| 4

L

9 EYEYEYEYEY EY

yE

names.

s CellLocationCountDownTimer.class
% ClipboardMonitorService.class

fu» ClipboardMonitorServicePrell.class
& Commonsinterface.class

fus Connectivity.class

u» ContactManager.class

& CountDownTimer.class

% DateTimeReceiver.class

fu» DirManager.class

fus GpsLocationListener.class

fs GpsManager.class

b GsmLocationListener.class

fu» GsmManager.class

Unobfuscated class files

Comparing source code of the obfuscated and unobfuscated samples shows that the
codebase is very similar. Most of the functionalities are identical, and can be easily
understood when looking at unobfuscated code. Probably the best example are the
obfuscated SMS command codes.

6/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-4.jpg

public static String b = “-saau”: static {

public static String ¢ = "-gurls"; GetSmsPhoneNumbers = “-gspns”;
public static String d = "-surls"; SetSmsF_‘honeNumbers -t -SSan";

S . : GetDeviceInformation = "-gdvcinf”;

UDLIC STatlc ring e = " -gspns ; " "
d ; e SetAutoAnswer = "-satawr”;
PRLEEARTRELE Atiing T aspe GetAutoAnswerPhoneNumbers = "-gatawrpns”:
public static String g = "-gdvcinf"; SetAutoAnswerPhoneNumbers = "-satawrpns”;
public static String h = “-satawr"; SetMonltorText(:‘lmhoa rd = "-smtrixch”;

.. 8. : GetContacts = "-gcntcs”;

public static String i = "-gatawrpns";: GetCalls = "-gclls":
public static String j = "-satawrpns”: GetSMSs = " -gSIT'ISS":
public static String k = "-smtrixch”; M =" -gclrevs":

GetBroswerHistory = “-gbwrhty";

bli tatic Stri 1 = "-gentes™; - : " : "
AR s GetInstalledApplications = “-gildaps";
public static String m = "-gclls”; SetBluetooth = "-sblth":
public static String n = "-gsmss"; SetProfile = "“-sprfle”;
public static String o = "-gclrevs”: —SEtwlF1_= -S‘fflfl ; 4
UploadFile = "-updfle”;
public static String p = "-gbwrhty”:

GetDir = "-gdirtry";
"-gildaps"; GetStorageSize = "-gstgsze";

public static String

=]
|

public static String r = “-sblth"; GetGSMLoction = "-ggsmlcn”;
SetGSMLoction = "-sgsmlcn”;

ublic static String s = "-sprfle”; P e g . i

’ ’ SetGSMTracking = "-sgsmtkg";

public static String t = "-swifi”; SetGPSTracking = U —sgpstkg";

public static String u = "-updfle”: UploadCameraTakenPhotos = "-gcmaper”;

public static String v = "-gdirtry”; —"—-———-—-—"_——-GEtcurrentUrderFlle = -'gCtOd'H.E";
TakeCameraPhoto = "-tkephto”:

public static String w = "-gstgsze”; AudioRecord = "-adorcd":

public static String x = "-ggsmlcn”; WifiAddworkRemove = "-wifiawr";

public static String y = "-sgsmlcn®; }

Comparison of obfuscated and unobfuscated commands

Besides the commands visible in the list, there are a few more quite interesting commands
that support the hypothesis that this malware is used for government surveillance purposes,
and these were not explicitly mentioned in the report. The first one is the ability to take
camera photos at login success or failure. This can obviously be used to visually identify any
person who tries to use the mobile device. Another typical surveillance feature is highly
configurable audio recording. Recording can be scheduled periodically, or at specific
moments, with a configurable recording duration. The malware also enables scheduling a
device boot at some specific moment, ensuring malware activation even when someone
turns off the phone.

Besides these commands which are common for Android malware, there are a few not so
common ones. The first one is the ability to add a custom WiFi access point and to force the
device to connect to it. This feature was probably introduced to avoid possible detection due

7/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-5.jpg

to unusual data traffic usage on the target's mobile account. The second one is the ability to
automatically answer calls from specific phone numbers. Such a feature can also be used for
audio tapping, and is probably used when tapping needs to be started urgently and couldn’t
be previously scheduled.

The malware supports receiving commands sent by SMS. In that case, the malware
intercepts the received SMS and, if it starts with a predefined command header, the malware
aborts further propagation of the SMS_RECEIVED Intent. This prevents the received SMS
from ending up in the default SMS application. The predefined command header is usually
set to "opt -cmd", but is configurable and can be set to different values.

public class SmsListener extends BroadcastReceiver {
public void onReceive(Context paramContext, Intent paramIntent) {
try {
if (paramIntent.getAction().equals("android.provider.Telephony.SMS_RECEIVED")) {
Bundle bundle = paramIntent.getExtras();
if (bundle != null) {
Object[] array0fObject = (Object[])bundle.get("pdus”);
SmsMessage[] arrayOfSmsMessage = new SmsMessage[array0fObject.length]:
byte b = 0;
while (true) {
if (b < arrayOfSmsMessage.length) {
array0fSmsMessage[b] = SmsMessage.createFromPdu((byte[])array0fobject[bl);
String str = arrayOfSmsMessage[b] .getMessageBody!() ;
if (str.index0f(Confiquration.Consts.SMS_CMD HEADER) == 6) {
abortBroadcast();

Order.updateOrderBySmsLocked(str);

}
b++;
continue:

}
return;
}
}
}

} catch (Exception exception) {}
}
}

Receiving commands using SMS messages

There is one interesting functionality that isn’t present in the older versions, but is in the
latest, and hasn’t been explicitly mentioned in the FBI report. The latest version uses
accessibility services to get contents of instant messaging applications.

|| paramAccessibilityEvent.getSource().getPackageName().toString().equals{"org.1ir.talae1i")

Code related to monitoring IM applications

8/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-6.jpg
https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-14.jpg

Looking at the monitored IM applications additionally proves that this malware is probably
used for the surveillance of Iranian citizens. One of the monitored IM applications is a
package named “org.ir.talaeii”, which is described as “an unofficial Telegram client
developed in Iran”. The full list of monitored IM applications can be found in the following
table:

com.instagram.android

com.skype.raider

org.telegram.messenger

org.ir.talaeii

com.viber.voip

com.whatsapp

com.imo.android.imoim

List of monitored IM applications

Generally, most of the settings are configurable. The initial configuration is provided in the
cgn.cn resource. Resource contents are encrypted with the AES algorithm. Unlike the latest
version which uses the libOptimizer.so file to generate the AES key, older versions use a
hardcoded key provided inside the binary. It is constructed in the same way as described in
the report. The 96-byte base64 string “U3wzfSpoSkBrlys7...” is decoded to a 72-byte key
"S|3}*hJ@k#+;!b-F...", and only the first 16-bytes of the decoded 72-byte key are then used
for AES decryption.

When analyzing Android binaries, it is always good to take a detailed look at the resources
contained in the “res/raw/” folder. This is usually the place for application-specific binaries,
and malware authors sometimes use it for the same purpose. Unlike the newer version, the
older ones have only three raw resources and don’t contain the tmp.tmp resource. The att.cn
resource usually contains the plaintext “Test” string. The previously mentioned cgn.cn file
contains the AES encrypted configuration that includes configuration settings for malware
functionalities, C2 domains, and another AES encryption key that is used to decrypt the last
raw resource odr.od. This resource contains preconfigured commands that are to be

9/15

scheduled for execution by the malware.

28fa9354bebre503ee7c1f7615a26cdd99d... 7 ... / raw /
O Allthreats b4 Export AV
Threat File Name Format Files Size
® - att.cn Text/None 1 4 Bytes =
® - cng.cn Binary/MNone 1 25KB =
o - odr.od Binary/None 1 608Bytes =
1 1-3of 3items

Resources contained in the “res/raw/” folder

Threat actors

Each malware sample contained a list of C2 domains embedded in their configuration file.
Historical domain registration data was searched for each of the extracted domains.

Sample SHAI (2 domains Domainvalid from | Cert valid from
28fa9354bebce503ee7c1(7 wherisdomaintv.com 2014-12-25 2016-01-04
615a26cdd99d7b801 whoisdomainpc.com 2014-12-25 13:14
c2694dae46fd2846368731d fullplayersoftware.com 2016-06-01 2016-06-01
92e810f32c2c9a2f9 softwareplayertop.com 2016-06-01 00:11
c552f74bf23211428b7fab1 . . 2016-06-26
41a72db9073298729 whoisdomainpc.com 2014-12-25 11:09
0c23f62ba98ebfa2c062c48 . 2018-12-23
5e5704f193909421 saveingone.com 2018-12-24 23:47

Resources contained in the “res/raw/” folder

Comparing the domain registration dates with the certificate validation dates extracted from
the malicious samples shows that, in some cases, the domains were registered at the time
when the samples were signed (created). In other cases, the domain was registered about a
year before the samples were signed. This suggests that the earlier versions of this malware
reused the domains, and that it was active since the end of 2014. This further suggests that
older, and currently undetected, versions of this malware probably exist as well.

Looking at the domain registrant data for the extracted domains reveals more connections to
Iran. DomainBigData service was used to search WHOIS records for the
“‘whoisdomainpc.com” domain. The records show that this domain was registered by an

10/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-7.jpg
https://domainbigdata.com/

Iranian resident named [redacted.1] using the email address [redacted.1]domain@chmail.ir.

"D Recorded ; 2014-12-26

& Historic Registrant

Marme _ Is asseoared with 8 domains

Ernail o mainEchrmal.is iz assaciated with 7 domaing
Address tehram

City tehiran

State teliran

Country = Iran fislamic Republic O

Phone +53.2 1251

Privale 03

Ei Historlc Whols Record

Domain Name: wholsdomalnpc.oom

Registry Comain D 1892253605 DO MAIN_COM-VREN
Registrar WHOIS Server; whoisrealtimeregister.com
Flelqi:'.lrar LIRL: ht!p'.u"frnw.rmlti|1:-¢rEgi'.I!r.'r.r.|:-|11
Updated Date: 2004-12-25TORI04ET

Craated Date! 2014.12.25T07 1 81102

Registrar Registration Expiration Date: 201%12-25T07:18:102
Registrar: REALTIME REGISTER B.V.

Registrar LANA, ID: 835

Registrar Abuse Cantact Email: abusefat]reallimeregister.com
Registrar Abuse Contact Phone: +31, 384530759
Reseller: Hosteamtral

Damaln Status: ok

Domalin Status: rencwPeriod

Registry Reglstrant 1D:

Registrant Namc'-

Hcgi:,l.r;lrll I}rg.mi.:'...!l.il::::

Registrant Street: tehran

Hegictrant City: tefiran

Registrant StatesProvinge: tehran

Registrant Postal Code: 1585347811

qugisrr.anf Enunl:r!,r: IR

R{'giatr;lnt Phone; +58.2 I$1

WHOIS data for whoisdomainpc.com

The same person is associated with 7 more domains, including some of the already found
ones. Domains “facedomainpc.com” and “facedomaintv.com” are interesting since they
follow the same naming convention ending in *pc.com and *tv.com, and were also registered
on the same date as the domains used in the found malware samples. It is quite possible
that all of these domains were used, or were meant to be used, in some kind of a malicious

activity.

11/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-8.jpg

Domain Name Creation Date Registrar

facedomainpc.com 2014-12-35 joker.com
facedomainty.com 2014-12-25 joker.com
wherisdomaintv.com 2014-12-25 joker.com
2014-12-25 joker.com
ccloudflare.com 2018-02-14 tucowsdomains.com
sadostad.com 2015-10-22 realtimeregister.com
irchemistry.net 2016-04-23 realtimeregister.com
irchemistry.com 2016-04-23 realtimeregister.com

List of domain names registered by [redacted.1]

The list of domains registered by the same email account reveals two more domains
registered by the same person. These newly discovered domains were registered 3 days
before the already mentioned ones.

Domain Name Creation Date Registrar
facedomainpc.com 214-12-25 joker.com
facedomainty.com 2014-12-25 joker.com
whoisdomainpc.com 2014-12-25 joker.com
ccloudflare.com 2018-02-14 tucowsdomains.com
wherisdomainty.com 2014-12-25 joker.com
lifedomainwar.com 2N4-12-22 realtimeregister.com
elfdomainone.com 2004-12-22 realtimeregister.com

List of domain names registered by [redacted.1]Jdomain@chmail.ir

Three more domains were related to the Iranian national, but a different email address was
used for their registration. Domains “sadostad.com”, “irchemistry.net” and
“irchemistry.com” were registered using the [redacted.1]@gmail.com account.

The RisklQ service was used to search for more email accounts related to the Iranian
national. A very similar account was detected: [redacted.1]@ymail.com. It was also used to
register domain names similar to previous ones (sadostad.ir - sadostad.com). Two more,
probably related, accounts were also found, and they were used more recently to register
two more domains. Even though no concrete proof can be given to reliably declare these
domains malicious, the aforementioned relations should be enough to keep you alert and

12/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-9.jpg
https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-10.jpg
https://community.riskiq.com/

treat them as suspicious.

Focus Email Registered

chembook.ir B ail.com 2017-08-27
1000stad.ir By mailcom 2017-08-27
sadostad.ir B el com 2017-08-27

EEonineir I :ymail.com 2016-06-15

Focus Email Registered

cteiir [N’ 0cgmail.com 2020-02-17

Focus Email Registered
kiciir [2012@outiook.com 2019-06-25

Expires
2019-11-17

2020-11-07
2020-11-07
2017-06-12

Expires
2023-02-07

Expires
2021-02-06

List of related domain names and email addresses

Using one of the Iranian domain name registration services, selva.ir, both the registrant data
for the 1000stad.ir domain and address information of the registrant were found.

1000stad.ir

IS © @y mail.com
4420 21 98+
1399/8/17

1399/8/17

I, chran, Tehran, IR

[redacted.1]’s potential addresses

:Domainname

:Copyright Name

:Franchise Email

: Phone number

: Expiration date

: last update

: Address

13/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-11a.jpg
https://selva.ir/
https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-12.jpg

The second interesting person related to the domains “fullplayersoftware.com” and
“softwareplayertop.com” is [redacted.2] . The domains were registered using the
[redacted.2]@gmail.com email account.

& Registrant D Recorded : 2016-06-02
MName _ & Historic Registrant
Email I 2 1)z mail.com Name [—
Address renvan N "' - com
Address noadress noneadress
City Tehran
City noname
e
Country = IFan (Islamic Republic Of) Shate jivhk
Phone +98 77 6 Country = Iran (islamic Republic Of)
Fax +98. 7 75 Phone +98 2 [+
Private no Fax s98.2 24

[redacted.2]’s registration data

Conclusion

It's important to remember that there are many reasons that cause threat groups to turn their
focus to specific targets. Whether it's political dissidents, opposition in countries under
authoritarian regimes, or corporations the threat actors goal is to make gains monetarily or
politically. When targeting individuals, threat actors often want to monitor their
communication and movement. Mobile phones are most suitable for such goals because of
the computing power contained in your pocket, and the fact that most people carry them all
the time. Since the Android platform maintains the biggest part of the global smartphone
market share, it follows that it is also the primary target of mobile malware.

Development environments used in the creation of Android applications are often
preconfigured to perform obfuscation by default making malicious apps an easy target. Since
malware actors very often use the same tools as legitimate developers, malware analysts
frequently have to find ways to overcome the obfuscation barriers in order to study how a
particular malware works. Finding an older, unobfuscated, version of malware can be an
excellent workaround for this problem. Older versions are also very interesting because
malware authors often primarily focus on implementing the necessary functionalities before
trying to hide clues that can later be used to associate them to the malware.

Fortunately, older malware samples can be a real treasure in analysis. Therefore it is always
good to search for related samples first - finding an older one can be worth the effort, and
can make research much simpler. What we can take away from this analysis is the
importance of maintaining control over your device to reduce the risk of infection. On an
individual level this includes knowing which apps have access to microphones and sensitive

14/15

https://blog.reversinglabs.com/hubfs/Blog/rana-android-img-13.jpg

information. If you are part of a government agency, or even a private corporation, it means
having a solid BYOD policy, that includes application control, continually auditing the system
setting, and malware scanning.

Keep in mind that any person-related data in this blog post should be taken with caution
since there is always a possibility that such information is forged or stolen.

I0C list

The following links contain the data extracted from the discovered samples related to the
Rana Android malware.

https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_SHA1_list.txt

https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_C2_list.txt

https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_suspicious_domains.t
xt

YARA rule

rule Rana_Android_resources {
strings:
$res1 = "res/raw/cng.cn" fullword wide ascii
$res2 = "res/raw/att.cn" fullword wide ascii
$res3 = "res/raw/odr.od" fullword wide ascii
condition:
any of them /* any string in the rule */

}
MORE BLOG ARTICLES

15/15

https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_SHA1_list.txt
https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_C2_list.txt
https://blog.reversinglabs.com/hubfs/Blog/rana_android_malware/IOC_suspicious_domains.txt

