
1/5

Snakes & Ladders: the offensive use of Python on
Windows

theta.co.nz/news-blogs/cyber-security-blog/snakes-ladders-the-offensive-use-of-python-on-windows/

Home
News & Blogs
Cyber Security Blog
Snakes & Ladders: the offensive use of Python on Windows

04/12/2020

As Microsoft further integrates Python into its ecosystem, there are concerns around the
offensive use of it. Can these offensive attacks be mitigated and are the current control
mechanisms enough to stop this happening?

Recent news that Python’s founder (and previous BDFL) Guido Van Rossum is working with
Microsoft - along with the prospect of integration between Python and Windows - is an
interesting and ultimately good development for fans of the versatile and incredibly popular
language. However, the offensive use of Python on Windows remains an edge case to be
considered (as some have) by defensive and offensive security practitioners alike.

https://www.theta.co.nz/news-blogs/cyber-security-blog/snakes-ladders-the-offensive-use-of-python-on-windows/
https://www.theta.co.nz/
https://www.theta.co.nz/news-blogs/
https://www.theta.co.nz/news-blogs/cyber-security-blog/
https://twitter.com/gvanrossum/status/1326932991566700549
https://twitter.com/JohnLaTwC/status/1326940870042554373

2/5

The 'state of the art'

Theta’s Cyber Security Practice has several forward-leaning observations around the
offensive use of Python in Windows environments, which may only accelerate in relevance
as Microsoft further integrates the language into its ecosystem. Much of the offensive
tradecraft and detection engineering efforts of the world are currently (and rightly) focused
on things like .NET and C#, along with coverage of “classic” windows LOLBins (so-called
“living off the land binaries” – such as bitsadmin, certutil, scrobj and mavinject etc).

This comes after the instrumentation and subsequent transition away from PowerShell and
cmd.exe before that. However, Python currently remains a good way to deploy and execute
tooling and scripts onto Windows hosts: either as a scripting interface or as a fully-fledged
interpreter.

Traditional use of offensive Python has been focused around its usage on dedicated Linux
hosts for pentesting, particularly for network or packet manipulation, or in the delivery of
fully functioning and otherwise “fat” remote access trojans (or RATS) to systems. While
MITRE ATT&CK has the sub technique T1059.006 - Command and Scripting Interpreter:
Python, few are familiar with its capabilities - specifically in relation to Windows. Cobalt
Strike’s flexible Agressor Scripts (its own native scripting language for modification and
extension of the popular offensive software) comes with a hook for Python as an example.

Year of the snake

Unless it’s been disabled, Python can be installed from the Windows store
(programmatically via `winget Python.Python`, if winget is deployed – which itself is likely to
see an uptick in adoption and worthy of practitioners' understanding). Whilst installed
Python packages do touch disk and can be discovered by investigators, there aren’t many
reasons to hunt for them.

We've observed first hand the ability to directly download offensive modules via pip onto
otherwise orchestrated or monitored systems. EDR and AV are likely to turn a blind eye to
packages like Skelsec’s Pypykatz – an implementation of the infamous Mimikatz (admittedly
with some reduced functionality), the ever-useful Impaket (GetUserSPNs.py) or FOXIT’s
Bloodhound.py ingestor module. Rounding out offensive capabilities, there are also Python
implementations of psexec and wmiexec (part of the lsassy project).

None of any of these items would be expected to be on a normal corporate workstation and
whose presence would cause alarm to a human analyst.

In systems where the Windows store isn’t available, Python can be downloaded from the
web. Doing so is extremely unlikely to trigger any detection by either host or network
instrumentation: proxies, firewalls or other security controls simply do not classify IDEs as
malicious - and nor should they.

https://lolbas-project.github.io/
https://nostarch.com/blackhatpython
https://github.com/secdev/scapy
https://attack.mitre.org/techniques/T1059/006/
https://www.cobaltstrike.com/aggressor-script/index.html
https://docs.microsoft.com/en-us/windows/package-manager/winget/
https://pypi.org/project/pypykatz/
https://pypi.org/project/impacket/
https://pypi.org/project/bloodhound/
https://pypi.org/project/pypsexec/
https://github.com/Hackndo/lsassy/blob/master/lsassy/exec/wmi.py
https://pypi.org/project/lsassy/

3/5

Python’s pip (its main package manager which can be used to download all of the tooling
mentioned above) is an interesting delivery mechanism as implemented in Windows. The
packages it collects are written to disk as compiled .exe files - valid DOS MZ executables –
however, these exe’s come with zip archives embedded (with a “__main__.py” file inside
them); and possibly hints to some of the reasons behind defensive tooling not responding
well to offensive packages.

Note the “PK” the header for a .zip file - embedded at the end of the .exe

This is in contrast to a unix system - where pip will collect ultimately a script (a text file).

At the end of the day, this leaves us with a stark difference between downloading via a web
browser or PowerShell a well-known “Offensive Security Tool” (OST) and using pip to
download the Python equivalent.

Effects

Theta has developed a range of cross-platform capabilities in Python to support our
operations – performing many of the same types of capabilities we've observed real
malicious actors and their tools in the wild. So far, we can sadly report that they haven’t
been detected or blocked in environments with EDR or other monitoring – even without
obfuscation - including against specific software designed to detect particular TTPs. In the
real world, this is only made worse as many endpoint security products make for easy
targets. It’s usually a trivial exercise to degrade and disable them – which is something we
see ransomware operators, in particular, do very frequently.

4/5

Unsettlingly, we've been able to conduct a complete kerberoast of a domain from a single
host using Python from the Windows Store without any need for lateral movement, privilege
escalation or defensive evasion; all while AV was running on the machine.

Defensive Advice

Unlike PowerShell, Python’s logging isn’t well understood or documented. Execution or
Transcript logging doesn't exist as it does with modern PowerShell, nor is there any
equivalency of AMSI. Python requires the inclusion of additional modules to write out to the
Windows Event Log, making it a dark spot for introspection and analysis – which is ironic
given the extremely heavy use of Python in the forensics world for performing analysis.

From an analysis standpoint, finding the following on-disk is cause for some alarm and
would be considered high fidelity sign of malicious activity if there wasn’t legitimate testing
being carried out.

Source: %LOCALAPPDATA% \Programs\Python\Python<Version>\Scripts\

We debated releasing some Yara to look for these indicators. But rather than focusing on
brittle detections for attributes like file names (remember the pyramid of pain), it's likely to
be more useful if we understand what types of systems should be installing fully-fledged
interpreters - particularly on servers where workloads should be fairly static. Albeit less
straightforward advice: the reasons for non-technical users to suddenly deploy Python on a
Windows endpoint remain limited, although the effort or cost to get that level of insight and
visibility across an estate isn’t trivial.

For those with hunt programs, developing Python-specific hunts or including Python
artefacts in them may prove fruitful, along with potentially building out specific detections for
Python execution. Hunting across
%LOCALAPPDATA%\Programs\Python\Python<Version>\Scripts\ for evidence of pip
module names could prove a simple start. Detections based on pypsexec or similar lateral
movement tools are also likely to be higher fidelity signs of something amiss than their non-
Python equivalents – although this moves towards network instrumentation or in-memory
detections.

5/5

At a more abstract level, looking for other languages (particularly ones with Windows
interpreters or script interfaces) with these sorts of techniques is a valid exercise as more
and more offensive research about different frameworks and languages available to
practitioners continues to surface. This type of over-the-horizon scanning may not be
relevant for what’s happening today, but new offensive tradecraft has been shown to be
adopted rapidly by sophisticated adversaries and red teams once it’s been shown to work;
understanding what’s going on in the Twittersphere and GitHub provides some degree of
early warning.

System administrators and security practitioners should also be cognizant of the Windows
Store and develop a strategy for its use in their organisations. Microsoft’s traditional model
of application deployment being a free-for-all is slowly getting a viable alternative, but as
with all things, there is an edge case around malicious usage to be considered. This goes
beyond just Python. The opportunity to use WSL (or WSL2) to do ill is large and an
interesting topic all of its own (going all the way to having Kali Linux built-in). Although, in
our experience, this is more likely a trap for curious internal users than serious adversaries.

Summary

Further research by the community is required into the additional forensic opportunities
available with Python Scripting on Windows; very little is currently available in the public
domain. We can only hope that Microsoft places extra attention on working towards logging
parity between PowerShell and Python in Windows. Especially if it’s going to get further
integrated into the Windows ecosystem.

Until then, you should strap yourselves in. If offensive use of Python and supporting
features like NuGet goes the same way as PowerShell, then we’re all in for a rough ride.

Speak to us at Theta if you want to know more about advanced cyber threats, defensive
strategies and solutions to protect your organisation.

Lead author: Hamish Krebs, Lead Consultant

Hamish has spent time across Australia and New Zealand responding to advanced threat
actors; running large DFIR engagements in complex environments. He’s also designed and
deployed a variety of security solutions such as SIEMs and EDR suites across APAC.

https://twitter.com/Myrtus0x0/status/1329095313072680961
https://twitter.com/jorgeorchilles/status/1330921819222716424
https://www.youtube.com/watch?v=xvTPPC6jeZ0
https://www.kali.org/news/kali-linux-in-the-windows-app-store/
https://www.theta.co.nz/contact-us/
https://www.linkedin.com/in/invoke-mimikatz/

