
1/10

Automated string de-gobfuscation
kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/

Authored by: Jamie Hankins on Wednesday, December 2, 2020
Last week the Network Security Research Lab at 360 released a blog post on an obfuscated
backdoor written in Go named Blackrota. They claim that the Blackrota backdoor is available
for both x86/x86-64 architectures which is no surprise given how capable Golang’s cross
compilation is.

For the last 4 years we have been using Golang for our internal services, and I can definitely
see the allure that Golang has for malware authors:

Statically compiled binaries by default
Cross compilation is often as simple as setting two environment variables
Strong package ecosystem allowing you to pull in code that you need from other
sources
No runtime dependencies
Esoteric runtime with a non-standard calling convention breaks most decompilation
tools forcing reverse engineers to read assembly

Blackrota uses gobfuscate to obfuscate their source code before it gets compiled by the Go
toolchain. Gobfuscate presents a number of challenges to reverse engineers but the one I’ll
be focusing on today is string obfuscation.

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://twitter.com/2sec4u
https://blog.netlab.360.com/blackrota-an-obfuscated-backdoor-written-in-go-en/
https://golang.org/doc/install/source#gopath:~:text=%24GOOS%20and%20%24GOARCH,64%2Dbit%2C%20big%2Dendian)%2C%20and%20wasm%20(WebAssembly%2032%2Dbit).
https://github.com/unixpickle/gobfuscate


2/10

String Obfuscation

Malware has been using XOR encoded strings for years now, but Blackrota takes this a step
further . It generates a random XOR key per string and wraps the string in a function that
XORs the string at runtime to return the correct one.

gobfuscate runs before the compilation process to produce an obfuscated version of your
code which is then compiled by the Go compiler:

Before:

package main 

import "fmt" 

func main() { 
fmt.Println("Hello world!") 

} 

After:

package main 

import "fmt" 

func main() { 
fmt.Println((func() string { 
 mask := []byte("\x21\x0f\xc7\xbb\x81\x86\x39\xac\x48\xa4\xc6\xaf") 
 maskedStr := 

[]byte("\x69\x6a\xab\xd7\xee\xa6\x4e\xc3\x3a\xc8\xa2\x8e") 
 res := make([]byte, 12) 
 for i, m := range mask { 
  res[i] = m ^ maskedStr[i] 
 } 
 return string(res) 
}())) 

} 

You can use a tool like GCHQ’s CyberChef to verify that the result of those 2 byte arrays
XORed together is: Hello world! .

While you could go through the effort of manually XORing each string in a binary you’re
reversing, it’ll get tedious very quickly.

How do I solve it at scale?

So I know that Golang has a very capable cross compiler and that I want to deal with these
XORed strings across different architectures, but how?

1

https://gchq.github.io/CyberChef/#recipe=From_Hex('Auto')XOR(%7B'option':'Hex','string':'%5C%5Cx69%5C%5Cx6a%5C%5Cxab%5C%5Cxd7%5C%5Cxee%5C%5Cxa6%5C%5Cx4e%5C%5Cxc3%5C%5Cx3a%5C%5Cxc8%5C%5Cxa2%5C%5Cx8e'%7D,'Standard',false)&input=XHgyMVx4MGZceGM3XHhiYlx4ODFceDg2XHgzOVx4YWNceDQ4XHhhNFx4YzZceGFm


3/10

Binary Ninja (aka Binja) has a very powerful intermediate language (IL), which allows us to
operate on a representation of a function regardless of the system architecture (assuming
there is an architecture loader for it) .

When deciding on an approach here I specifically wanted to use Binary Ninja’s IL as a
learning exercise. The solution could certainly be implemented using any number of
alternative tools (e.g. Unicorn), however Binja has the benefit of being very easy to use on
any of its supported platforms. Another benefit, of course, is that the IL eliminates the need
to understand the target architecture at all, which (depending on implementation) may not be
the case using something like Unicorn.

So the solution will need a way of identifying what functions we want to extract the strings
from (Candidate Identification) and a way to extract the correct string from Binary Ninja’s low
level IL.

Candidate Identification

Luckily for us, the Go compiler doesn’t inline this function call so it’s seen as an entirely new
function:

Assuming the approach I take can avoid the Go runtime functions:
_runtime.morestack_noctxt  and _runtime.slicebytetostring  it should be pretty

easy to emulate.

The solution will need to find functions in the binary which call
_runtime.slicebytetostring  and make use of an xor  instruction.

In my first attempt you’ll see that I’m not using the IL for this, but that’s trivially solved in the
final solution.

String Extraction - Attempt One

My first attempt at writing this didn’t go very well&mldr; Binary Ninja implements multiple
different ILs at varying levels of readability based on how much lifting, transformation and
control flow recovery takes place. You can see examples of LLIL (low level intermediate
language), MLIL (medium level intermediate language) and HLIL (high level intermediate
language) ILs in the corresponding links.

So I made the assumption that HLIL would be the best choice because there was less text. I
also didn’t really understand that an IL operation could consist of multiple different IL
operations:

2

https://blog.trailofbits.com/2017/01/31/breaking-down-binary-ninjas-low-level-il/
https://www.unicorn-engine.org/
https://cloud.binary.ninja/embed/62f741b1-8ccd-4961-ab40-c72617229f31
https://cloud.binary.ninja/embed/b10dc64a-6970-499e-9984-424bfaf339db
https://cloud.binary.ninja/embed/d42e940d-6ead-43d7-afd3-5c164bc996b9


4/10

Example of a XOR/assign operation in HLIL

You can see my first attempt here. I wish I had read Josh Watson’s blog post on Binja’s IL
before I started working on it as it details some of the non obvious details 😅

I managed to get some results from this approach but it was not consistent and broke very
easily.

String Extraction - Attempt Two

I started chatting to Jordan Wiens one of the founders of Vector35, the company who makes
Binary Ninja – and he suggested that I should rewrite it using LLIL and a full blown emulator
rather than a state machine.

At first this was daunting, but I started to play around with it and thanks to some incredibly
helpful plugins which I’ll detail later, as well as a project from Josh Watson which had the
foundations of an LLIL emulator, I was able to start making headway.

Using a helpful snippet from Jordan I was able to work out what LLIL operations I needed to
implement and in total there were around 28 of them:

IL operation Description

LLIL_TAILCALL Call another function without writing a return address to the stack

LLIL_CALL Call another function and push a return address to the stack

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/images/xorhlil.png
https://gist.github.com/jamie-34254/45cb4687d679c29bf8ce512ae7780cc8
https://blog.trailofbits.com/2017/01/31/breaking-down-binary-ninjas-low-level-il/
https://twitter.com/psifertex
https://vector35.com/
https://github.com/joshwatson/emilator
https://gist.github.com/psifertex/6fbc7532f536775194edd26290892ef7#file-count_il-py


5/10

IL operation Description

LLIL_RET Pop a return address from the stack and jump to it

LLIL_PUSH Push a value onto the stack

LLIL_POP Pop a value from the stack

LLIL_XOR XOR 2 values

LLIL_ZX Zero Extends

LLIL_GOTO Set the instruction pointer

LLIL_STORE Write some data to memory

LLIL_READ Read some data from memory

LLIL_SET_FLAG Sets a flag

LLIL_FLAG Reads a flag

LLIL_CMP_NE Is not equal

LLIL_CMP_E Is equal

LLIL_CMP_SLE Signed less than or equal

LLIL_CMP_SGT Signed greater than

LLIL_CMP_SGE Signed greater than or equal

LLIL_CMP_UGE Unsigned greater than or equal

LLIL_CMP_UGT Unsigned greater than

LLIL_CMP_ULT Unsigned less than

LLIL_CMP_SLT Signed less than comparison

LLIL_CMP_ULE Unsigned less than or equal

LLIL_IF Check a conditional and set the instruction pointer based on the
outcome

LLIL_SET_REG Set a register value

LLIL_CONST Get a constant value

LLIL_CONST_PTR Get a constant value that happens to be a pointer

LLIL_REG Read a register value



6/10

IL operation Description

LLIL_SUB Subtract two values

LLIL_ADD Add two values

Alone none of these seem too complex right? But together they allow us to fully implement
what is required to decode the XOR obfuscation in less than 500 lines of code. There’s a
huge amount of heavy lifting that Binary Ninja does under the hood that helps us keep the
code as simple as possible, and I’m sure I’m missing some tricks.

Once I had something that kinda worked Jordan jumped in and converted it into a functional
Binary Ninja plugin and cleaned up some of the code smell that occurs when you’re hacking
away on a problem.

While developing the plugin I came across some incredibly useful Binary Ninja plugins which
I feel need a mention:

SENinja

SENinja is a symbolic execution engine for Binja, built using the Z3 SMT solver. It
implements a LLIL emulator that builds and manipulates Z3 formulae. Although the intentions
of SENinja are much more complex then what I was using it for, it was really useful to have
something I could compare with (I didn’t want to turn on a Linux VM and use a debugger and
deal with possible anti debugging tricks).

https://github.com/borzacchiello/seninja
https://github.com/Z3Prover/z3/wiki
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/images/seninja.png


7/10

What SENinja looks like while emulating a function

BNIL Instruction Graph

BNIL Instruction Graph allows you to click on a line of IL and generate a graph of the IL
operations that make up that line.

LLIL

https://github.com/withzombies/bnil-graph
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/images/llil.png


8/10

HLIL

The difference in complexity between a line of LLIL and HLIL is surprising. However it makes
sense once you understand that HLIL exists to allow higher level control flows to be
recovered with the intention of producing a source code representation, typically in an
emulator though you don’t need this kind of high level control flow data.

Another powerful feature of BNIL Instruction Graph is the ability to generate specific IL
matching templates that are convenient starting points for building IL code:

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/images/hlil.png


9/10

def match_LowLevelIL_10a6df6_0(insn): 
   # ecx = ecx ^ edx 
   if insn.operation != LowLevelILOperation.LLIL_SET_REG: 
       return False 

   if insn.dest.name != 'ecx': 
       return False 

   # ecx ^ edx 
   if insn.src.operation != LowLevelILOperation.LLIL_XOR: 
       return False 

   # ecx 
   if insn.src.left.operation != LowLevelILOperation.LLIL_REG: 
       return False 

   if insn.src.left.src.name != 'ecx': 
       return False 

   # edx 
   if insn.src.right.operation != LowLevelILOperation.LLIL_REG: 
       return False 

   if insn.src.right.src.name != 'edx': 
       return False 

   return True 

Can haz please?

As the usage of Golang by malware authors increases, so will their understanding and
capabilities within the Go ecosystem. Right now gobfuscate is the main obfuscator used by
actors using Golang, but this won’t always be true. As a Hacker News comment puts it: this
is fairly weak. Gobfuscator doesn’t implement control flow obfuscation, the runtime functions
aren’t obfuscated and at most gobfuscate serves mostly as an annoyance and a thinly veiled
layer of obscurity.

https://news.ycombinator.com/item?id=25231309


10/10

Solver at work!

You can download the Binary Ninja plugin on the plugin manager or download the code from
the GitHub repository linked here. Additionally you can find the Blackrota 32-bit and 64-bit
Binary Ninja databases to look at on Binary Ninja cloud.

Thanks:

A massive thanks to the people in the Binary Ninja Slack who answered some of my
questions while I was getting started.
Josh Watson, for his permissibly licensed emulator that I was able to use to get an idea
of what was required to achieve my goal.
Jordan Wiens, for providing assistance during development, cleaning up messy code,
filing a couple of Binja bug reports for me and generally answering questions about
Binary Ninja.

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/images/header.gif
https://docs.binary.ninja/guide/plugins.html#plugin-manager
https://github.com/kryptoslogic/binja_degobfuscate
https://cloud.binary.ninja/bn/78f2d6d5-3942-4342-ae53-b501f69877c7?view=Disassembly&function=135317728&address=135317750
https://cloud.binary.ninja/bn/99702ecb-6656-42e7-aa0e-31035a6d18dc?view=Disassembly&function=4837184&address=4837184
https://github.com/joshwatson/emilator

