
1/18

Threat Intelligence Team November 30, 2020

German users targeted with Gootkit banker or REvil
ransomware

blog.malwarebytes.com/threat-analysis/2020/11/german-users-targeted-with-gootkit-banker-or-revil-ransomware/

This blog post was authored by Hasherezade and Jérôme Segura

On November 23, we received an alert from a partner about a resurgence of Gootkit
infections in Germany. Gootkit is a very capable banking Trojan that has been around since
2014 and possesses a number of functionalities such as keystroke or video recording
designed to steal financially-related information.

In this latest campaign, threat actors are relying on compromised websites to socially
engineer users by using a decoy forum template instructing them to download a malicious
file.

While analyzing the complex malware loader we made a surprising discovery. Victims
receive Gootkit itself or, in some cases, the REvil (Sodinokibi) ransomware. The decision to
serve one or the other payload happens after a check with the criminal infrastructure.

Gootkit attacks observed in Germany

Security researcher TheAnalyst was the first to publicly identify an active campaign in
November using a sophisticated loader that was eventually attributed to Gootkit, a banking
Trojan not observed in the wild for some time. Germany’s Computer Emergency Response

https://blog.malwarebytes.com/threat-analysis/2020/11/german-users-targeted-with-gootkit-banker-or-revil-ransomware/
https://twitter.com/ffforward
https://twitter.com/ffforward/status/1326144202997166084?s=20

2/18

Team CERT-Bund later confirmed that German users were being targeted via compromised
websites.

Around the same time, we started receiving reports from some of our partners and their ISPs
about Gootkit-related traffic. We were able to confirm Gootkit detections within our telemetry
that were all located in Germany.

Figure 1: Gootkit infections in Germany in the wake of the campaign
After a couple of days, we remediated over 600 unique machines that had been
compromised.

Fake forum template on hacked websites

The initial loader is spread via hacked websites using an interesting search engine
optimization (SEO) technique to customize a fake template that tries to trick users to
download a file.

The template mimics a forum thread where a user asks in German for help about a specific
topic and receives an answer which appears to be exactly what they were looking for. It’s
worth noting that the hacked sites hosting this template are not German (only the template

https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Aktivitaeten/CERT-Bund/certbund_node.html
https://twitter.com/certbund/status/1330231816796729347?s=20
https://blog.malwarebytes.com/wp-content/uploads/2020/11/map.png

3/18

is); they simply happen to be vulnerable and are used as part of the threat actor’s
infrastructure.

Figure 2: Compromised site loads decoy template to trick victims
This fake forum posting is conditionally and dynamically created if the correct victim browses
the compromised website. A script removes the legitimate webpage content from the DOM
and adds its own content (the template showing a link to a file to download).

https://blog.malwarebytes.com/wp-content/uploads/2020/11/fake_template.png
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

4/18

Figure 3: A view of the HTML code behind the decoy template
There is a server-side check prior to each visit to the page to determine if the user has
already been served the fake template or not, in which case the webserver will return
legitimate content instead.

Fileless execution and module installation

The infection process starts once the victim executes a malicious script inside the zip archive
they just downloaded.

https://blog.malwarebytes.com/wp-content/uploads/2020/11/traffic.png

5/18

Figure

4: Malicious script, heavily obfuscated
This script is the first of several stages that leads to the execution of the final payload. The
following diagram shows a high level overview:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/zip_archive.png

6/18

Figure 5: Infection flow

Stage 1 – The first JavaScript

The first JavaScript is the module that has to be manually executed by the victim, and it has
been obfuscated in order to hide its real intentions. The obfuscation consists of three layers
where one decodes content for the next.

The first stage (a version with cleaned formatting available here) decodes the next element:

Figure 6: First stage script

The decoded output is a comma-separated array of JavaScript blocks:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/flow-1.png
https://gist.github.com/malwarezone/823e3bacec3fc048db119c82e4cc8e72#file-test-js
https://blog.malwarebytes.com/wp-content/uploads/2020/11/decoding_next_.png
https://gist.github.com/malwarezone/823e3bacec3fc048db119c82e4cc8e72#file-deobf1-js

7/18

Figure 7:

Decoded comma-separated array of scripts
There are four elements in the array that are referenced by their indexes. For example, the
element with the index 0 means “constructor”, 1 is another block of JavaScript code, 2 is
empty, 3 is a wrapper that causes a call to a supplied code.

Block 1 is responsible for reading/writing registry keys under
“HKEY_CURRENT_USER\SOFTWARE\<script-specific name>”. It also deobfuscates and
runs another block of code:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/comma_separated_blocks_.png
https://gist.github.com/malwarezone/823e3bacec3fc048db119c82e4cc8e72#file-deobf2-js

8/18

Figure 8: Third JavaScript layer
This fragment of code is responsible for connecting to the C2. It fetches the domains from
the list, and tries them one by one. If it gets a response, it runs it further.

The above downloader script is the first stage of the loading process. Functionality-wise it is
almost identical in all the dropped files. The differentiation between the variants starts in the
next part, which is another JavaScript fetched from the C2 server.

Stage 2 – The second JavaScript (downloaded from the C2)

The expected response from the server is a decimal string, containing a pseudorandom
marker used for validation. It needs to be removed before further processing. The marker
consists of “@[request argument]@”.

https://blog.malwarebytes.com/wp-content/uploads/2020/11/chunk3_.png

9/18

Figure 9: GET request

with C2 server
After conversion to ASCII, the next JavaScript is revealed, and the code is executed. This
JavaScript comes with an embedded PE payload which may be either a loader for Gootkit, or
for the REvil ransomware. There are also some differences in the algorithm used to
deobfuscate it.

Example for the Gootkit variant (commented, full)

Figure 10: The downloaded JavaScript
The downloaded code chunk is responsible for installing the persistent elements. It also runs
a Powershell script that reads the storage, decodes it and runs it further.

Stage 3 – The stored payload and the decoding Powershell

https://blog.malwarebytes.com/wp-content/uploads/2020/11/resp_pattern_.png
https://gist.github.com/malwarezone/f5b86308bd7ae33e8bad72686a91f2e5#file-commented_script-ps1
https://gist.githubusercontent.com/malwarezone/9ca378668a21e778a86ebfc00486fb1c/raw/a0c88b7d00be661fe49a98efc14d22f916f10198/dec1.js
https://blog.malwarebytes.com/wp-content/uploads/2020/11/downloaded_js.png

10/18

The authors diversified the method of encoding and storing the payload. During our tests we
observed two ways of encoding. In one of them, the PE is stored as a Base64 encoded
string, and in the other as a hexadecimal string, obfuscated by having certain numbers
substituted by a pattern.

The payload is usually stored as a list of registry keys, yet we also observed a variant in
which similar content was written into a TXT file.

Example of the payload stored in a file:

Figure

11: Payload as a file on disk
The content of the file is an obfuscated Powershell script that runs another Base64
obfuscated layer that finally decodes the .NET payload.

Example of the Powershell script that runs to deobfuscate the file:

"C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe" -ExecutionPolicy Bypass -
windowstyle hidden -Command "IEX (([System.IO.File]::ReadAllText('C:\Users\
[username]\bkquwxd.txt')).Replace('~',''));"

Below we will study two examples of the loader: One that leads to execution of the REvil
ransomware, and another that leads to the execution of Gootkit.

Example 1—Loading REvil ransomware

The example below shows the variant in which a PE file was encoded as an obfuscated
hexadecimal string. In the analyzed case, the whole flow led to execution of REvil
ransomware. The sandbox analysis presenting this case is available here.

Execution of the second stage JavaScript leads to the payload being written to the registry,
as a list of keys. The content is encoded as hexadecimal, and mildly obfuscated.

https://blog.malwarebytes.com/wp-content/uploads/2020/11/storage_txt_fragment_.png
https://app.any.run/tasks/b5146ffd-328f-4d6f-9bf7-c544d02f1d47/

11/18

Figure 12: Fragment of the payload stored in the registry, encoded as a hexadecimal string
obfuscated with a pattern
After writing the keys, the JavaScript deploys a PowerShell command that is responsible for
decoding and running the stored content.

Figure 13:

The JS component deploys PowerShell with a Base64 encoded script
Decoded content of the script:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/write_key.png
https://blog.malwarebytes.com/wp-content/uploads/2020/11/start_powershell_.png
https://gist.github.com/malwarezone/0a16db66fe2251bc84a55dc3e4a0241c#file-deobf-ps1

12/18

Figure 14:

Decoded content
It reads the content from the registry keys and deobfuscates it by substituting patterns. In the
given example, the pattern “!@#” in the hexadecimal string was substituted by “1000”, then
the PE was decoded and loaded with the help of .NET Reflection.

The next stage PE file (.NET):

REvil loader:
(0e451125eaebac5760c2f3f24cc8112345013597fb6d1b7b1c167001b17d3f9f)

The .NET loader comes with a hardcoded string that is the next stage PE: the final malicious
payload. The Setup function called by the PowerShell script is responsible for decoding and
running the next PE:

Figure

15: Hardcoded string (PE)

https://blog.malwarebytes.com/wp-content/uploads/2020/11/decoded_script-1_.png
https://www.virustotal.com/gui/file/0e451125eaebac5760c2f3f24cc8112345013597fb6d1b7b1c167001b17d3f9f/detection
https://blog.malwarebytes.com/wp-content/uploads/2020/11/setup_func_.png

13/18

Figure 16: Deploying the payload
The loader runs to the next stage with the help of Process Hollowing – one of the classic
methods of PE injection.

Figure 17: REvil ransom note

Example 2 – Loading Gootkit

In an other common variant, the payload is saved as Base64. The registry keys compose a
PowerShell script in the following format:

$Command =
[System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String("
[content]")); Invoke-Expression $Command;Start-Sleep -s 22222;

https://blog.malwarebytes.com/wp-content/uploads/2020/11/loading_payl_.png
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://blog.malwarebytes.com/wp-content/uploads/2020/11/encrypted_.png

14/18

Figure 18: Registry key storing payload
After decoding the base64-encoded content, we get another PowerShell script:

Figure 19: More PowerShell
It comes with yet another Base64-encoded piece that is further decompressed and loaded
with the help of Reflection Assembly. It is the .NET binary, similar to the previous one.

Gootkit loader:
(973d0318f9d9aec575db054ac9a99d96ff34121473165b10dfba60552a8beed4)

The script calls a function “Install1” from the .NET module. This function loads another PE,
that is embedded inside as a base64 encoded buffer:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/registry__.png
https://blog.malwarebytes.com/wp-content/uploads/2020/11/to_install.png
https://www.virustotal.com/gui/file/973d0318f9d9aec575db054ac9a99d96ff34121473165b10dfba60552a8beed4/detection

15/18

Figure 20: Another buffer Figure 21:

Deploying the payload
This time the loader uses another method of PE injection, manual loading into the parent
process.

The revealed payload is a Gootkit first stage binary:
60aef1b657e6c701f88fc1af6f56f93727a8f4af2d1001ddfa23e016258e333f. This PE is written
in Delphi. In its resources we can find another PE
(327916a876fa7541f8a1aad3c2270c2aec913bc8898273d545dc37a85ef7307f), obfuscated
by XOR with a single byte. It is further loaded by the first one.

Loader like matryoshka dolls with a side of REvil

The threat actors behind this campaign are using a very clever loader that performs a
number of steps to evade detection. Given that the payload is stored within the registry under
a randomly-named key, many security products will not be able to detect and remove it.

However, the biggest surprise here is to see this loader serve REvil ransomware in some
instances. We were able to reproduce this flow in our lab once, but most of the time we saw
Gootkit.

The REvil group has very strict rules for new members who must pass the test and verify as
Russian. One thing we noticed in the REvil sample we collected is that the ransom note still
points to decryptor.top instead of decryptor.cc, indicating that this could be an older sample.

Banking Trojans represent a vastly different business model than ransomware. The latter has
really flourished during the past few years and has earned criminals millions of dollars in part
thanks to large ransom payments from high profile victims. We’ve seen banking malware (i.e.
Emotet) turn into loaders for ransomware where different threat actors can specialize in what
they do best. Time will tell what this return of Gootkit really means and how it might evolve.

https://blog.malwarebytes.com/wp-content/uploads/2020/11/next_pe_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/11/merory_load_.png
https://www.virustotal.com/gui/file/60aef1b657e6c701f88fc1af6f56f93727a8f4af2d1001ddfa23e016258e333f/detection
https://www.virustotal.com/gui/file/327916a876fa7541f8a1aad3c2270c2aec913bc8898273d545dc37a85ef7307f/detection

16/18

Detection and protection

Malwarebytes prevents, detects and removes Gootkit and REvil via our different protection
layers. As we collect indicators of compromise we are able to block the distribution sites so
that users do not download the initial loader.

Our behavior-based anti-exploit layer also blocks the malicious loader without any signatures
when the JavaScript is opened via an archiving app such as WinRar or 7-Zip.

Figure 22: Blocking on script execution
If a system is already infected with Gootkit, Malwarebytes can remediate the infection by
cleaning up the registry entries where Gootkit hides:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/MBAE.png

17/18

Figure 23: Detection of payload hidden in registry
Finally, we also detect and stop the REvil (Sodinokibi) ransomware:

Figure 24:

REvil ransomware blocked heuristically

Indicators of Compromise

Compromised websites downloading JavaScript loader:

https://blog.malwarebytes.com/wp-content/uploads/2020/11/Nebula.png
https://blog.malwarebytes.com/wp-content/uploads/2020/11/ransom.png

18/18

docs.anscommerce[.]com
ellsweb[.]net
entrepasteles[.]supercurro.net
m-uhde[.]de
games.usc[.]edu
doedlinger-erdbau[.]at

3rd stage JavaScript C2s:

badminton-dillenburg[.]de
alona[.]org[.]cy
aperosaintmartin[.]com

Variant 1 (Gootkit):

1. NET loader
[973d0318f9d9aec575db054ac9a99d96ff34121473165b10dfba60552a8beed4]

2. Delphi PE [60aef1b657e6c701f88fc1af6f56f93727a8f4af2d1001ddfa23e016258e333f]
3. PE stored in resources

[327916a876fa7541f8a1aad3c2270c2aec913bc8898273d545dc37a85ef7307f]

Variant 2 (REvil):

1. NET loader
[0e451125eaebac5760c2f3f24cc8112345013597fb6d1b7b1c167001b17d3f9f]

2. Delphi PE
[d0e075a9346acbeca7095df2fc5e7c28909961184078e251f737f09b8ef892b6] – the
ransomware

3. PE stored in resources
[a7e363887e9a7cc7f8de630b12005813cb83d6e3fc3980f735df35dccf5a1341] – a
helper component

https://www.virustotal.com/gui/file/973d0318f9d9aec575db054ac9a99d96ff34121473165b10dfba60552a8beed4/detection
https://www.virustotal.com/gui/file/60aef1b657e6c701f88fc1af6f56f93727a8f4af2d1001ddfa23e016258e333f/detection
https://www.virustotal.com/gui/file/327916a876fa7541f8a1aad3c2270c2aec913bc8898273d545dc37a85ef7307f/detection
https://www.virustotal.com/gui/file/0e451125eaebac5760c2f3f24cc8112345013597fb6d1b7b1c167001b17d3f9f/detection
https://www.virustotal.com/gui/file/d0e075a9346acbeca7095df2fc5e7c28909961184078e251f737f09b8ef892b6/detection
https://www.virustotal.com/gui/file/a7e363887e9a7cc7f8de630b12005813cb83d6e3fc3980f735df35dccf5a1341/details

