Detecting Cobalt Strike Default Modules via Named Pipe
Analysis

labs.f-secure.com/blog/detecting-cobalt-strike-default-modules-via-named-pipe-analysis

Introduction

During recent years, the Cobalt Strike framework has gained significant popularity amongst
red teamers and threat actors alike. Its functionality, flexibility and stability make it the state of
the art when it comes to commercially available Command & Control frameworks.

Considerable efforts have been made to build robust signatures for Cobalt Strike and its
implant, Beacon. The aim of this post is to examine some previously unknown Indicators of
Compromise (IoCs). This post is not going to cover signatures for the default Cobalt Strike
configuration - other papers offer an in-depth look at this. Instead, we will focus our attention
on some of the built-in modules that provide Cobalt Strike's post exploitation capability, such
as the keylogger, Mimikatz and the screenshot modules.

It must be noted that the loC/behaviour was raised with the Cobalt Strike's author and
subsequently exposed to operators as a customisable setting in the 4.2 malleable profile.

The hope is that this post will help both defenders in strengthening their detection
capabilities, and force red teamers to use more sophisticated and customised techniques.

Analysis

Cobalt Strike is known to use a specific pattern, known as "Fork-n-Run", when executing
some of its commands. The "Fork-n-Run" pattern comprises the spawning of a new process
(also referred to as a sacrificial process) and injecting capabilities into it. This pattern offers a
number of benefits, one being the ability to execute long running tasks, the "keylogger" being
a prime example, without blocking the main Beacon thread. Often, these capabilities are
implemented as Reflective DLLs.

Recent versions of the framework have given operators great flexibility in how to customise
the capability injection process. However, some general aspects haven't changed much, and
that's what we are going to focus on.

More specifically, a characteristic that remained unchanged was the ability to retrieve the
output of an injected module. The "keylogger" module, for example, is able to send the
pressed keys back to the main beacon process. But since the "keylogger" module is fully
fileless, how does the communication with the main beacon process happen?

The answer: pipes!

1/9

https://labs.f-secure.com/blog/detecting-cobalt-strike-default-modules-via-named-pipe-analysis
https://talos-intelligence-site.s3.amazonaws.com/production/document_files/files/000/095/031/original/Talos_Cobalt_Strike.pdf
https://www.cobaltstrike.com/help-opsec
https://blog.cobaltstrike.com/2020/06/25/cobalt-strike-4-1-the-mark-of-injection/
https://www.cobaltstrike.com/help-malleable-postex

Pipes are shared memory used for processes to communicate between each other.
Fundamentally there are two types of pipe: named and unnamed.

» Named pipes, as the name implies, have a name and can be accessed by referencing
this.

e Unnamed pipes, that need their handle to be passed to the other communicating
process in order to exchange data. This can be done in a number of ways.

Cobalt Strike uses both named and unnamed pipes to exchange data between the beacon
and its sacrificial processes.

Named Pipes

F-Secure observed that when using some of the Cobalt Strike's modules that injected a

reflective DLL into a sacrificial process, a named pipe was created with a predictable pattern.

Note that these named pipes are not the SMB named pipes used for lateral movement that
can be customised via the malleable profiles. Prior to version 4.2, this named pipe's name
could not be modified by operators.

More specifically, it was observed that once a "job" was launched, the beacon created a
named pipe; the name of the pipe comprised only hexadecimal characters, and its length
was found to be equal to the length of the module name (e.g. 10 characters for the
screenshot module) . Some of the modules that were found to have this behaviour:

o Keylogger
Screenshot
Mimikatz (dcsync, dpapi, logonpasswords)
Powerpick
Net (netview)

The screenshot below shows an example of Sysmon event ID 17 and 18 (pipe created and
accessed, respectively) after the "keylogger" command was executed:

2/9

https://docs.microsoft.com/en-us/Windows/win32/ipc/pipe-handle-inheritance

Event 17, Sysmon x

General Details

Pipe Created:

RuleMame: -

EventType: CreatePipe

UtcTime: 2020-10-07 19:03:03.263

ProcessGuid: {6e086ded-10e7-5fTe-c400-000000008200}
Processld: 10220

PipeMame: \c3daD675f

Image: CAWindows\system32Z\WUAUCLT.exe

Log Mame: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 10/7/2020 8:03:03 PM

Event ID: 17 Task Category: Pipe Created (rule: PipeEvent)
Level: Informaticn Keywords:

User: SYSTEM Computer: commando

OpCode: Info

More Information: Event Log Online Help

Event 18, Sysmon x

General Details

Pipe Connected:

RuleMame: -

EventType: ConnectPipe

UtcTime: 2020-10-07 19:03:03.778

ProcessGuid: {6e086ded-102f-5f7e-b300-000000008200}

Processld: 6328

PipeMame: \c5dale7sf

Image: C\Windows\system32\WindowsPowerShellvw1.0\PowerShell exe

Log Mame: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 10/7/2020 8:03:03 PM

Event ID: 18 Task Category: Pipe Connected (rule: PipeEvent)
Level Information Keywords:

Usen: SYSTEM Computer commando

OpCode: Info

More Information: Event Log Online Help

A limited number of experiments were made, but no other legitimate application was found to
create named pipes with the same naming convention. We will use this information later to
create Splunk searches that use Sysmon and a Yara rule to scan the processes memory.

Anonymous Pipes

Not every Cobalt Strike command creates a named pipe, some of them will use anonymous
(unnamed) pipes to achieve the same result. The image below shows an instance of a pipe
created after issuing the "execute-assembly" command:

3/9

Event 17, Sysmon

General Details

Pipe Created:

RuleMame: -

EventType: CreatePipe

UtcTime: 2020-10-07 20:03:05.412

ProcessGuid: {6el86ded-1ef8-5f7e-6b07-000000008200}
Processld: 5204

PipeMame: <Anonymous Pipe>

Image: CA\Windows\system32\WUAUCLT.exe

We can confirm that by debugging the sacrificial process spawned after launching a long-
running assembly:

beacon> execute-assembly /mnt/hgfs/Downloads/Tools/Rubeus.exe monitor /interval:5
[*] Tasked beacon to run .NET program: Rubeus.exe monitor /interval:5

[+] host called home, sent: 318833 bytes

[+] received output

[*] Action: TGT Monitoring
[*] Monitoring every 5 seconds for new TGTs

A breakpoint was set on the "ntdIl!NtWriteFile" function, and as it is possible to see, the
handle where the sacrificial process was trying to write to was associated with an unnamed
file that belonged to the pipe filesystem (Npfs):

4/9

0000000000000000

W (4972 i
B wuaucltexe (4972) Properties 0000000000000000
0000000000000000
General Statitice Performance Threads Token Modules Memory Environment Handles NET accemblies NET performance GPU Disk and Network Comment R11 0000000000000008

R1Z 0000000000000008

. R13 0000000000000048 LB
[Hide unnamed handies R14 DOODOODOOOO00040 '@
Type Name Handle” o R15 D0ODODOODODOOD0D
Token COMMANDO\riccarda: OxSd6aS (Primary) Ox54c RIP 00007FFO16615630 <nt
Event Ox564
Token COMMANDCriccardo: Ox5d6aS (Primary) 0x568 RFLAGS _ 0000000000000344
Token COMMANDO riccardo: 0x5d6as (Primary) 0x56c e a0
Token COMMANDO\riccardo: 0x5d6a5 (Primary) 0x570 CFO TF1 IF 1
Token COMMANDO\riccardo: 0x5dBas (Primary) %578
Token COMMANDO\riccardo: 0x5d6aS (Primary) 0x584 LastError 0000007A (ERROR_INS
Event 0x590 Laststatus C0000023 (STATUS_BU
Token COMMANDO riccardo: 0x5d6as (Primary) 0x598
Token COMMANDO\riccardo: 0xSdéaS (Primary) OxSac g: gggg ;: gggg
Token COMMANDO\riccardo: 0x5d6as (Primary) 0x5b8 €s 0033 s5 0028
Token COMMANDO\riccardo: OnSdBas (Primary) x50
Teken COMMANDO ficcarde: DxSda5 (Primary) Ox5ed ST(0) 00000000000000000000 X87
e o b iedememenans 1
Token COMMANDO\riccardo: OxSd6as (Primary) Ox5d4 £Tf3)_ANANARNNNANANAANNANNNN w27
Token COMMANDO\riccardo: 0xSdéaS (Primary) (x5d8
File Unnarmed file: \FileSyetern\Ngfs x50 Default (x64 fastcall)
Token COMMANDO\ricearde: Ox5d6as (Primary) OxSfe 1: rcx 0000000000000668
Token COMMANDO\riccardo: 0x5d6aS (Primary) 0x638 3: r& 0000000000000000
Token COMMANDO\riccardo: 0x5déaS (Primary) Oxb3c 4: r9 0000000000000000
Thread wuauclt.exe (4972): 1884 OuE44 5: [rsp+28] 000D0OCBA393ETAD
Token COMMANDO\riccardo: 0xSdéaS (Primary) OxBdc
I File Unnamed file: {FileSystem\Npfs Ox668 I
"~
Event 0x678
Token COMMANDO\riccardo: 0x5d6as (Primary) 0Ox684
Token COMMANDO\riccardo: 0xSd6aS (Primary) OxE88 EH.HMCEE | return to kernelbase.0
Token COMMANDO\riccardo: 0xSd6a5 (Primary) OxEBe FO296B6F | return to clr.00007FF8
Token COMMANDO\riccardo: Ox5d6as (Primary) 0x690 pasoceons
Event Oxi9c 8F034A200 c1r.00007FFEFO9AA200
Event Ox6a0 33333?2:5 " C:\\Program Files\
ALPC Port Oebad D00000040 FhPres
Key HKCU\Software\Classes OxBal \00000000
ALPC Port Oubac w 100000000
\A393EB50
100000000
100000000

Clase |0000SCBE | C:\\Program Files\
_ IEF27E206 |return to mscorlib.ni.

As we can see, spotting commands such as "execute-assembly"” is not as trivial as the
examples above. Is there anything that we can do using pipes?

In theory, we could baseline processes that use anonymous pipes. The interesting result is
that native Windows processes do not use anonymous pipes that often. So we could look for
Windows processes that connect to an anonymous pipe and investigate from there.

We mention "Windows processes" because, more often than not, attackers use native
Windows binaries as sacrificial processes within their malleable profiles. Examples of such
are the binaries listed in the C2Concealer repository, a project used to create randomised
malleable profiles. We can see the executables from the C2Concealer default configuration
below:

T T i e
Data set containing post_ex block data, including
spawn-to processes.

Sl L S L L S S S L L S L S L S S SRS L

#CUSTOMIZE THIS LIST#
spawn_processes = ['runonce.exe', 'svchost.exe', 'regsvr32.exe', '"WUAUCLT.exe']

As it is possible to see, the above-mentioned processes are used for post exploitation jobs.
None of them usually use anonymous pipes to communicate with different processes; it
would therefore be possible to use this to perform hunting and eventually create detection
rules.

5/9

https://github.com/FortyNorthSecurity/C2concealer/blob/master/C2concealer/data/post_ex.py

During experiments, the following Windows binaries were found to be using anonymous
pipes for interprocess communication

e wsmprovhost.exe

e ngen.exe

e splunk.exe

¢ splunkd.exe

o firefox.exe

The same applies to custom reflective DLLs that are executed via Cobalt Strike's dlispawn
API, as the underlying mechanism for communication is the same. An example of such is the
Outflank's Ps-Tools repository. Ps-Tools is a collection of rDLL fully compatible with Cobalt
Strike that allow operators to monitor process activity. Let's execute the "psw" module, used
to enumerate the active Windows, as shown below:

beacon= psw
Enumerating processes with Active Windows.
Tasked beacon to spawn PsW
host called home, sent: 115228 bytes
received output

ProcessName: mmc . exe
ProcessID: 436
WindowTitle: Event Viewer

ProcessName: explorer.exe
ProcessID: 9008
WindowTitle: msbuild-templates

ProcessName: ApplicationFrameHost.exe
ProcessID: 7084
WindowTitle: Settings

ProcessName: powershell.exe
ProcessID: 10444
WindowTitle: Administrator: PowerShell

ProcessName: devenv.exe
ProcessID: 10176
WindowTitle: Mimir - Microsoft Visual Studio

Executing this module, we can identify the same anonymous pipe behaviour we've seen
before:

6/9

https://github.com/outflanknl/Ps-Tools
https://outflank.nl/blog/2020/03/11/red-team-tactics-advanced-process-monitoring-techniques-in-offensive-operations/

Event 18, Sysmon

General Details

Pipe Connected:

RuleMame: -

EventType: ConnectPipe

UtcTime: 2020-10-13 18:48:54.892

ProcessGuid: {6elBboded-c090-5f85-782f-000000008200}

Processld: 5192

PipeMame: <Ancnymous Pipe=

Image: CAWindowsh\systemn32\WindowsPowerShellhw1.00PowerShell.exe

Log Mame: Microsoft-Windows-5Sysmon/Operational

Source: Sysmon Logged: 10/13/2020 7:48:54 PM

Event ID: 18 Task Category: Pipe Connected (rule: PipeEvent)
Level: Information Keywords:

Usern SYSTEM Computer: commando

OpCode: Info

Mare Information: Event Log Online Help

Detection Rules

Detection of the anomalous named pipes can be achieved in a number of ways. As a proof-
of-concept, we developed a Yara signature that could be used to scan process memory and
find live instances, and a Splunk search that could be used in conjunction with Sysmon.

The Yara rule is shown below:

7/9

rule cs_job_pipe

{
meta:
description = "Detects CobaltStrike Post Exploitation Named Pipes"
author = "Riccardo Ancarani & Jon Cave"
date = "2020-10-04"
strings:
$pipe = /\\\\\.\\pipe\\[0-9a-f]{7,10}/ ascii wide fullword
$guidPipe = /\\\\\.\\pipe\\[0-9a-f]{8}\-/ ascii wide
condition:
$pipe and not ($guidPipe)
}

An example of execution against a sacrificial process:

.\yara64.exe .\cs-job-pipe.yar -s 9908

cs_job_pipe 9908

0x13372b7b698:$pipe: \\.\pipe\928316d80

0x13372bf3940:$pipe:

\\XO0\\X00 . \Xx00\\X00p\Xx001\x00p\x00e\X00\\X009\x002\Xx008\Xx003\x001\Xx006\x00d\x008\X00€

The Splunk search below can be used to alert on the creation of named pipes that match the
aforementioned pattern:

index="YOUR_INDEX" source="XmlwWinEventLog:Microsoft-Windows-Sysmon/Operational"
EventCode=17 PipeName!="&1lt;Anonymous Pipe>" | regex PipeName="A\\\\[a-f0-9]
{7,10}$"

In regards to using anonymous pipes for automatic detection, this approach can be more
prone to false positives. However, it can be used in conjunction with other IOCs to achieve
better results.

An example of a Splunk search that can be used to obtain the processes that created an
anonymous pipe, sorted by least frequency:

index="YOUR_INDEX" source="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational"
EventCode=17 PipeName="&1lt;Anonymous Pipe>"| rare limit=20 Image

Opsec Considerations

From a red teaming perspective, Cobalt Strike version 4.2 gives operators the ability to
modify the aforementioned named pipe naming convention. In fact, it would be possible to
configure the "pipename" parameter within the "post-ex" block with a name that would,
ideally, blend-in with the pipes used in the environement.

8/9

An example of a "post-ex" block is shown below:

post-ex {

set spawnto_x86 "%windir%\\syswow64\\dllhost.exe";
set spawnto_x64 "%windir%\\sysnative\\dllhost.exe";

set obfuscate "true";
set smartinject "true";

set amsi_disable "true";

set pipename "pipe\\CtxSharefilepipe###,";

}

Additionally, choosing binaries that legitimately use anonymous pipes in the "spawnto_x86"
and "spawnto_x64" parameters will decrease the chances of being detected.

The official malleable command reference and ThreatExpress' jQuery example profile are
great resources for learning more about Cobal Strike's malleable profile options.

Closing Thoughts

This post showed two different strategies for identifying Cobalt Strike usage within an
endpoint: we started by analysing anomalous named pipes associated with default modules
and then we shifted our focus on a more statistical approach to identify even more
sophisticated attacks.

For attackers, we have reinforced the importance of staying away from default settings and
modules. While for defenders, we hope we gave some practical advice on how to spot this
specific tool and more generally, monitor pipe anomalies using tools such as Sysmon.

9/9

https://www.cobaltstrike.com/help-malleable-c2
https://github.com/threatexpress/malleable-c2/blob/master/jquery-c2.4.2.profile

