
1/9

Purgalicious VBA: Macro Obfuscation With VBA Purging
fireeye.com/blog/threat-research/2020/11/purgalicious-vba-macro-obfuscation-with-vba-purging.html

Threat Research

Andrew Oliveau, Alyssa Rahman, Brett Hawkins

Nov 19, 2020

9 mins read

Threat Research

Malicious Office documents remain a favorite technique for every type of threat actor, from red teamers to FIN groups to
APTs. In this blog post, we will discuss "VBA Purging", a technique we have increasingly observed in the wild and that was
first publicly documented by Didier Stevens in February 2020. We will explain how VBA purging works with Microsoft Office
documents in Compound File Binary Format (CFBF), share some detection and hunting opportunities, and introduce a new
tool created by Mandiant’s Red Team: OfficePurge.

MS-OVBA File Format

Before diving into VBA Purging, it is important to understand certain components of Microsoft’s specifications on VBA macros
(MS-OVBA). We focus on MS-OVBAs in Microsoft Office 97 documents that use the CFBF file format, instead of the modern
Open Office XML (OOXML) format used by Microsoft Excel “.xlsx” and Microsoft Word “.docx” documents.

MS-OVBA’s file structure stores all VBA data in a hierarchy, which consists of structured storage that contain different types of
streams. VBA code in an Office document is stored in various module streams that consists of two parts: the
PerformanceCache (also known as P-code), and the CompressedSourceCode. The PerformanceCache section is an array of
bytes that contains compiled VBA code. The CompressedSourceCode section contains VBA source code that is compressed
with Microsoft’s proprietary algorithm. The boundary between the two sections is determined by a MODULEOFFSET, which is
stored in the dir stream. A diagram of a module stream is shown in Figure 1.

https://www.fireeye.com/blog/threat-research/2020/11/purgalicious-vba-macro-obfuscation-with-vba-purging.html
https://blog.nviso.eu/2020/02/25/evidence-of-vba-purging-found-in-malicious-documents/
https://github.com/mandiant/OfficePurge
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/575462ba-bf67-4190-9fac-c275523c75fc
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/005bffd7-cd96-4f25-b75f-54433a646b88

2/9

Module stream diagram

Figure 1: Module stream diagram

When a VBA macro is added to a document, the VBA engine saves a compiled version in the PerformanceCache section of
the relevant module stream to increase performance. However, an Office application will only access the PerformanceCache
if its version and architecture match what was used to compile the original VBA code. This version and implementation
information is stored in the _VBA_PROJECT and __SRP_# streams. If the versions do not match, the compressed source
code is decompressed, compiled, and run instead.

VBA Purging vs VBA Stomping

In 2018, research by the Walmart security team brought a technique known as “VBA Stomping” to wider public awareness.
Originally identified by Dr. Vesselin Bontchev in 2016, this technique allows attackers to remove compressed VBA code from
Office documents and still execute malicious macros without many of the VBA keywords that AV engines had come to rely on
for detection. For an example of VBA stomping in-the-wild, check out “STOMP 2 Dis: Brilliance in the (Visual) Basics”.

VBA stomping takes advantage of how module streams are interpreted and exchanges malicious CompressedSourceCode
with non-malicious VBA source code, leaving the PerformanceCache untouched. However, the success of this technique is
Office-version dependent, implying that an attacker would have to do additional recon on their target and be aware of their
victims’ deployed Office versions.

VBA purging modifies the module streams in the opposite way. Instead of changing the CompressedSourceCode, VBA
purging completely removes the PerformanceCache data from the module stream and the _VBA_PROJECT stream, changes
the value of the MODULEOFFSET to 0, and removes all SRP streams (this is necessary because the _VBA_PROJECT and
SRP streams contain version-dependent PerformanceCache data that will result in a runtime error when there is no
PerformanceCache in the module stream). This removes strings usually found in PerformanceCache that many AV engines
and YARA rules depend on for detection. Once removed, attackers are able to use more standard methodologies and
execute suspicious functions (i.e. CreateObject) without being detected.

Figure 2 shows the OLE streams for a normal and a purged document, extracted using oledump. In the original document,
the Module1 PerformanceCache is 1291 bytes, while it is 0 bytes in the VBA purged document. The purged document has no
SRP streams and the _VBA_PROJECT stream has been reduced to 7 bytes.

https://vbastomp.com/
https://github.com/bontchev/pcodedmp
https://www.fireeye.com/resources/stomp-2-dis-brilliance-in-the-visual-basics
https://blog.didierstevens.com/programs/oledump-py/

3/9

Analyzing VBA purged document with oledump

Figure 2: Analyzing VBA purged

document with oledump

Testing the Effectiveness of VBA Purging

Mandiant’s Red Team created a command line, C# tool called OfficePurge to test this technique. OfficePurge supports
Microsoft Office Word, Excel and Publisher documents that follow the CFBF file format. In the following examples, we used
OfficePurge and a VBA payload from the public toolkit Unicorn to test the effectiveness of VBA purging a Microsoft Office
Word document that contained a Base64 encoded PowerShell payload (Figure 3).

https://github.com/mandiant/OfficePurge
https://github.com/trustedsec/unicorn

4/9

Macro payload generated with Unicorn

Figure 3: Macro payload generated

with Unicorn
The strings output (Figure 4) for the original Word document shows Unicorn’s Base64 encoded PowerShell payload, which is
detected by many security products. On the other hand, the output for the VBA purged document does not fully show the
Base64 encoded payload because the PerformanceCache is removed. The CompressedSourceCode still contains the
Base64 encoded payload, but Microsoft’s custom compression algorithm splits the strings, making it harder for static analysis
to detect it.

5/9

Strings output with a purged and non-purged document

Figure 4: Strings output with a purged

and non-purged document
Both documents were submitted to online sandboxes to test detection capabilities of various products. VirusTotal’s detection
rate of the original document (36/60) dropped by 67% after it was VBA purged (12/61). VirusTotal also categorized the non-
purged document as “create-ole”, “doc”, and “macros”, whereas the purged document was only categorized as “doc”.

https://www.virustotal.com/gui/file/f4431f02fe1e624fdb7bf2243bb72f1899d7eccb1ed7b2b42ed86e001e8bff28/detection
https://www.virustotal.com/gui/file/98bd119f928e8db4ed45f5426f2c35c5f6d6ccc38af029e7ab4b9cfcc1447c53/detection

6/9

VirusTotal detection results for non-purged Word document

Figure 5: VirusTotal detection results

for non-purged Word document

VirusTotal detection results for purged Word document

Figure

7/9

6: VirusTotal detection results for purged Word document

Detection and Hunting Opportunities

With OfficePurge, we have the ability to quickly erase compiled VBA code and reduce security product detections in public
sandboxes, but why stop there? Using this test data, our next step is to build conditional detection logic in formats such as
YARA rules, which can identify VBA purged documents and allow us to hunt for previously undetected malicious documents.
Under the “sample-data” folder in the OfficePurge GitHub repo, we have added original and purged documents for each
supported file type with a macro that will spawn calc.exe. SHA256 hashes are included at the end of this post.

As mentioned before, this technique involves removing PerformanceCache data from the _VBA_PROJECT stream. MSDN
documentation shows that the minimum length for the _VBA_PROJECT stream is 7 bytes to fit the required fields in the
stream header. The following YARA rule searches for CFBF files with a 7 byte _VBA_PROJECT stream:

rule FEYE_OLE_VBAPurged_1 {
 meta:

 author = "Alyssa Rahman (@ramen0x3f)"
 description = "This file has a _VBA_PROJECT stream that has been cleared. This is evidence of VBA purging, a

technique where the p-code (PerformanceCache data) is removed from Office files that have an embedded macro."
 strings:

 $vba_proj = { 5F 00 56 00 42 00 41 00 5F 00 50 00 52 00 4F 00 4A 00 45 00 43 00 54 00 00 00 00 00 00 00 00 00 }
 condition:

 uint32(0) == 0xe011cfd0 and (uint32(@vba_proj[1] + 0x78) == 0x07)
 }

Searching with this logic on VirusTotal reveals a large number of malicious documents, meaning this is very prevalent in the
wild and in use by attackers. This rule should identify most publicly documented examples of VBA purging, such as
9fd864e578d8bb985cf71a24089f5e2f (HornetSecurity). However, it may also identify some false positives. As previously
identified by Didier Stevens, some public libraries such as EPPlus may generate benign documents without
PerformanceCache data and appear to be purged.

Another important limitation of this rule is that the _VBA_PROJECT stream data doesn’t have to be completely removed. So
while the stream size is 7 in all publicly documented examples of this technique, it doesn’t have to be exactly 7.

One solution to this is to compare the compressed and compiled versions of a document’s macros and look for unexpected
variations. Another potential option is a YARA rule that searches the _VBA_PROJECT stream for keywords or bytes, which
should appear if the p-code is valid.

But let’s take the easy path first and look for anomalies within OfficePurge. There’s a section within the code that overwrites
the _VBA_PROJECT stream with a static header:

// Remove performance cache in _VBA_PROJECT stream. Replace the entire stream with _VBA_PROJECT header.
 byte[] data = Utils.HexToByte("CC-61-FF-FF-00-00-00");

A little bit of Googling shows this header was built based on Microsoft’s specifications. But if we compare a purged and
unpurged document, it looks like that header actually varies from specifications in practice (Figure 7).

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/43531f35-2801-4cac-b6da-88dc975056da
https://www.virustotal.com/gui/file/038e0a602ddf37976cde6f57007fcf5c3f5f235cc025637b40303db38c3b4ec2
https://www.hornetsecurity.com/en/threat-research/vba-purging-malspam-campaigns/
https://isc.sans.edu/forums/diary/Maldoc+VBA+Purging+Example/26342/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/ef7087ac-3974-4452-aab2-7dba2214d239

8/9

Comparison of purged and unpurged document

Figure 7: Comparison of purged and

unpurged document
This header isn’t necessarily proof that a document is malicious or was created with OfficePurge, but it could be a good
indicator that the document was created programmatically versus with Office products. With anomalies such as this, we can
start building a rule similar to the following, which will search for documents with a “small” _VBA_PROJECT stream and this
suspicious stream header:

rule FEYE_OLE_VBAPurged_2 {
 meta:
 author = "Michael Bailey (@mykill), Jonell Baltazar, Alyssa Rahman (@ramen0x3f), Joseph Reyes"
 description = "This file has a suspicious _VBA_PROJECT header and a small _VBA_PROJECT stream. This may be
evidence of the VBA purging tool OfficePurge or a tool-generated document."
 strings:
 $vba_proj = { 5F 00 56 00 42 00 41 00 5F 00 50 00 52 00 4F 00 4A 00 45 00 43 00 54 00 00 00 00 00 00 00 00 00 }
 $cc61 = {CC 61 FF FF 00 00 00}
 condition:
 uint32(0) == 0xe011cfd0 and (uint32(@vba_proj[1] + 0x78) >= 0x07) and (uint32(@vba_proj[1] + 0x78) < 0xff) and
$cc61
}

Searching with the two rules shared here reveals a wide range of threat actors and malware types leveraging VBA purging, or
at least some type of automated document generation. On VirusTotal, you’re likely to see a number of Emotet payloads
caught by this rule, which is understandable given how heavily it relies on malicious email attachments. Another top offender
we observed was AgentTesla.

Since these rules both turn up benign documents as well, they aren’t ready for a production environment; however, they could
be useful as “weak signals” for more manual threat hunting. Many static detection engines may struggle for accuracy when
identifying the VBA purging technique. Dynamic analysis techniques, such as those used by FireEye’s MVX engine, will still
detonate the malicious document properly and be detected even if the VBA is purged.

Conclusion

9/9

For as long as companies use Office documents, attackers will be trying to smuggle malicious macros into them. VBA purging
represents a recent example of how threat actors continually invent new ways to evade defenders. The artifacts discussed in
this blog post should serve as a starting point for detecting VBA purging, and hopefully the tooling and indicators we have
shared will help you hunt for additional anomalies in malicious Office documents. Check out OfficePurge today!

Indicators of Compromise

File Name Description SHA256 Hash

test.doc Unicorn
macro
payload in
Word
document
without VBA
purging

f4431f02fe1e624fdb7bf2243bb72f1899d7eccb1ed7b2b42ed86e001e8bff28

test2.doc Unicorn
macro
payload in
Word
document
with VBA
purging

98bd119f928e8db4ed45f5426f2c35c5f6d6ccc38af029e7ab4b9cfcc1447c53

excel_calc.xls Sample
document in
OfficePurge’s
“sample-data
folder”

de6583d338a8061bb1fc82687c8f5bff9a36ba1e2a87172e696ffaeca32567af

excel_calc_PURGED.xls Sample
document in
OfficePurge’s
“sample-data
folder”

914a6cf78fe98e80b1dee87347adbc8f8b37a1dfe672aa5196885daa447e9e73

publisher_calc.pub Sample
document in
OfficePurge’s
“sample-data
folder”

4bce7c675edde20a3357bc1d0f25b53838ab0b13824ab7a5bbc09b995b7c832f

publisher_calc_PURGED.pub Sample
document in
OfficePurge’s
“sample-data
folder”

36bdfaaf3ea228844507b1129b6927e1e69a2cd5e8af99d507121b1485d85e1e

word_calc.doc Sample
document in
OfficePurge’s
“sample-data
folder”

23fa4b77c578470c1635fe20868591f07662b998716c51fbb53d78189c06154f

word_calc_PURGED.doc Sample
document in
OfficePurge’s
“sample-data
folder”

a7eac98b3477fc97ccfe94f1419a859061ca944dc95372265e922992bd551529

https://github.com/mandiant/OfficePurge

