
1/24

PoorWeb - Hitching a Ride on Hangul
blog.reversinglabs.com/blog/poorweb-exploiting-document-formats

Threat Research | November 16, 2020

https://blog.reversinglabs.com/blog/poorweb-exploiting-document-formats
https://blog.reversinglabs.com/blog/tag/threat-research

2/24

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

https://blog.reversinglabs.com/blog/author/robert-simmons

3/24

Hangul Office is a popular office software suite in South Korea. It shares the same
compound file format as older versions of Microsoft Office, but has unique features that are
abused to form malicious documents. The landscape of this type of attack has been
analyzed closely in the VirusBulletin talk "DOKKAEBI: Documents of Korean and Evil
Binary". This type of malicious document is the first stage of an attack chain often leading
to a PE executable trojan. Here we start with a set of three malicious Hangul Word Processor
(HWP) documents targeting one victim organization, each with a slightly different set of
stages, but ultimately leading to payloads in one malware family: PoorWeb. Pivoting
outwards from these three, a large number of related attacks is found. This amount of data
can be confusing especially when the attacks are so similar. However, looking at similarities
and differences in malware behavior and code, delineations can be drawn between
campaigns. Armed with this knowledge, the PoorWeb payloads and the various stages that
deliver them are distinct from previous campaigns operated by the same adversary. Within
this campaign, the earliest sample was first seen on March 19, 2019 and the most recent
sample on September 16, 2020.

HWP Summary Information Stream

HWP files use the Microsoft compound file format specification. This means they are made
up of various streams. For the samples analyzed here, two types of streams are very
important to analyze: "HwpSummaryInformation" and "BinData". The purpose of the former is
to store metadata about the document and can include information about the title and author
of the document. Starting with one HWP document , Figure 1 shows the stream that
contains the string "HighExpert" as extracted by Cerbero Profiler.

1

2

3

4

5

 6

7

4/24

Figure 1: "HighExpert" String in HwpSummaryInfomation Stream

According to an ESTsecurity blog, this string appears in a variety of samples in a campaign
dubbed "Operation High Expert". As shown below, this string appears in more than one
location in a variety of samples related to this one.

The Hwp Summary Information (HSI) stream is derived from the specifications for the
Document Summary Information stream seen in other types of compound files. Therefore,
rather than writing YARA rules that detect text strings, one needs to use hexadecimal strings
that include the structure of the HSI property in addition to the string. The rule starts with the
text string "HighExpert" in wide ASCII:

Prepended to these bytes are two components of the HSI property: 1F 00 00 00 and 0B 00
00 00. The former signifies the start of the property record. The latter is the character length
of the property data plus one trailing null byte terminator. In the example here, the string
"HighExpert" has 10 characters and 0x0B is 11 in decimal. The resulting YARA rule is shown
in Figure 2. The rule is provided at the end of the blog.

8

9

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_1.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_2.jpg

5/24

Figure 2: HighExpert HWP YARA Rule

Using this rule, 11 other HWP files are identified. These files are shown in the Titanium
Platform in Figure 3. File hashes for these samples are provided at the end of the blog.

Figure 3: HighExpert HWP Samples

However, these are not a complete picture of all the malicious HWP files that are used to
deliver the same payload as the one we started with. To find more, a wider net must be cast.
To find those additional files, we start with all the HWP documents in the Titanium Platform
file lake that are detected as malicious and search among them for files with the same
structure as the ones we just identified. From the list of files above, there are two general
types of file. The first type is similar to the sample we started with which has a malicious
encapsulated PostScript BinData stream. The second type contains an embedded
compound file in a BinData stream that in turn contains the PE executable dropper.

PostScript Shellcode Loader

The first general type of malicious HWP document is one that contains an encapsulated
PostScript BinData stream. The stream is zlib compressed, so the first step is to extract it.
This step is shown in Figure 4.

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_3.jpg

6/24

Figure 4: Extract Encapsulated PostScript Stream

Instructions for analysis of these types of HWP files can be found here and here . Once
the encapsulated PostScript (EPS) has been extracted, one can see that there is a large
chunk of data encoded as hexadecimal ASCII as well as an XOR key. A truncated image of
this EPS is shown in Figure 5.

Figure 5: Encapsulated PostScript with XOR Encoded Data

Next, one needs to decode the XOR encoded data. This can be done using Ghostscript as
shown in the blog above by replacing the "exec" instruction with a "print" instruction. The
resulting output is a shellcode loader as can be seen in Figure 6 with calls to VirtualProtect
and ExitProcess highlighted. This image is also truncated.

10 11

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_4.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_5.jpg

7/24

Figure 6: PostScript Shellcode Loader

An alternative method for extracting the shellcode loader is to use CyberChef to convert
the data from hexadecimal representation and then apply the XOR key. This is shown in
Figure 7.

Figure 7: CyberChef XOR Decoding

12

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_6.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_7.jpg

8/24

In addition to this sample, the other two HWP files analyzed use variants of this same
shellcode loader. The latter, in fact, contains the exact same loader and shellcode as the file
analyzed. This loader appears to be a template reused in other malicious HWP files that do
not deliver the same eventual PE payload as these three. Figure 8 shows the change in
variable names from one of these different samples to the variable names used in the
sample analyzed above. The string "label" in one sample is "Y" in the other sample.

Figure 8: PostScript Shellcode Loader Template

An ESTsecurity analysis of the sample with the string "label" can be read here. The other
sample that uses this same template also uses the same variable name "Y", but it does
not deliver the same payload as the samples analyzed here.

Shellcodes

Across these three samples, there are two different shellcodes loaded by the PostScript
analyzed above. One of the two shellcodes is very simple with the download URL visible .
This shellcode is seen in the hex editor Hex Fiend in Figure 9. An analysis of this file can
be found on ESTsecurity's blog .

Figure 9: Smaller Shellcode with Visible Download URL

The other shellcode is much larger and more complex. It begins with a tiny decoder stub
which decodes the rest of the shellcode in place. It additionally contains two URLs that
appear to be download URLs, but are in fact decoys that dress the shellcode up to look like
others attributed to a different adversary. Details of this subterfuge found in a similar sample
can be read in another ESTsecurity blog here . These decoy URLs can be seen in Figure
10.

13 14

15 16

17

18

19

20

21

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_8.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_9.jpg

9/24

Figure 10: Decoy Download URLs

So that this shellcode is easier to analyze, it needs to be converted to a full PE executable.
One method for making this conversion is detailed here . The output of this conversion is
seen in Figure 11.

Figure 11: Conversion of Shellcode to PE Executable

The new executable's process of extracting the rest of the malicious code can best be seen
in Figure 12.

22

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_10.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_11.jpg

10/24

Figure 12: Video of Stub Extracting Malicious Code

The next stage is downloaded from a URL hosted on hpc[.]kau[.]ac[.]kr. This action is
shown in Figure 13. The download is performed by URLDownloadToFileA .

Figure 13: Download Next Stage

Once the download is complete, the shellcode executes the file using the WinExec API. This
is MITRE ATT&CK technique "Native API" (T1106) . This API is executed via a jump rather
than a call instruction. This can be seen in Figure 14.

23

24

25

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_13.jpg

11/24

Figure 14: Execution via WinExec

In a lab environment, this shellcode is observed executing the default binary downloaded
from Inetsim . This can be seen in Figure 15.

Figure 15: Shellcode Execution of Dummy Binary in Lab Environment

Droppers

26

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_14.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_15.jpg

12/24

Returning to the set of HighExpert HWP documents, there is a second pattern in addition to
the encapsulated PostScript stream with the shellcode loader seen above. This second
pattern is a pure dropper. The first stage PE executable is nested inside a second compound
file which is located in another BinData stream. Figure 16 shows this malicious stream with
the compound file magic number 0xD0CF11E0A1B11AE1 highlighted. The file shown here
has the same PE embedded as was downloaded from the URL shown above.

Figure 16: BinData Stream with Compound File

Going one more layer deep, this compound file is not very complex, but it does contain a
path that includes a user directory name in DOS short name format. The full directory name
is almost certainly "HighExpert". These bytes are followed immediately by the malicious PE.
Both of these are highlighted in Figure 17. A full list of files from the large group of malicious
HWP documents that match either of the two patterns of structure, shellcode/downloader
and dropper, is provided at the end of the blog.

Figure 17: Path with Username and Embedded PE

All of the droppers have a similar execution pattern. One example of this pattern from the
embedded PE shown above can be seen in Figure 18.

27 28

29

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_16.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_17.jpg

13/24

Figure 18: Execution Graph

Cast a Wide Net

With the malicious HWP files enumerated, the next step is to find more droppers,
downloaders, and payloads that are potentially related to the ones found during HWP
analysis. One avenue of inquiry is to find files that call out to the same infrastructure as the
known samples. Another is to look at files that share one or more AV detection names. The
results of one of these infrastructure searches in the Titanium Platform is shown in Figure 19
and an example of the results from a search for threat name is shown in Figure 20.

Figure 19: Domain Search

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_18.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_19.jpg

14/24

Figure 20: Threat Name Search

Behavior

Once a wide enough net has been cast, the resulting file set must be whittled down to just
the files that have similar behavior or structure to the ones analyzed above. First step is to
send all the samples to a sandbox to observe the dynamic behavior. Fortunately, this can be
done automatically in the Titanium Platform in the Cuckoo Sandbox feature. Some of the files
from this large set have a very similar behavior pattern. One example of this is shown in
Figure 21. The main difference is the filename of the dropped file, sorvices.exe.

Figure 21: Behavioral Analyses

30

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_20.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_21.jpg

15/24

Structure

Behavioral analysis shows which samples are related, but may not be precisely the same
malware. Two variants or revisions of a particular malware may exhibit identical or similar
behavior patterns. To really create more accurate groupings, one examines the control flow
graphs of the PE executables. To make sure that apples are compared to apples and
oranges to oranges, all the control flow graphs are generated using radare2 and Cutter .
Focusing on the main function as detected by radare2 or the very first subroutine with
adversary code, a set of thumbnail images were generated and the resulting graphs
separated into groups based on similar control flow. For the payload files as identified via
automated dynamic analysis, there emerge three basic patterns of control flow. These three
graphs are shown in Figure 22.

Figure 22: Control Flow Graph Comparison

Using this same process on the droppers and downloaders, sets of similar control flow are
grouped together. A full list of hashes of these groups are provided at the end of the blog.

32

31

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_22.jpg

16/24

Programming Errors

During dynamic analysis of the set of droppers, downloaders, and payloads, a specific,
repeated programming error is observed within one set of droppers that all share similar
control flow and execution graphs. The very first string that the malware decodes is treated
like a download URL and is used as a call parameter to the InternetOpenUrlA function.
This flaw is divided into two groups. In the first group, the string is a command line
command. An example of this in one file is shown in Figure 23.

Figure 23: Not a URL

The second pattern is a bit better effort, but is still not a complete URL. This other pattern
can be seen in Figure 24 in a different file .

Figure 24: URL Fragment Not a URL

In the Titanium Platform, these same failed API calls can be surfaced easily by navigating to
the Cuckoo Sandbox Behavioral Analysis, and then sorting the resulting table by status.
Failed API calls will then be visible at the top of the table. The same two failed API calls
shown above can be seen in Figures 25 and 26 in the Titanium Platform.

33

34

35

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_23.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_24.jpg

17/24

Figure 25: Failed API Call to InternetOpenUrlA

Figure 26: Failed API Call to InternetOpenUrlA

The file above which has a URL fragment rather than a full URL also is observed to drop a
payload that is not in the group 1 according to control flow. This file is the odd one out and
the only dropper within its group of similar control flow that drops a payload with a different
control flow than the rest in the group. All groups and file hashes are provided at the end of
the blog.

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_25.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_26.jpg

18/24

Evolution of String Obfuscation

Examining control flow is a decent method for differentiating among samples at a macro
level, but one must also dig down to the code level to see what other similarities and
differences can be found. As a rule of thumb, loops and code that obfuscates or decodes
adversary strings are excellent locations to focus on. With this in mind, there are two basic
patterns that can be seen in the groups of samples. Looking first at the group of samples that
include the payloads from the HWP files analyzed above (control flow pattern 1), a two stage
decoding and deobfuscation process is observed. An example of this process being used to
decode a C2 hostname in one file from control flow group 1 is shown in Figure 27. An
example of this process being used to decode a C2 hostname in one file from control flow
group 3 is shown in Figure 27.

36

19/24

Figure 27: C2 Hostname Decoding Process

A very similar process is used in payloads from control flow group 2 and 3, but it is a single
XOR step applied to chunks data rather than character by character as seen above.
Examples of these are shown in Figures 28 and 29. These two examples are from control
flow group 2 and 3 respectively. Both are slight modifications of a single theme.

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_27.jpg

20/24

Figure 28: String Decoding Process

Figure 29: String Decoding Process

The two-step XOR pattern appears in a few different variants among control flow group 3.

Conclusion

According to the September 2020 Microsoft Digital Defense Report regarding nation state
threats, "the most frequently targeted sector has been non-governmental organizations
(NGOs), such as advocacy groups, human rights organizations, nonprofit organizations, and
think tanks focused on public policy, international affairs, or security." This may explain why
malware families such as the one analyzed above do not garner as much focus in the media
today as do ransomware or attacks targeting critical infrastructure. However, these attacks

37

https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_28.jpg
https://blog.reversinglabs.com/hubfs/Blog/poor-web/poor_web_figure_29.jpg

21/24

are very important. Hopefully, the processes shown above can assist in enumerating and
categorizing samples from this type of attack with the goal of detecting and preventing future
attacks.

Campaign Indicators

HWP Documents (Droppers)

73069aa5890b22b79e03ef7bd86ce15e2a26270fc011f27ed3eb15b329bd9b97
 11c1d41668667220b50ec436f7325af1fffa43a40a1c3a227b69d6ffa98fa97d

 4b249546ff2cab9ea49a98a10b200f7ebef76a5de116cdf31af31a045e743bfa
 4c8be817d4de798bb541640894aa153dbf37bb03fd788d04e1461f184c631cf7

 f3e65b66e03fcd15e00e67a0f756ec9fdc95cfe111e7bc4ce6cc176525836e49
 252e9f7856f221338ade8756849871d009b53e7f624bbbac879b8346cd657b02

656d0dc4e7d1da530397b7b140559ea404ba66f6d9694f72a553f0255f13fb0b
 99a6b3b15f0e805a5ae98048dea41d5ed9c94e2de1500d7d8250e4ce36deb8b1

 24983121690aaf2e648a9e19860e9e55f3105aa8f1b0549f2ab239b25c97022b
 65e821470779cd13297a6ecdfd6a263ee0bec5acf1b3a80d8f2f3946e7d33329
 80f566efbdceac356a09e3e97e128966e773db43b3a81c460ca35747445ef17b
 d2fe12893b35d775830aa0ef25a81748d6a669188709303aa404405c466f9fff

 7ac5311e3f81ea20951b19b9315e26923f2b340b67322e29f439f120898d4f16
 6f1881c6809982ce9de4dac20ce6cbcc9aa8841db6f81df37f815621c1970f85

 12c5f8c63803403859268f000135dbb9c2c104d480705819447464c5439f6efa
 2cc52400575174c0eb132e349c26a7ea0e5ec673fa504d12f9089a9039bbd703

 3c0024f6066376415acdb01d55e0b332ce462ef2ca065d5d3843686e5e140c71

HWP Documents (Downloaders)

ea91f1e475ab4eb54971a0e7adbd61d690136abf1b2ab76b94a246515f65b9a3
 6f111be4a0cb4f033639f906f512b7feb1632630bec58285c9cd5969ae8a6ff3

 aa461e70ab464a503d1e647e693df7ececfff86d497ee0c57c9448302878a05a
 942baec89b2474f41fa6c7b1bc085ac5c62c97fc1cadd56e4d3d6ff7b45e4368

Executables (Downloaders)

0a960dd9c015545c2fe4d4f39bae6f9e7af1afb1933900f105c5ae9ec51a446d

Executables (Droppers)

ec8cf2570f869c897ca9d898279d10b9c3b137eb4db6b7d68c7f524dc5332af9
 1958b75e2ef787fdb9938053f117da9ba9866509000af547e700dfb6a806d721
 d6a0444a111227650902c5b1229347824e0317b7842f085b826787d1e9ea5165

 836df87c3a87d8308075edb7aaec3ed13502ecefe0b7136791246295c459fa41
 87ebae83d90f49d5232266d5c27ac3be2fcf7e692332a235045cf8075c1b3b91

38

39

22/24

9a316c168e3bc0f27a6884e44f5beff0587debcdcea5a662783a856d4a244437
7510b511093b09fe2bb0e9f7b60b80a40fabde9a6914842e10cf702b51393298
b5453db394ce8c22330fe620ab62a8a40ab491992e93d7f495d0370b93bf9688
73d65cd0b513cadaaa76b559ada28996eb06b68954538fc628e03893f5ff85e8
3c844c1d7060aa6d063f71081df5f49e3a205e398b7a719939b04f9e260200f1
fa8f890514fe0ff1559d7ba760ebbbdb5de4658fae3e53a5704294a270f8926a
7c46ed90abba6913b6770926d7562df1a926a91e55e36f20838df07c5eba621e
59c70843d1791d40be632196851c355e7f14104bff24233b243f7cfed3f3f473

Executables (Payloads)

6882ba20ca9e7c34897123931488007741987eb805f40b13f23ed1a221d21c5e
6a36a82767ba11ce6f313c0895da41d8dcf373b18b9efa0639e8fd76d639c987
ad3fada660f40b5d3ce2c6187dffc07507e7461a3d3ac249fbb6850e6028d517
9e2d374bfc9e099d376f5255f194608dcedbba68ac16611ed3eb8fdc1e030586
90f0582453f49d3b38da03b289d0ffcad4f691ab89f6acb922511e081d472667
d074bbb7d821a58edfcf5fb20b6d632357779bd6554d9033b11859fc95262650
fa7c09036e545cb4898df21e284d81aded9d1d86e85af899bfb14d16a19b625c

Outgroup Indicators

Executables (Droppers)

0455e0788715ba74503ce23784de9d9839ce80418ed8abac758f18983feeec8e
 a1a4cc7ff9c58c07fb3cbd1799809ccd2ca46f961c6baf9eb5d2f847eb5dae3c

 f9f95afaecc0b3ee6cb0828f9fb9c8af0e025e06e66bc85fb1a34d1520306b33
 ce5cbdc387a4b988b8ed3caacc4ac2414e80258d2ee9b7889d6064c4cb436a23

 f5e1ced1f2c52980ce54a50212b5bc89eaa5870078a5b12e1c738857052c8978

Executables (Payloads)

a201ae69d8c84d1c95f87dced704a38ad4e131c7e36d60b88ff859ba3bf7aab1
 e452536f98446f54c6527106c7b123de12f010d3f1fcb25812f533d797253128

 142f8cd20af1065eed8685056977b16f3e3b3c6da877abdd244f1519cd4b3b32
 d057088d0de3d920ea0939217c756274018b6e89cbfc74f66f50a9d27a384b09

Executables (Payloads)

7a3ab8b865f9581806f259d8a165ad7517294e9d576792d293d2be6922548047
 f007369641e5eed5f575bfe57ebea68132a6963793a3fda520f31b4870b1cab6

 c9d1c5bab22f16cb06a9ca9209710c2f92a250903c2119750c220bfb8aaff348
 9fe2c4af5b7a80ae8d714908db4039cc3eafb4ca122e331a7b397aef41f6752f
 2fa25c729c8cf1a0e4b7ce71d1840837013682dc704c1ddccc385a3960868ac9

 c73ff2398ee0a564830508f1766cdbb2662037593db669d2fa1bc74af93525ed

40

41

23/24

5d88596be0e998340e12c885645bbca7a57f0d80110a312b71bb6f2df443c7b0
9f01dd87c28a9789a7730c6675995527cd5c2fdfd5b539d84b027e1107121a2c
2c1d693401930b455759fe8ab580d3ca7c47c574a1c67cabdfbe91fd01377f13

YARA Rules

rule HighExpert_HWP_HSIProp
 {

meta:
 author = "Malware Utkonos"

 date = "2020-08-24"
 description = "HWP summary information property entry in malicious Hangul Word Processor

document: Operation High Expert."
 reference = "https://blog.alyac.co.kr/2226"

 strings:
 $a = { 1F 00 00 00 0B 00 00 00 48 00 69 00 67 00 68 00 45 00 78 00 70 00 65 00 72 00 74

00 }
 condition:

 uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1 and $a
 }

References:
 1 https://en.wikipedia.org/wiki/Hangul_(word_processor)

 2 https://www.virusbulletin.com/conference/vb2018/abstracts/dokkaebi-documents-korean-
and-evil-binary

 3 https://malpedia.caad.fkie.fraunhofer.de/details/win.poorweb
 4 fa7c09036e545cb4898df21e284d81aded9d1d86e85af899bfb14d16a19b625c

 5 ec8cf2570f869c897ca9d898279d10b9c3b137eb4db6b7d68c7f524dc5332af9
 6 ea91f1e475ab4eb54971a0e7adbd61d690136abf1b2ab76b94a246515f65b9a3

 7 https://cerbero-blog.com/
 8 https://blog.alyac.co.kr/2226

 9 https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/7dc15eb9-c84d-
4eb5-844b-0e78e072214f

10 https://norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-
document-from-a-dprk-th

 reat-actor-group/
 11 https://www.fortinet.com/blog/threat-research/debugging-postscript-with-ghostscript

 12 https://github.com/gchq/CyberChef
 13 aa461e70ab464a503d1e647e693df7ececfff86d497ee0c57c9448302878a05a

 14 6f111be4a0cb4f033639f906f512b7feb1632630bec58285c9cd5969ae8a6ff3

https://en.wikipedia.org/wiki/Hangul_(word_processor)
https://www.virusbulletin.com/conference/vb2018/abstracts/dokkaebi-documents-korean-and-evil-binary
https://malpedia.caad.fkie.fraunhofer.de/details/win.poorweb
https://cerbero-blog.com/
https://blog.alyac.co.kr/2226
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/7dc15eb9-c84d-4eb5-844b-0e78e072214f
https://norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-document-from-a-dprk-th%20reat-actor-group/
https://norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-document-from-a-dprk-th%20reat-actor-group/
https://www.fortinet.com/blog/threat-research/debugging-postscript-with-ghostscript
https://github.com/gchq/CyberChef

24/24

15 7c5db78537f3a28b9bcfe8f75e86c36038e5929d2206d59827fca4fb524d41c1
16 https://blog.alyac.co.kr/m/2336
17 2196a88f27c3f813e5b359b9be31ed5122a678bcec447827a98e5f2078b2d666
18 hxxp[://]ub-farm[.]com/admin/tmp/banner.gif
19 https://ridiculousfish.com/hexfiend/
20 https://blog.alyac.co.kr/2281
21 https://blog.alyac.co.kr/2453
22 https://www.hexacorn.com/blog/2015/12/10/converting-shellcode-to-portable-executable-
32-and-64-bit/
23 hxxp[://]hpc[.]kau[.]ac[.]kr/rolling_banner/tmp4c5ae3[.]p3a
24 https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-
developer/platform-apis/
ms775123(v=vs.85)
25 https://attack.mitre.org/techniques/T1106/
26 https://www.inetsim.org/
27 4b249546ff2cab9ea49a98a10b200f7ebef76a5de116cdf31af31a045e743bfa
28 hxxp[://]hpc[.]kau[.]ac[.]kr/rolling_banner/tmp4c5ae3[.]p3a
29 73d65cd0b513cadaaa76b559ada28996eb06b68954538fc628e03893f5ff85e8
30 ce5cbdc387a4b988b8ed3caacc4ac2414e80258d2ee9b7889d6064c4cb436a23
31 https://github.com/radareorg/radare2
32 https://github.com/radareorg/cutter
33 https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenurla
34 7510b511093b09fe2bb0e9f7b60b80a40fabde9a6914842e10cf702b51393298
35 dc69b98da87a7b6b683359082b63d1e945cbef17a32d432d11c5f488399460ab
36 90f0582453f49d3b38da03b289d0ffcad4f691ab89f6acb922511e081d472667
37 https://blogs.microsoft.com/on-the-issues/2020/09/29/microsoft-digital-defense-report-
cyber-threats/
38 This grouping of indicators is based on the payloads of type 1 and the stages that deliver
them.
39 This file is only associated with the campaign through OSINT, not behavioral observation.
The two
sources of this association are https://otx.alienvault.com/pulse/5c99ee9aa9e60a68a9b55aec
and
https://otx.alienvault.com/pulse/5c914fcb2a0f7c3043d01d5e
40 This file is structurally different from the majority of the others in this grouping.
41 Ibid.

Watch our Webinar: Understanding attacks like Ryuk before it’s too late

MORE BLOG ARTICLES

https://blog.alyac.co.kr/m/2336
https://ridiculousfish.com/hexfiend/
https://blog.alyac.co.kr/2281
https://blog.alyac.co.kr/2453
https://www.hexacorn.com/blog/2015/12/10/converting-shellcode-to-portable-executable-32-and-64-bit/
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://attack.mitre.org/techniques/T1106/
https://www.inetsim.org/
https://github.com/radareorg/radare2
https://github.com/radareorg/cutter
https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenurla
https://blogs.microsoft.com/on-the-issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/
https://otx.alienvault.com/pulse/5c99ee9aa9e60a68a9b55aec
https://otx.alienvault.com/pulse/5c914fcb2a0f7c3043d01d5e
https://register.reversinglabs.com/understanding-attacks-like-ryuk-before-its-too-late-thank-you

