
1/28

The BlackBerry Research & Intelligence Team

The CostaRicto Campaign: Cyber-Espionage Outsourced
blogs.blackberry.com/en/2020/11/the-costaricto-campaign-cyber-espionage-outsourced

With the undeniable success of Ransomware-as-a-Service (RaaS), the cybercriminal market has expanded its portfolio to
add dedicated phishing and espionage campaigns to the list of illicit services on offer…

During the past six months, the BlackBerry Research and Intelligence team have been monitoring a cyber-espionage
campaign that is targeting disparate victims around the globe. The campaign, dubbed CostaRicto by BlackBerry, appears to
be operated by “hackers-for-hire”, a group of APT mercenaries who possess bespoke malware tooling and complex VPN
proxy and SSH tunnelling capabilities.
Mercenary groups offering APT-style attacks are becoming more and more popular. Their tactics, techniques, and
procedures (TTPs) often resemble highly sophisticated state-sponsored campaigns, but the profiles and geography of their
victims are far too diverse to be aligned with a single bad actor’s interests.

Although in theory the customers of a mercenary APT might include anyone who can afford it, the more sophisticated actors
will naturally choose to work with patrons of the highest profile – be it large organizations, influential individuals, or even
governments. Having a lot at stake, the cybercriminals must choose very carefully when selecting their commissions to
avoid the risk of being exposed.

Outsourcing an espionage campaign, or part of it, to a mercenary group might be very compelling, especially to businesses
and individuals who seek intelligence on their competition yet may not have the required tooling, infrastructure and
experience to conduct an attack themselves. But even notorious adversaries experienced in cyber-espionage can benefit
from adding a layer of indirection to their attacks. By using a mercenary as their proxy, the real attacker can better protect
their identity and thwart attempts at attribution.

Key Findings:

https://blogs.blackberry.com/en/2020/11/the-costaricto-campaign-cyber-espionage-outsourced
https://blogs.blackberry.com/en/author/the-blackberry-research-and-intelligence-team

2/28

CostaRicto targets are scattered across different countries in Europe, Americas, Asia, Australia and Africa, but the
biggest concentration appears to be in South Asia (especially India, Bangladesh and Singapore), suggesting that the
threat actor could be based in that region, but working on a wide range of commissions from diverse clients.

The command-and-control (C2) servers are managed via Tor and/or through a layer of proxies; a complex network of
SSH tunnels are also established in the victim’s environment. These practices reveal better-than-average operation
security.

The backdoor used as a foothold is a new strain of never-before-seen malware – a custom-built tool with a suggestive
project name, well-structured code, and detailed versioning system. The earliest timestamps are from October 2019,
and based on the version numbers, the project appears to be in the debug testing phase. It’s not clear as of now if it’s
something that the threat actors developed in-house or obtained for exclusive use as part of beta testing from another
entity.

The timestamps of payload stagers go back to 2017, which might suggest the operation itself has been going on for a
while, but used to deliver a different payload. It’s not impossible, though, that the stagers are simply being reused
without recompilation (i.e.: by changing the C2 URLs via binary editing).

The backdoor project is called Sombra, which is a reference to an Overwatch game persona – an agent of the
antagonist organization, who specializes in espionage and intelligence assessment and is characterized by stealth,
infiltration and hacking skills.

Some of the domain names hardcoded in the backdoor binaries seem to spoof legitimate domains (e.g.: the malicious
domain sbibd[.]net spoofing a legitimate domain of the State Bank of India Bangladesh, sbibd.com). However, victims
affected by these backdoors are unrelated, suggesting reuse of existing infrastructure which served another purpose.

One of the IP addresses which the backdoor domains were registered to overlaps with an earlier phishing campaign
attributed to APT28 (i.e.: according to RiskIQ data, the SombRAT domain akams[.]in was at the time of attack
registered to the same IP address as the phishing domain mail.kub-gas[.]com). However, BlackBerry researchers
believe that a direct link between CostaRicto and APT28 is highly unlikely. It might be that the IP overlap is
coincidental, or – just as plausible – that the earlier phishing campaigns have been outsourced to the mercenary on
behalf of the actual threat actor.

Targeting

Unlike most of the state-sponsored APT actors, the CostaRicto adversary seems to be indiscriminate when it comes to the
victims' geography. Their targets are located in numerous countries across the globe with just a slight concentration in the
South-Asian region:

India
Bangladesh
Singapore
China
U.S.
Bahamas
Australia
Mozambique
France
Netherlands

https://overwatch.fandom.com/wiki/Sombra
https://blogs.blackberry.com/en/2019/08/inside-the-apt28-dll-backdoor-blitz

3/28

Austria
Portugal
Czechia

The victims’ profiles are diverse across several verticals, with a large portion being financial institutions.

Delivery

After gaining access to the victim’s environment (presumably by using stolen credentials, either obtained via phishing, or
bought on the dark web), the attacker sets up remote tunnelling using a SSH tool. The tool is configured to redirect traffic
from a malicious domain to a proxy that is listening on a local port. The tunnel is authenticated using the attacker’s private
key.

In order to pull down the backdoor, a payload stager, either HTTP or reverse-DNS, is executed with the use of a scheduled
task.

The backdoor comes either wrapped up in a PowerSploit reflective loader, or in the form of a custom-built dropper that uses
a simple virtual machine (VM) mechanism to decode and inject the payload.

Toolset

SombRAT: A custom backdoor (with both x86 and x64 versions)
CostaBricks: A custom VM-based payload loader (seen only with x86 SombRAT payloads so far)
PowerSploit’s reflective PE injection module (seen with x64 SombRAT payloads)
HTTP and reverse-DNS payload stagers
nmap: Port scanner
PsExec

PS1 Loader (x64)

The 64-bit backdoor is deployed in a fairly standard way. It is distributed as a set of scripts and encrypted files and utilizes a
PowerShell loader based on the Invoke-ReflectivePEInjection PowerSploit module to decode and inject the final payload
DLL into memory:

File Name Function

autorun.bat Obfuscated batch script that sets PowerShell execution policy to unrestricted and executes autorun.ps1

autorun.ps1 Obfuscated PowerShell script that decodes and executes another PowerShell loader stored in ntuser.c file

ntuser.a XOR key used to decode the PowerShell loader and payload binary

ntuser.b XOR encoded payload binary

ntuser.c XOR encoded Invoke-ReflectivePEInjection module, modified to add payload decryption routine

CostaBricks Loader (x86)

The loader used with 32-bit backdoors is more technically compelling. It implements a simple custom-built virtual machine
mechanism that will execute an embedded bytecode to decode and inject the payload into memory.

This attempt at obfuscation, although not new, is rather uncommon in relation to targeted attacks. Code virtualization has
been most prevalent in commercial software protectors which use much more advanced solutions; simpler virtual machines
are sometimes also featured in off-the-shelf malicious packers used by widespread financial crimeware. This particular

https://powersploit.readthedocs.io/en/latest/CodeExecution/Invoke-ReflectivePEInjection/

4/28

implementation, however, is unique (there are just a handful of samples in the public domain) and seems to be used only
with SombRAT payloads – which makes us believe it is a custom-built tool that is private to the attackers.

To further confuse anti-malware solutions, the loader contains the entire unobfuscated code of a legitimate open source
application called Blink (https://github.com/crosire/blink), which never gets executed:

Figure 1: Strings belonging to Blink code

There is also an unused zlib decompression routine that seems to be leftover code from an older version of the loader.

The compilation timestamps suggest that both the loader and the embedded payload are compiled at the same time (with
only a few seconds difference).

One of the loaders had the following PDB path, suggesting that the internal name of the project is CostaRicto/ CostaBricks:

Figure 2: PDB path from one of the x86 loader samples

Virtual Machine Internals

The virtual machine mechanism is implemented with the usage of C++ objects and classes. There are 20 different VM
instructions, each having between zero and three operands. A pointer to the bytecode to execute is passed as a parameter
to the VM initialization routine:

https://github.com/crosire/blink

5/28

Figure 3: Initialization of the virtual machine

A VM instance is initialized by setting its context structure, which contains the instruction pointer, zero flag, instructions list
and pointer to the registers:

Offset Field Description

0x00 Instruction pointer Index of the bytecode instruction to execute

0x04 Zero flag Used for conditional jumps

0x08 Instructions_list.first Points to the first instruction in the list

0x0C Instructions_list.current Points to the current instruction in the list

0x10 Instructions_list.next Points to the next instruction in the list

0x14 Registers pointer Points to the list of registers

0x18 Registers count Incremented when new register is allocated

Instructions and Operands

Instructions, operands, and opcode handlers are implemented as doubly linked lists. Each VM instruction has its own index
and contains information such as the opcode number, flags, operands count, and the operands:

Figure 4: An example of VM instruction format for the SUB opcode

The operands can either be immediate values or "registers". Dynamically allocated “registers” are small memory regions
organized in the form of dictionary objects in doubly linked list. Each register has its own unique index that can store up to 8
bytes of data (including pointers to larger memory buffers) and can be either read or written to.

If the operand metadata specifies the index value, the operand is a "register"; otherwise the operand contains an immediate
value. The value (either immediate or pointed to by a "register") is an integer: qword by default, but different lengths (byte,
word or double-word) can be specified in the metadata:

Offset Field Notes

0x00 Instruction index Consecutive numbers starting with 0

0x04 Opcode 0 – 0x13 (19.)

0x06 Skip bool If set, then the instruction will be ignored

0x08 Operands count 0 – 3

0x0C Operand type read (0) or write (1)

0x0E Operand flag Specifies length: 0x10 = byte, 0x20 = word, 0x40 = dword

6/28

0x10 Operand register index Consecutive numbers starting with 0x9435C739

0x14 Operand value Immediate value (if operand is not a register)

0x1C Operand 2 Optional

0x2C Operand 3 Optional

Opcodes

Each opcode has its own handler routine, which is executed in the main VM loop:

Figure 5: Loop processing VM instructions

The handler routine will check to see if the number and types of operands are valid, read operand values from VM
“registers”, perform a specific action (arithmetic/byte operation, comparison, jump, API call), and save results to a
destination “register”:

7/28

Figure 6: XOR opcode handler routine

Opcode
(hex)

Operands Instruction Description

0x00 dst, src mov Move from src (either immediate value or pointer/register) to register at
dst. If no operands, this acts as a NOP instruction, used mostly as a label
to jump to

0x01 dst, src xor Exclusive or dst with src, result pointed by dst

0x02 dst, src add Add src to dst, result pointed by dst

0x03 dst, src and And dst with src, result pointed by dst

0x04 dst, src sub Subtract src from dst, result pointed by dst

0x05 addr call Call address in operand 1 (can be immediate value or register)

0x06 - ret Return 1

0x07 mem_ptr, size virtual_alloc Allocate memory (call VirtualAlloc), size in operand 2, pointer returned in
operand 1 (register)

0x08 mem_ptr virtual_free Free memory (VirtualFree), pointer in operand 1 (register)

8/28

0x09 dst, src, size memmove Source pointed by operand 2, destination pointed by operand 1, size in
operand 3

0x0A dst, src cmp Compare value at dst (register) with src (immediate or register value), set
zero flag in VM context structure

0x0B dst, src alldiv Dividend in operand 1 register, divisor in operand 2 (immediate or
register), result in operand 1 register

0x0C dst jnz If zero flag not set, jump to location specified by operand

0x0D dst jz If zero flag set, jump to location specified by operand

0x0E dst jmp Unconditional jump; set instruction pointer to the value of operand

0x0F dll_handle,
dll_name

load_library Call LoadLibraryA, pointer to library name in operand 2 (register), handle
to loaded library in operand 1 (register)

0x10 dll_handle,
proc_name,
api_address

get_proc_addr Call GetProcAddress, pointer to DLL handle in operand 1, pointer to
process name in operand 2, API address returned in operand 3 (all
operands are registers)

0x11 - exit_proc Call ExitProcess(0)

0x12 dst, src shr Shift right (divide dst by src)

0x13 dst, src shl Shift left (multiply dst by src)

The Bytecode

All of the x86 loaders BlackBerry has seen thus far embed the exact same bytecode that is 1800 (0x708) lines long. Most of
these 1800 instructions are superfluous (i.e.: have no influence on the code functionality) and were inserted there for
obfuscation only.

The purpose of the bytecode is to decrypt the embedded payload, load it into memory reflectively and execute it:

9/28

Figure 7: A fragment of VM bytecode - setting the decryption key

The payload decryption routine uses a custom symmetric algorithm based on arithmetic and byte-shift instructions – a
combination of SHL/SHR/SUB/ADD/XOR – with hardcoded keys.

These constant values are used in all x86 SombRAT droppers we’ve seen so far:

10/28

Figure 8: Payload decoding algorithm

SombRAT Backdoor

The backdoor delivered by the above-mentioned loaders is a C++ compiled executable developed with heavy usage of
objects, classes, and interfaces. It has a plugin architecture and basic functionality of a foothold RAT that is mainly used to
download and execute other malicious payloads – either as its own plugins or standalone binaries. It can also perform other
simple actions, like collecting system information, listing and killing processes, and uploading files to the C2.

Features:

Communication over DNS tunnel with a hardcoded domain name and DGA-generated subdomain
C2 traffic encrypted with RSA-2048
Custom AES-encrypted storage format used to store configuration, plugins, and harvested data

Unique version number for each sample

11/28

Figure 9: Backdoor classes hierarchy

According to a PDB path found in the 64-bit specimens, the project was originally called Sombra – possibly in reference to
the Overwatch game character:

https://overwatch.fandom.com/wiki/Sombra

12/28

Figure 10: PDB path from 64-bit backdoor with project name ‘Sombra’

In the Overwatch game world, Sombra is an agent of an antagonist organization called Talon. She is skilled in computer
hacking and cryptography and specializes in espionage and intelligence assessment:

“One of the world's most notorious hackers, Sombra uses information to manipulate those in power.

Sombra's skills include computer hacking and cryptography; these are activities she greatly enjoys, to the point where the
desire to get past locks and solving mysteries is ingrained in her personality. She is a known associate of Reaper,
specializing in espionage and intelligence assessment.

Stealth and debilitating attacks make Sombra a powerful infiltrator. Her hacking can disrupt her enemies, ensuring they're
easier to take out, while her EMP provides the upper hand against multiple foes at once. Sombra’s ability to Translocate and
camouflage herself makes her a hard target to pin down.”

Embedded in each sample is a hardcoded version number, with the following versions observed thus far:

Version Compilation timestamp Architecture

0.0.1.114499 31-10-2019 21:22:39 UTC x86

0.0.1.14630 (T) 09-11-2019 21:53:44 UTC x86

0.1.60 (DT) 11-11-2019 14:55:45 UTC x86

0.1.208 (DT) 17-11-2019 20:58:25 UTC x86

0.1.724 (DT) 24-12-2019 10:33:41 UTC x64

0.2.404 (DT) 20-08-2020 01:36:50 UTC x64

One of the backdoor samples (0.1.60 (DT)) was found to be hosted on http[://]159.65.31[.]84/svolcdst.exe.

Behaviour

Before entering the command processing loop, the backdoor will check to see if it’s running as a service, and will create a
run-once mutex consisting of %HOSTNAME% with a postfix of “S”, “U”, or “SU”, depending on which privileges it was
executed with.

The C2 domain name for the DNS communication is hardcoded and obfuscated using XOR. The backdoor will generate a
subdomain using a custom domain generation algorithm (DGA) and try to send an initial beacon to the C2 via DNS
tunneling:

1

13/28

Figure 11: Decoding the C2 domain name

The configuration, along with downloaded plugins and all harvested data are stored in a custom database format inside a
single file under the %TEMP% directory. The file name is hardcoded and obfuscated with XOR. The storage file is encrypted
with AES-256 using a hardcoded key and is decrypted each time the malware needs to read or write it and re-encrypted
after new data is added:

Figure 12. Hardcoded AES key for storage encryption

Strings used as backdoor commands and in debugging messages sent to the C2 are encoded with a simple alphabet
substitution. These are not decrypted by the backdoor on the victim’s side, and the key for decryption is not present in the
binary. Most probably the backdoor client decrypts them locally:

Figure 13: Substitution-encoded strings

Command and Control (C2)

The C2 communication can either be performed via DNS tunnelling or TCP sockets. Traffic is SSL-encrypted and can
bypass HTTP/SOCKS5 proxies. The C2 domain name is hardcoded in the binary and obfuscated with a single-byte XOR
key which differs between samples. In order to establish communication, the malware first uses a DGA (Domain Generation
Algorithm) to generate the subdomain to connect to. Depending on an internal boolean setting, one of the following URL
formats is used:

 images%x.%s
 images%x.elmako.%s

where %s is the hardcoded domain name and %x contains 8 hexadecimal characters generated based on the result of the
GetTickCount API:

If the connection is unsuccessful, the backdoor will try to generate and connect to several other URLs in the same domain,
using the same algorithm but without the “images” prefix.

14/28

It seems that in most cases, the malware sends out data using DNS_TYPE_TEXT requests, while the attackers issue
commands separately over the TCP channel with the IP address associated with the DGA-generated subdomain.

All the communication is compressed with zlib and encrypted with AES. Additionally, an embedded RSA public key is used
to secure the AES key exchange:

Figure 14: RSA key used for C2 traffic encryption

Backdoor Commands

Both the x86 and x64 versions of the backdoor feature approximately 50 different commands organized into six groups,
each group served by a different interface:

Core
Taskman
Config
Storage
Debug
Network

Command Type Description

networkdisconnected
broadcast

Core Broadcast “networkdisconnected” message

informationaccepted
broadcast

Core Save provided session ID to memory struct, broadcast “informationaccepted”
message

networkconnected
broadcast

Core Broadcast session ID and system info

ping Core Send a "ping" to the C2 server

loadasdll Core Load additional DLL into memory

loadfromstorage Core Inject DLL into memory (from storage)

loadfromfile Core Inject DLL into memory (from disk)

loadfrommem Core Inject DLL into memory (from memory)

15/28

loadplugincomplete Core Execute a plugin that is already loaded

initializeandloadpluginby-
uniqid

Core Load and execute a plugin; plugins are stored as zlib-compressed and AES
encrypted PE files inside the storage and referred to by unique identifier

getinfo Core Obtain environment strings, computer name, username, OS version
information, system time, etc.

restart Core Respawn using ShellExecuteW

shutdown Core Exit process

uninstall Core (unimplemented)

updatemyself Core Create backup of itself (with .old extension) and spawn new instance via
CreateProcessW

pluginunload Core Unload and remove plugin from storage

getprocesslist Taskman Obtain a list of running processes

killprocessbypid Taskman Terminate a process by PID

killprocessbyname Taskman Terminate a process by name

get Config Read specified values from .config file in storage and send to the C2

set Config Set specific config fields and save to .config file in storage

del Config Delete specified config fields from .config file in storage

initdefaults Config Initialize config fields with default values and save to .config file in storage

clear Config Zero-out config fields and save to .config file in storage

save Config Save provided config values to .config file in storage

enum Config Read values from .config file in storage to memory

write Storage Encrypt and write data to storage file

create Storage Create new encrypted storage file

close Storage Encrypt and flush data to storage file

drop Storage Write supplied file content to storage file

delete Storage Delete file with specified ID from storage; enumerate files in storage

16/28

enum Storage Enumerate files in storage (name, written, size)

upload Storage Decrypt and upload file with specified ID from storage file

clearall Storage Remove all files from storage

archivebypath Storage Read file(s) from specified path and save to storage file, then enumerate
storage

restorestorage Storage Delete storage file and open a new storage

cancel
/closeanddeletestorage

Storage Remove all files from storage and delete storage temp file

closestorage Storage Close storage temp file

openstorage Storage Open storage temp file

getcontent Storage (unimplemented)

awaitcreate Storage Create new encrypted storage file

await&putcontent Storage Read from C2 and save to the storage file

await&getcontent Storage Read from content from storage and send via C2

debuglog Debug Enable debug logging

broadcast Network Set networkconnected or networkdisconnected bool in memory

touchconnect Network Send the networkconnected bool setting to the C2

stats Network Send details of sent/received bytes

reconnect Network Close socket and reconnect

disconnect Network Close socket

switchtotcp Network Switch C2 communication to TCP/IP

switchdns Network Switch C2 communication to DNS

setproxy Network Set proxy type, host, port, domain, user, password

checkproxy Network (unimplemented)

getproxy Network Send current proxy configuration to C2

1

2

2

3

17/28

resetproxy Network (unimplemented)

1 – before v0.1.60t
2 – since at least v0.1.208
3 – since at least v0.1.724

Network

Infosportals[.]com

First active during October 2019, infosportals[.]com was utilized by early SombRATs as the primary C2 domain. Since then,
the domain shifted IP address multiple times, was then taken offline between February and May, before being reactivated
briefly between late May and mid-June as part of another offensive:

Figure 15: Timeline of IP resolutions for infosportals[.]com

Figure 16: Table of IP resolutions for infosportals[.]com

 Sbibd[.]net

A phishing domain mimicking the legitimate sbibd.com (registered to the State Bank of India, Bangladesh), sbibd[.]net was
first active for a short spell from early November to December 2019, then reactivated again between February and March
2020 and was used as the primary C2 with several SombRAT variants:

Figure 17: Timeline of IP resolutions for sbibd[.]net

3

18/28

Figure 18: Table of IP resolutions for sbibd[.]net

Akams[.]in

First active for a few weeks from late December 2019 to mid-January 2020, akams[.]in was also used by multiple SombRAT
samples for C2 communications. One of the prior resolutions, for IP 45.89.175.206, is particularly interesting, as it overlaps
with another domain called mail[.]kub-gas[.]com, which was implicated as being associated with an APT-28/Fancy
Bear/Sofacy phishing campaigns in a report by Area 1 Security. However, after much scrutiny, it would appear highly likely
that there is no direct connection between the SombRAT campaign and APT-28 activity.

Figure 19: Timeline of IP resolutions for akams[.]in

Figure 20: Table of IP resolutions for akams[.]in

newspointview[.]com
Registered and active during late June 2020, newspointview[.]com has been used with more recent SombRAT variants as
the primary C2 domain:

Figure 21: Timeline of IP resolutions for newspointview[.]com

https://cdn.area1security.com/reports/Area-1-Security-PhishingBurismaHoldings.pdf

19/28

Figure 22: Table of IP resolutions for newspointview[.]com

Timeline

The following timeline shows key domain/IP resolutions and known SombRAT releases:

Figure 23: Timeline of IP resolutions and SombRAT versions

20/28

Conclusions

There are several factors that lead us to the assumption that the threat actor behind CostaRicto is a mercenary group:

The toolset used in CostaRicto campaign consists of bespoke malware that appeared around October 2019 and has
been rarely seen in the wild since. It therefore appears to be private to this particular adversary.

Moreover, the constant development, detailed versioning system and well-structured code that allows for easy
functionality expansion – all suggest that the toolset is part of a long-term project, rather than a one-off campaign.

The apparent sharing of network infrastructure with a previous, seemingly unrelated phishing campaign attributed to
APT28, as well as the reuse of phishing domain names as C2 servers in attacks against unrelated victims, indicates
that the same entity is likely behind a diverse range of attacks.

Finally, the diversity and geography of the victims doesn’t fit a picture of a campaign sponsored by a particular state;
rather, it’s a mix of targets that could be explained by different assignments commissioned by disparate entities.

With the undeniable success of Ransomware-as-a-Service (RaaS), it's not surprising that the cybercriminal market has
expanded its portfolio to add dedicated phishing and espionage campaigns to the list of services on offer. Outsourcing
attacks or certain parts of the attack chain to unaffiliated mercenary groups has several advantages for the adversary – it
saves their time and resources and simplifies the procedures, but most importantly it provides an additional layer of
indirection, which helps to protect the real identity of the threat actor.

Researchers and investigators tend to group adversaries based on similar tactics, techniques and procedures, code reuse,
and physical infrastructure overlap. The attribution is often derived by analyzing the nature and geography of the campaign
targets in relation to geopolitical situation. However, in the case of mercenary APTs, the selection of victims might appear
random and will rarely reveal a bigger picture about the motives behind the campaigns.

When dealing with threat actors that outsource their campaigns, only the entity that performed the attack can be tracked,
while the actual perpetrator becomes more elusive than ever.

Indicators of Compromise (IoCs):

Indicator Type Description

130fa726df5a58e9334cc28dc62e3ebaa0b7c0d637fce1a66daff66ee05a9437 SHA256 SombRAT x86 loader

8062e1582525534b9c52c5d9a38d6b012746484a2714a14febe2d07af02c32d5 SHA256 SombRAT x86 loader

d69764b22d1b68aa9462f1f5f0bf18caebbcff4d592083f80dbce39c64890295 SHA256 SombRAT x86 loader

f6ecdae3ae4769aaafc8a0faab30cb66dab8c9d3fff27764ff208be7a455125c SHA256 SombRAT x86 loader

561bf3f3db67996ce81d98f1df91bfa28fb5fc8472ed64606ef8427a97fd8cdd SHA256 SombRAT x86 payload
(memory dump)

8323094c43fcd2da44f60b46f043f7ca4ad6a2106b6561598e94008ece46168b SHA256 SombRAT x86 payload

ee0f4afee2940bbe895c1f1f60b8967291a2662ac9dca9f07d9edf400d34b58a

ee0f4afee2940bbe895c1f1f60b8967291a2662ac9dca9f07d9edf400d34b58a

SHA256 SombRAT x86 payload
(UPX)

21/28

70d63029c65c21c4681779e1968b88dc6923f92408fe5c7e9ca6cb86d7ba713a SHA256 SombRAT encoded payload
(x64)

79009ee869cec789a3d2735e0a81a546b33e320ee6ae950ba236a9f417ebf763 SHA256 SombRAT decoded payload
(x64)

d8189ebdec637fc83276654635343fb422672fc5e3e2818df211fb7c878a3155 SHA256 Payload stager

fa74f70baa15561c28c793b189102149d3fb4f24147adc5efbd8656221c0960b SHA256 GO-socks5 proxy

c0db3dadf2e270240bb5cad8a652e5e11e3afe41b8ee106d67d47b06f5163261 SHA256 Pcheck proxy

6df8271ae0380737734b2dd6d46d0db3a30ba35d7379710a9fb05d1510495b49 SHA256 Pcheck proxy

7424d6daab8407e85285709dd27b8cce7c633d3d4a39050883ad9d82b85198bf SHA256 Pscan port scanner

svolcdst.exe Filename SombRAT loader

tunnusvcen.exe Filename SombRAT loader

C:\Projects\Sombra_Bin\x64\Release\Sombra.pdb PDB
path

SombRAT x64

C:\Wokrflow\CostaRicto\Release\CostaBricks.pdb PDB
path

SombRAT loader

%HOSTNAME%UI724 Mutex Run-once mutex

%HOSTNAME%SUI724 Mutex Run-once mutex

sbibd[.]net Domain SombRAT C2

infosportals[.]com Domain SombRAT C2

akams[.]in Domain SombRAT C2

newspointview[.]com Domain SombRAT C2

159.65.31.84 IP SombRAT hosting place

212.83.61.227 IP sbibd[.]net

144.217.53.146 IP sbibd[.]net, akams[.]in,
infosportals[.]com

45.89.175.206 IP akams[.]in

45.138.172.54 IP newspointview[.]com

22/28

212.114.52.98 IP infosportals[.]com

MITRE ATT&CK:

Tactic ID Name Description

Initial Access T1078 Valid Accounts Suspected initial compromise
using stolen credentials

Execution T1106 Execution through API SombRAT – C2 command

T1053/005 Scheduled Task/Job:
Scheduled Task

Used to download SombRAT
loader

T1059/001 Command and Scripting
Interpreter: PowerShell

Used to load x64 SombRAT

Defence
Evasion

T1055 Process Injection Invoke-ReflectivePEInjection
PowerSploit module

T1140 Deobfuscate/Decode Files or
Information

SombRAT – Decode strings and
custom storage data

Discovery T1057 Process Discovery SombRAT – C2 command

T1082 System Information Discovery SombRAT – C2 command

T1124 System Time Discovery SombRAT – C2 command

T1046 Network Service Scanning pscan, nmap

Collection T1560/003 Archive Collected Data: Archive
via Custom Method

SombRAT – Custom storage file

Command
and Control

T1572 Protocol Tunneling SombRAT - DNS tunnelling for C2

T1071/001 Application Layer Protocol:
Web Protocols

SombRAT – HTTP for C2

T1573/002 Encrypted Channel:
Asymmetric Cryptography

SombRAT – RSA for C2
encryption

T1090/002 Proxy: External Proxy pcheck HTTP/S proxy, GO
SOCKS5 proxy, PuTTY

Exfiltration T1041 Exfiltration Over C2 Channel SombRAT

Yara Hunting Rules:

import "pe"
import "hash"

https://attack.mitre.org/techniques/T1078/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1124/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1560/003/
https://attack.mitre.org/techniques/T1572/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1573/002/
https://attack.mitre.org/techniques/T1090/002/
https://attack.mitre.org/techniques/T1041/

23/28

rule costaricto_vm_dropper
{
 meta:
 description = "Rule to detect SombRAT loader by code similarity"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 strings:
 // vm class name
 $classname = "VMBASERUNNER" ascii wide nocase

 // start of vm bytecode
 $vmbytecode = {37C7359438C73594}

 // start of encrypted payload
 $encpayload_1 = {77D2C7AC59B2EB0DF37028AC950971FB}

 // binary string from enc payload (some payloads differ only in the header)
 $encpayload_2 = {06359D29C83125C321C201CF9AE7D1626B8F4281C33617EECE86BD106C628FE593936F00C2C
68E28843BE5374F876840FCD1BFD014D5DEFF4BA8EB6A5FFFB24F932138B04C1BE6D5BD8BB572B8116799AE1C8F0
D5DB774ABA4884B9E706981FC3740B4CD891F8A0EA6900D41B675CFC98A}

 // vm execution loop
 $vmcode_1 = {8B ?? 08 8B ?? 0C 89 ?? 29 ?? C1 ?? 02 39 ?? 74 4E 83 ?? ?? 08 8D ?? ?? 8B ?? ?? 8D ?? 01 89 ??
8B ?? ?? 66 83 ?? 08 00 75 28 8B ?? ?? 8D ?? 04 5? 5? E8 ?? ?? FF FF 8B ?? ?? 83 ?? 0C 5? 8B ?? 0C 89 ?? 5? FF ?? 14
83 C4 08 8B ?? 8B ?? 08 8B ?? 0C 89 ?? 29 ?? C1 ?? 02 39 ?? 89 ?? 75 B9}

 // vm execution loop (sample from Nov 2019)
 $vmcode_2 = {8B ?? 4? 89 ?? 8B ?? 08 8B ?? 88 33 ?? 66 39 ?? 08 75 19 8D ?? 04 5? 8D ?? 08 E8 ?? ?? 00 00 8B ??
8D ?? 0C 5? 5? FF ?? 5? 5? 8B ?? 8B ?? 0C 2B ?? 08 C1 ?? 02 3B ?? 75 C7}

 condition:
 uint16(0) == 0x5a4d and filesize < 5MB and filesize > 20KB and any of them
}

rule costaricto_vm_dropper_pdb_path
{
 meta:
 description = "Rule to detect samples with CostaRicto PDB path"
 author = "BlackBerry Threat Hunting and Intelligence Team"
 pdb_string = "C:\\Wokrflow\\CostaRicto\\Release\\CostaBricks.pdb"

 strings:
 $a = "CostaRicto" ascii wide nocase
 $b = "CostaBricks.pdb" ascii wide nocase
 $c1 = "C:\\Wokrflow\\" ascii wide nocase
 $c2 = "Release" ascii wide nocase
 $c3 = ".pdb" ascii wide nocase

 condition:
 uint16(0) == 0x5a4d and filesize < 5MB and filesize > 20KB and ($a or $b or all of ($c*))
}

rule costaricto_sobmrat_pdb_path
{
 meta:
 description = "Rule to detect samples with SombRAT PDB path"
 author = "BlackBerry Threat Hunting and Intelligence Team"
 pdb_string = "C:\\Projects\\Sombra_Bin\\x64\\Release\\Sombra.pdb"
 pdb_string_2 = "c:\\projects\\sombra\\libraries"

 strings:
 $a = "\\Projects\\Sombra\\" ascii wide nocase
 $b = "Sombra.pdb" ascii wide nocase

 condition:
 uint16(0) == 0x5a4d and filesize < 5MB and filesize > 20KB and ($a or $b)
}

24/28

rule costaricto_backdoored_blink
{
 meta:
 description = "Rule to detect backdoored Blink application"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 strings:
 $a1 = "Failed to open target application process!"
 $a2 = "Machine architecture mismatch between target application and this application!"
 $a3 = "Failed to create new communication pipe!"
 $b = "Plauger, licensed by Dinkumware, Ltd."

 condition:
 uint16(0) == 0x5a4d and filesize < 5MB and filesize > 50KB and ($b and 1 of ($a*))
}

rule costaricto_rich_header
{
 meta:
 description = "Rule to detect Rich header associated with CostaRicto campaign"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 condition:
 pe.rich_signature.toolid(0xf1, 40116) and
 pe.rich_signature.toolid(0xf3, 40116) and
 pe.rich_signature.toolid(0xf2, 40116) and
 pe.rich_signature.toolid(0x105, 26706) and
 pe.rich_signature.toolid(0x104, 26706) and
 pe.rich_signature.toolid(0x103, 26706) and
 pe.rich_signature.toolid(0x93, 30729) and
 pe.rich_signature.toolid(0x109, 27023) and
 pe.rich_signature.toolid(0xff, 27023) and
 pe.rich_signature.toolid(0x97, 0) and
 pe.rich_signature.toolid(0x102, 27023)
}

rule costaricto_rich_header_august
{
 meta:
 description = "Rule to detect Rich header associated with CostaRicto campaign"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 condition:
 pe.rich_signature.toolid(0xf1, 40116) and
 pe.rich_signature.toolid(0xf2, 40116) and
 pe.rich_signature.toolid(0xf3, 40116) and
 pe.rich_signature.toolid(0x102, 26428) and
 pe.rich_signature.toolid(0x103, 26131) and
 pe.rich_signature.toolid(0x104, 26131) and
 pe.rich_signature.toolid(0x105, 26131) and
 pe.rich_signature.toolid(0x103, 26433) and
 pe.rich_signature.toolid(0x104, 26433) and
 pe.rich_signature.toolid(0x109, 26428) and
 pe.rich_signature.toolid(0x93, 30729) and
 pe.rich_signature.toolid(0xff, 26428)
}

rule costaricto_rich_xor_key
{
 meta:
 description = "Rule to detect Rich header associated with CostaRicto campaign"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 condition:
 // x86 droppers
 pe.rich_signature.key == 0x2e8d923f or
 pe.rich_signature.key == 0x97d94c45 or

 // x86 payload
 pe.rich_signature.key == 0xef257087 or

25/28

 pe.rich_signature.key == 0x4f257087 or
 pe.rich_signature.key == 0x1e816e7e or
 // x64 payload
 pe.rich_signature.key == 0xd1e5ae6c or
 pe.rich_signature.key == 0x5df9c60b
}

rule costaricto_sombrat_unpacked
{
 meta:
 description = "Rule to detect unpacked SombRAT backdoor"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 strings:
 // class names
 $a1 = "PEHeadersBackup"
 $a2 = "PeLoaderDummy"
 $a3 = "PeLoaderLocal"
 $a4 = "PeLoaderBaseClass"
 $a5 = "PDTaskman"
 $a6 = "PDMessageParamArray"
 $a7 = "NetworkDriverLayerWebsockets"
 $a8 = "NetworkDriverLayerDNSReader"
 $a9 = "WaitForPluginIOCPFullyClosed"

 // substitution-encrypted strings
 $b1 = "~ydcv{{rs{~|r" // installedlike
 $b2 = "~yg{vcqxez" // winplatform
 $b3 = "~yqxezvc~xyvttrgcrs" // informationaccepted
 $b4 = "xvsqexzdcxevpr" // loadfromstorage
 $b5 = "xvsqexzzrzxen" // loadfrommemory
 $b7 = "xgrydcxevpr" // openstorage
 $b8 = "g{bp~y{xvstxzg{rcr" // pluginloadcomplete
 $b9 = "g{bp~yby{xvs" // pluginunload

 // AES-encrypted strings
 $c1 = {44 5B 7F 52 0C 13 52 1A 16 45 4C 75 65 72 60 53}

 // RSA public key
 $d1 = {EF C9 77 B9 A3 8E 48 92 77 C8 E1 E1 0C 46 35 2B}

 condition:
 uint16(0) == 0x5a4d and filesize < 5MB and filesize > 20KB and any of them
}

rule costaricto_pcheck_proxy
{
 meta:
 description = "Rule to detect a custom proxy tool related to the CostaRicto campaign"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 strings:
 $a = "exe.exe host host_port proxy_host proxy_port"
 $b = "Tool jobs done"

 condition:
 uint16(0) == 0x5a4d and filesize < 500KB and filesize > 10KB and ($a or $b)
}

rule costaricto_pscan_port_scanner
{
 meta:
 description = "Rule to detect a custom proxy tool related to the CostaRicto campaign"
 author = "BlackBerry Threat Hunting and Intelligence Team"

 strings:
 $a1 = "Invalid arguments count (ver "
 $a2 = "Example: ./pscan"

26/28

 $a3 = "127-130.0.0.1"
 $b1 = "[output.txt]"
 $b2 = "Invalid ip address range"

 condition:
 uint16(0) == 0x5a4d and filesize < 500KB and filesize > 10KB and any of ($a*) or all of ($b*)
}

IDAPython Scripts:

#!/usr/bin/python

 import sys, os, struct, array

 fin = sys.argv[1]
fout = "%s_decoded" %(fin)
f = open(fin, "r+w+b")
f2 = open(fout, "w+b")
encsize = os.path.getsize(fin) / 4

 key_1 = 0x14820285
key_2 = 0x26820323
key_3 = 0x35223562
key_4 = 0x41256421
cst_1 = 0x61C88647
cst_2 = 0x9E3779B9

 enc = array.array('I')
enc.read(f, encsize)

 i = 0

 while i < encsize:
 encdw_1 = enc[i]
 encdw_2 = enc[i+1]

 tmp_1a = encdw_1 << 4 & 0xffffffff
 tmp_1b = encdw_1 >> 5 & 0xffffffff
 tmp_1c = encdw_1 - cst_1 & 0xffffffff
 tmp_2a = tmp_1a + key_3 & 0xffffffff
 tmp_2b = tmp_1b + key_4 & 0xffffffff
 tmp_3 = tmp_2a ^ tmp_1c

 keydw_2 = tmp_3 ^ tmp_2b
 decdw_2 = encdw_2 - keydw_2 & 0xffffffff

 magic_1 = decdw_2 << 4 & 0xffffffff
 magic_2 = decdw_2 >> 5 & 0xffffffff
 key_1a = key_1 + magic_1 & 0xffffffff
 key_2a = key_2 + magic_2 & 0xffffffff
 cst_2a = cst_2 + decdw_2 & 0xffffffff
 tmp_5 = key_1a ^ cst_2a

 keydw_1 = tmp_5 ^ key_2a
 decdw_1 = encdw_1 - keydw_1 & 0xffffffff

 data1 = struct.pack('I', decdw_1)
 data2 = struct.pack('I', decdw_2)

 f2.seek(i*4)
 f2.write(data1)
 f2.seek(i*4+4)
 f2.write(data2)

 i = i + 2

Figure 24: SombRAT payload decryption script

27/28

import idc, idaapi, idautils
import idautils
import string, array, struct, binascii

def isprintable(s, codec='ascii'):
 try: s.decode(codec)
 except UnicodeDecodeError: return False
 else: return True

 def get_int(addr):
 return struct.unpack('I', get_bytes(addr, 4))[0]

 def add_comment(offset, comment):
 idc.MakeComm(offset, comment)
 target = idc.DfirstB(offset)
 while target != BADADDR:
 idc.MakeComm(target, comment)
 target = idc.DnextB(offset, target)

 def substitution(start, size, patch):
 dec = ""
 enclen = size
 plain = "`abcdefghijklmnopqrstuvwxyz{|}~H&\x7F"
 key = "wvutsrqp\x7F~}|{zyxgfedcba`onmlkji&Hh"
 if len(key) != len(plain):
 warning("Lenght differs!")
 i = 0
 for i in range(enclen):
 c = Byte(start + i)
 idx = key.find(str(chr(c)))
 if idx != -1:
 c = plain[idx]
 else:
 c = str(chr(c))
 dec = dec + c
 if patch == True:
 patch_byte(start + i, c)
 i += 1
 return dec

 # iterate over all segments
for s in idautils.Segments():
 if ".data" in idc.SegName(s):
 start = idc.GetSegmentAttr(s, idc.SEGATTR_START)
 end = idc.GetSegmentAttr(s, idc.SEGATTR_END)
 num = 0
 while start < end - 4:
 if get_int(start) == 0:
 enclen = get_int(start+4)
 encstrcheck = get_int(start+8)
 if enclen > 1 and enclen < 100 and encstrcheck > 0x2020:
 encstr = idc.get_bytes(start+8, enclen)
 if isprintable(encstr) == True:
 num += 1
 startaddr = start+8

 print("#%i") %num
 print("address = 0x{:08x}".format(start))
 print("len = %i") %enclen
 print("encstr = %s") %encstr
 decstr = ""
 decstr = substitution(startaddr, enclen, 0)
 print("decstr =%s") % decstr
 print("---")
 idc.MakeComm(start, "{}".format(decstr))
 decname = "s_" +
 (''.join(e for e in decstr if e.isalnum()))[:20]

28/28

 decname = decname.strip()
 res = MakeNameEx(start, decname,
 SN_NOCHECK | SN_NOWARN | 0x800)

 start += 4

Figure 25: SombRAT string decoding IDA Python script (for x86 payloads)

About The BlackBerry Research & Intelligence Team

The BlackBerry Research & Intelligence team examines emerging and persistent threats, providing intelligence analysis for
the benefit of defenders and the organizations they serve.

Back

