
1/28

November 12, 2020

Password stealer in Delphi? Meh… (2/2)
decoded.avast.io/janrubin/meh-2-2/

by Jan RubínNovember 12, 202032 min read

After peeling away the MehCrypter’s layers in the first part of our blog series, we felt there
was no other choice than to deep dive even further into the Meh password stealer payload
and all its functionalities, which range from keylogging, stealing clipboard contents,
coinmining, and stealing cryptocurrency wallets, to a highly versatile remote access tool
(RAT) that can perform tasks like advertisement fraud on websites or prepare the victim’s
PC for a potential ransomware hit.

Researcher @51ddh4r7h4 performed an analysis of a VBE stager downloaded from
Spanish torrent sites which contained an old version 0.7.9e of Meh. In this blogpost, we will
analyze version 1.0.0a of Meh, which is written in Delphi.

Campaign overview

Meh password stealer focuses mainly on Spanish users, counting more than 88,000
infection attempts in this country, since June 2020. The second most targeted country is
Argentina with more than 2,000 attacked users.

https://decoded.avast.io/janrubin/meh-2-2/
https://decoded.avast.io/author/janrubin/
https://decoded.avast.io/janrubin/complex-obfuscation-meh/
https://twitter.com/51ddh4r7h4
https://malware.news/t/all-your-torrents-belong-to-us/25854

2/28

Map illustrating the countries Meh has targeted from June to November 2020

Analysis

Meh password stealer – pe.bin

After the MehCryptor is finished running its preparations, the Meh password stealer PE is
loaded, an indirect jump is performed right into the decrypted Meh payload, written in
Borland Delphi. This payload is a somewhat penultimate stage, because the malware
actually uses a quite massive parallelization of its tasks via several injections to Windows
processes, e.g. notepad.exe or regasm.exe, along with massive multithreading. Thus, Meh
always harms its victims via legitimate processes. If the Meh process detects that it’s not
actually running inside a legitimate process, it tries to fix this by creating a new injection
subthread and injecting the payload into a legitimate process.

String encryption

Nearly all the strings in the binary are encrypted. The same cipher is used for string
encryption as was described in the subsections of the pe.bin decryption section in the
previous part of the blog series. The only exception is that the key string sequence is not
modified before usage.

At first, a Base64-encoded string is decoded and then it is passed on to the xor_decrypt
function, along with a XOR key string.

https://decoded.avast.io/janrubin/complex-obfuscation-meh/
https://decoded.avast.io/janrubin/complex-obfuscation-meh/

3/28

Code of the string decryption function
To illustrate the decryption process even further and to ease the work of other researchers,
and others who are interested we added our IDAPython script that will decrypt all the strings
to our Github page.

Folder structure

Firstly, let’s take a look at the folder structure from which the malware operates. To simplify
the explanation, we will show this process on an example from our test VirtualBox machine.
In this machine, the complete folder path looks like this:

C:\ProgramData\Intel\Wireless\7ec8d64\22b226e\

As can be seen, the path has two parts. The first one is hardcoded and contains fictional
Intel and Wireless directories. The second part, however, is created from the first seven
characters of a (MD5) hash, created from the folder “purpose” and an HWID hash, for every
subfolder. We will get to that in a moment. This part is dynamically generated and will differ
per computer.

Creating a personal computer HWID hash

To be able to recreate the dynamic path shown above, Meh creates a unique identifier of
the infected PC, which is frequently used through several malware functionalities. To
generate the HWID hash, the malware obtains several values from the local computer,
concatenates them together, and hashes the string using MD5. These values are obtained,
concatenated in this exact order, and hashed to create the HWID:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductId

HARDWARE\DESCRIPTION\System\CentralProcessor\0\ProcessorNameString

HARDWARE\DESCRIPTION\System\SystemBiosVersion

Username (GetUserNameW)

Computer name (GetComputerNameA)

Creating the subfolders

After the HWID is calculated, the malware appends this hash to two different string
constants, one for each specific subfolder:

https://github.com/avast/ioc/tree/master/Meh-part-2/extras/decrypt_strings_IDAPython.py

4/28

botsfolder

logsfolder

These subfolders with the appended hash are hashed once again. Resulted hashes can be
found below:

botsfolder – 7ec8d648ccf5fc2c28dfb98e1ef45101
logsfolder – 22b226ea2f14c1ed4806becf5d5c7fb8

Note that only the first seven characters are taken from the hashes to form the directory
name.

Compatibility with older versions of Meh

We found an interesting aspect in the folder creation process: what other folder structures
are calculated and checked. Generally, the check is done to get rid of the old version of
Meh from the system and only keep the new version running with the new folder structure.

As far as we could see, Meh changed the algorithm in terms of how it generates the
filesystem location where it saves itself onto a disk and the generating process of the HWID
many times. Even though we realize that some people are not very keen to take history
lessons, we decided to just briefly describe one of the methods regarding an approach of
postprocessing the HWID, here.

To generate the HWID, the malware used to take just three system information values
(instead of five) from the infected computer. The malware used a well known API function
and read two registry keys:

GetVolumeInformationA - obtaining the VolumeSerialNumber value

HARDWARE\DESCRIPTION\System\CentralProcessor\0\Identifier

HARDWARE\DESCRIPTION\System\SystemBiosVersion

These system values were then concatenated in this exact order. After the string with the
system information was created, it was hashed by MD5:

15a58f851468959538c67e43b78b7485

However, after the hash was calculated, the output was modified using a simple shift-and-
loop algorithm where each byte of the string was transformed into different bytes.

This was done by right-shifting the upper half of the byte by one and leaving the lower four
bits intact. Thus, the hash result was:

05554f450438454518663e23574b3445

This transformation loop can be found below. An observant reader can also notice a
compiler misstep on the address 0x004240FE.

5/28

Assembly of the hash transformation loop
Why the author decided to omit this transformation in newer versions of Meh is a mystery to
us, but it may have something to do with the uselessness of the algorithm from a security
perspective.

What actually is interesting about this is that the same shift-transformation is present in the
recent versions, too! There is, however, a change in the shift value to four, effectively doing
nothing, leaving only the MD5 hashing effective. Meh…?

Settings backup

The malware may save its settings to a dedicated file in the logsfolder. The name of this file
is created by concatenating the HWID to a “settings” string and hashing with MD5 (while
taking only the first seven characters from the hash):

C:\ProgramData\Intel\Wireless\7ec8d64\22b226e\055c0c3

The settings can be set in the following ways by the malware:

Default settings present in the malware
Loaded settings from the settings file via a previous run and/or a previous version of
the malware already present on the disk
Received settings from the C&C server (see RAT module for more details)

The settings have several values:

Settings name Meaning

domains A list of C&C domain names, delimited by pipes

6/28

epoch Timestamp of the first execution of Meh on the PC (since epoch)

hwidip Generated random identifier specific to the infected PC. This
identifier is a 32 bit number formatted as an IPv4 address

gldelay This value sets the default RAT module request period in
milliseconds

vepoch Epoch time of the last successful connection to the C&C server

paranoic If this flag is set, the malware will inject to Werfault.exe process
instead of Notepad.exe by default

puerto Port on which Meh should contact the C&C server

version Version of the Meh password stealer

hwid HWID of the infected PC

googleclickdate Timestamp when advertisement clicks should be done

googleclickdelimitador A name for the element on the website

googleclickdatas A name of the googled website during the advertisement fraud

padding Randomly generated string, up to 0x64 bytes long (lower and
upper letters only)

All the settings are concatenated together, delimited by commas.

AES encryption

Furthermore, the content of the settings file is encrypted using AES-192 in CFB8bit mode
(EncryptCFB8bit). The key phrase is a string “keysettings” hashed using SHA-1 and
padded by zeros to 24 bytes:

548aea3eb3e62ff420ae9f7e6d9f1de66559692600000000

After the content is encrypted, it is also encoded using the base64.

Multithreading, stealing and other functionalities

As was already mentioned, Meh uses several threads, each with its own dedicated
functionality. An extensive list of these worker threads can be found below. Note that
several of these threads use other means of parallelization as well, making the whole
analysis even more aggravating.

Injection thread
Installation and persistence thread
Anti-AV check and anti- IObit Malware Fighter thread

7/28

Coinmining thread
Torrent download thread
Clipboard stealing and keylogging thread
Crypto wallets stealing thread
Advertisement fraud thread

Injection thread

The injection is always performed from a dedicated subthread and a new legitimate process
is created as a target of the injection. For this purpose, one of these processes are used in
the default settings for the injection:

notepad.exe

WerFault.exe

regasm.exe

systeminfo.exe

vbc.exe

The target of the injection can be, however, any arbitrary process depending on the request
from the C&C server via the RAT module.

In the default settings, the malware enumerates the present process path and checks
whether a string “windows” is present (case insensitive). If it is not, the injection is
performed. The Dynamic forking is used to hollow the process.

Syscall usage and API resolving

We would like to further mention one of the methods used during the injection process – the
way some API functions are actually called. Often, the malware resolves the needed
functions by parsing the import table of the system DLLs. However, this is not how the
authors of Meh decided to proceed.

The malware checks whether the C:\Windows\SysWOW64\ntdll.dll file exists to check the
OS bitness. Depending on whether it is x64 or x86, it uses a different method to perform the
syscall.

8/28

Code of the decision process which syscall should be used
If the OS is x64, the FS 0xC0 refers to the FastSysCall in Wow64 which switches the x86
processor to the x64 mode and calls a native x64 syscall, as can be seen in the figure
below:

Code of the x64 syscall

If the OS is x86, the syscall is performed directly using the sysenter instruction.

Installation and persistence thread

In this thread, three files are checked whether they exist in the
C:\ProgramData\Intel\Wireless\7ec8d64

directory (i.e. the botsfolder):

Generated name of .au3 script
Generated name of .exe
pe.bin

9/28

First of all, the constants testau3 and autoitexe are used for .au3 and .exe files,
respectively. These constants are then appended with the HWID and hashed using the
MD5. So far, everything is the same.

The names of the .au3 script and the .exe file are generated using the same algorithm
presented in Folder structure, with one exception.

The .exe file name, however, is further modified in such a way that every numeric character
of the hash (< 0xA) is translated to a character from the beginning of the English alphabet
where the letter “e” is excluded. Thus, the substitution is done with numbers 0-9 and letters
a-d and f-k. We suppose that the author actually meant to include the letter “e”, but forgot
it is in the alphabet.

This effectively transforms the hash:

9a5afe4 -> kagafef

On our virtual machine, these filenames are generated and checked for presence:

kagafef.exe

e30db2f.au3

If any of these files are missing, the malware searches the current process folder for any
occurrence of files with .exe, .au3 extensions and the pe.bin file. The first occurrence of
such a file (via this extension) is copied into the directory. If the file pe.bin is missing, the
whole thread is terminated. Note that these files should represent the AutoIt interpreter and
Meh password stealer payload, respectively.

The content of the pe.bin file is decrypted and re-encrypted with a new randomly generated
key containing only letters from the English alphabet and 10 bytes long.

Furthermore, the AutoIt script and pe.bin files are prepended and appended with randomly
generated strings, reflecting the MehCrypter appearance. However, at this stage, we can
finally learn how this obfuscation is generated. The length of these strings is chosen
randomly, ranging from 1,000 to 10,000 bytes.

Finally, if the files were copied from a different folder tree other than ProgramData\Intel,
the original folder is deleted.

Persistence antivirus check

After all the installation and persistence steps above are performed, the malware checks for
the presence of several AVs in the system via their processes:

imf.exe (IObit Malware Fighter)
monitor.exe (IObit Malware Fighter)

https://decoded.avast.io/janrubin/complex-obfuscation-meh/

10/28

totalav.exe (Total AV)
qhsafetray.exe (360 Total Security)
avpui.exe (Kaspersky)

However, the functionality differs depending on the used AV, as we will describe below.

IObit Malware Fighter and Total AV

If the first two of the listed AVs are present, the malware will try to inject itself into the listed
processes. This is done by obtaining a handle of the process, allocating a proper space and
permissions inside it and calling a CreateRemoteThread API function.

If the handle could not be obtained for some reason (e.g. insufficient malware privileges
during the execution), the malware tries to inject into any of the following processes:

utorrent.exe

bittorrent.exe

lightshot.exe

razer central.exe

skype.exe

discord.exe

steam.exe

spotify.exe

vmware-tray.exe

or into the first x86 process it can find.

360 Total Security

If the 360 Total Security is installed, the malware only tries to inject into the list of processes
or any other x86 process and this AV is not attacked at all.

Kaspersky

If Kaspersky is installed (determined by running avpui.exe), the malware doesn’t inject
anything at all. Instead it creates two files. The first file is a VBS file in a directory named
after prepending tmpvbsstartdir and tmpvbsstart strings to the HWID and hashing with MD5,
respectively:

C:\714edf2\1665f18.vbs

Its contents can be found below:

11/28

Contents of the 1665f18.vbs script
This means that the malware creates a VBS script which starts to interpret the AU3
malware payload.

A string “IGWcKodqHa” is randomly generated in such a way that it always contains only
letters from the English alphabet and is 10 bytes long.

The second file is named after hashing “tmpau3” (with the append of HWID) and it is saved
into the local Temp directory:

C:\Users\<user>\AppData\Local\Temp\2940974.au3

The contents of the script can be found below:

Contents of the 2940974.au3 script
This autohotkey script creates a link file to the VBS script above and places it into the user’s
startup directory, using the icon of a legitimate Mycomput.dll file, and removes itself
afterwards. This effectively ensures persistence.

Note that <user> is the local username (filled appropriately by the malware). Furthermore,
the string “ydOGzq” is randomly generated and it always is six bytes long.

One additional file is created as well: tmplnk.txt. This file is filled with the absolute path to
the lnk file above. This file will be read after a reboot which is going to follow almost
immediately as we will describe below.

After the persistence and preparation is done, the malware shows a fake dialog window
about an update of a uTorrent program (doesn’t matter if the program is actually present on
the PC or not).

12/28

The fake

dialog of uTorrent program update
This dialog is automatically closed after 2.5 seconds. After that, the malware executes the
2940974.au3 file using the kagafef.exe AutoIt interpreter and restarts the PC using:

cmd.exe /C shutdown -f -r -t 0

Thus, after reboot, the malware executes the ydOGzq.lnk in the startup folder and the
execution of 1665f18.vbs, which executes the Meh password stealer payload once again,
obfuscates its execution process tree.

Persistence monitoring tools check

If there is no running AV from the previous subsection or a successful after-reboot execution
of Meh under Kaspersky is performed, the malware undergoes an exhaustive check of
running monitoring tools:

ccleaner

system config

malwarebytes

farbar recovery

startup scan

anti rootkit

anti-rootkit

startup manager

autoruns

editor de registro

editor del registro

registry editor

gerenciador de tarefas

zhpcleaner

process hacker

task manager

junkware removal

13/28

administrador de tareas

hijackthis

process explorer

tcpview

process monitor

wireshark

This check is periodically done by comparing the active window text with all of the strings in
the list above.

If none of these windows are found on the user’s foreground, the malware creates a registry
key in

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

The name of the registry key is derived from the HWID, where eight letters from the second
position of the HWID are taken.

The key contains a persistence execution of the AutoIt script using the AutoIt interpreter
using this command:

C:\ProgramData\Intel\Wireless\7ec8d64\kagafef.exe

C:\ProgramData\Intel\Wireless\7ec8d64\e30db2f.au3

If any of the windows from the list above are active, the malware removes this registry key
to hide its persistence. Furthermore, if the window carries the name “Malwarebytes”, the
malware also wipes all the files from the Wireless folder structure.

Last but not least, this subthread periodically checks the whole Wireless folder structure
and if any of the files are missing and/or they are empty, the malware recovers the files from
its process memory and writes the files onto the disk once again.

Anti-AV check and anti-IObit Malware Fighter thread

Meh also contains an additional exhaustive check for AVs with a particular focus on IObit
Malware Fighter. This check is separate from the Installation and persistence thread
described above.

The check is done by monitoring the running processes (not the active window, as
previously). The complete list of AVs and other security tools being checked can be found
below, in alphabetical order:

avastui.exe (Avast)
avguard.exe (Avira)
avgui.exe (AVG)
avpui.exe (Kaspersky)
bdagent (Bitdefender)

14/28

bytefence.exe (ByteFence)
cis.exe (Comodo)
egui (ESET Nod32)
imf.exe (IObit Malware Fighter)
mbam (Malwarebytes)
mcshield.exe (McAfee)
mcuicnt.exe (McAfee)
mpcmdrun.exe (Windows Defender)
msascuil.exe (Windows Defender)
nis.exe (Norton)
nortonsecurity.exe (Norton)
ns.exe (Norton)
psuaservice.exe (Panda Security)
qhsafetray.exe (360 Total Security)
sdscan.exe (Spybot – Search & Destroy)
smc.exe (Symantec)
superantispyware.exe (SUPERAntiSpyware)
totalav.exe (Total AV)
uiseagnt.exe (Trend Micro)
vkise.exe (Comodo)

Additionally, these two locations are checked whether they exist:

C:\Program Files\Bitdefender

C:\Program Files (x86)\IObit

The information about the running AV affects different parts of the malware process and can
be also reported to the C&C server via the RAT module.

IObit Malware Fighter thread

If the IObit Malware Fighter folder is detected, Meh creates a subthread with an infinite loop
with a single purpose – repeatedly terminating the monitor.exe and smBootTime.exe
processes.

Coinmining thread

Coinmining is an additional functionality of Meh and it only occurs when there is no Norton,
Nod32, or Bitdefender present on the system. Since it’s design is not new, we’ve decided to
describe it using a simple diagram:

15/28

Diagram of the coinmining thread
The URL from which the coinminer is downloaded is (depending whether the system is 64-
bit or 32-bit):

http[:]//124.red-79-152-243.dynamicip.fina-tdl.io/s/cpux[86|64].bin

After the payload is decoded and decompressed, we immediately see that it is a common
XMRig:

722502b7302fd6bae93c57212fcafad2767c5f869e37bd00487b946f76251c8d

e96403de3807ccb740f9ca6cade9ebd85696485590f51a4eb1c308de9875dfaa

The malware also generates a random AES key that is used to encrypt XMRig before
writing it into the malware directory under a name generated from HWID and a string
“minercpu2“, in the same way that was done many times before:

C:\ProgramData\Intel\Wireless\7ec8d64\22b226e\ecef9c8

The coinminer thread can also be affected by the RAT module. If the RAT module receives
a command to terminate the mining, it fills the coinimer file with a string nominear, disabling
the coinmining.

16/28

Torrent download thread

In this part of the malware, Meh tries to use a locally installed torrent client to download
additional files to the infected machine. This is done by reading a file

C:\Users\<user>\AppData\Local\Temp\test.txt

which is (usually) created by the original AutoIt MehCrypter payload. In different versions of

the Meh password stealers, we have seen this file called torrent.txt as well.

In the contents of this text file, a name of a VBE script file can be found. The malware
appends the extension with .torrent reflecting a name for the BitTorrent protocol to be
downloaded.

Then, the malware contacts several torrent sites where the file is searched for via a POST
request.

http[:]//www.mejortorrentt.net/ips/download_torrent.php

http[:]//mejortorrent1.net/downloads/download_torrent.php

http[:]//grantorrent.eu/download/download_torrent.php

http[:]//www.divxtotal.la/downloads/download_torrent.php

The malware uses a data parameter nombre= with the filename to request the specific file.

This functionality is approached differently across different versions of Meh. In other
versions, it appends the torrent filename to a set of URLs, with the option to structure the
request into the sites’ subfolders (in Spanish):

peliculas

series

documentales

musica

juegos

variados

Then the URL is composed with the torrent name present in the subfolder:

http[:]//www.mejortorrentt.org/uploads/torrents/%s/%s

When the file is successfully downloaded and it contains a string udp://tracker which
determines the UDP tracker protocol in the BitTorrent files, it is immediately executed.

Clipboard stealing and keylogging thread

The clipboard is stolen after specific keys are pressed (see the list below). After the
clipboard is stolen, the malware disables the clipboard stealing functionality for 30 seconds.
Both the clipboard content and the pressed key are stored, along with an active window text
in a hexadecimal form.

https://decoded.avast.io/janrubin/complex-obfuscation-meh/

17/28

List of key presses which are monitored and trigger the keylogging and clipboard stealing:

Backspace key
DEL key
Home key
Start key
End key
Spacebar
Enter key
Numpad number keys
Add key
Subtract key
Decimal key
Every one-letter key

The output of the stolen information is saved into log files in a file:

C:\ProgramData\Intel\Wireless\7ec8d64\22b226e\DD-MM-YYYY.log

named after the date the file is created on. The stolen information is formatted and
encrypted. To better illustrate the format of the stolen contents, an example of the plaintext
form can be found below:

Example of the stolen contents
The content of the log file is encrypted using AES with a key “masteroflog” and encodes
the output using the base64.

Crypto wallets stealing thread

Meh is also capable of stealing cryptocurrency wallets located on the infected PC. This
thread checks common crypto wallet locations and if one is found, it is sent to the C&C
server immediately, along with a message containing the victim’s username and computer
name (delimited by “@”) and a debug message of the specific cryptocurrency.

18/28

Code of the detected cryptowallet debug message
All the paths that are checked are in the table below. However, note that not all of these
wallets are stolen. The last column shows markings which the malware author used to
distinguish the cryptocurrencies during the cryptowallet theft.

Cryptocurrency Checked path Mark

Bitcoin C:\Users\<username>\AppData\Roaming\Bitcoin

Bitcoin\wallet.dat

Bitcoin\wallets\wallet.dat

0

Electrum C:\Users\
<username>\AppData\Roaming\ElectrumC:\Program Files
(x86)\Electrum

Electrum\wallets\default_wallet

Electrum\wallets*

4

Electrum-LTC C:\Users\<username>\AppData\Roaming\Electrum-LTC

ElectronCash C:\Users\<username>\AppData\Roaming\ElectronCash

ElectronCash\wallets\default_wallet

ElectronCash\wallets*

5

Litecoin C:\Users\<username>\AppData\Roaming\Litecoin

Litecoin\wallet.dat

1

jaxx C:\Users\<username>\AppData\Roaming\jaxx

Exodus C:\Users\<username>\AppData\Roaming\Exodus

Exodus\exodus.wallet\seed.seco

Exodus\exodus.wallet\info.seco

Exodus\exodus.wallet\passphrase.json

Exodus\exodus.wallet\twofactor.seco

Exodus\exodus.wallet\twofactor-secret.seco

2-3

6-8

The contents of the cryptowallets are concatenated together. As a delimiter between them,
a string is used:

____padoru____XXX____padoru____

where XXX represents the mark from the table above.

19/28

This string is then compressed using zlib, encoded by Base64, and sent to these C&C
servers:

http[:]//193-22-92-35.intesre.com

http[:]//0.le4net00.net

http[:]//83.171.237.231

http[:]//deploy.static.blazingtechnologies.io

http[:]//0.weathdata.nu

Advertisement fraud thread

In this subthread, the malware is focused on using the victim’s PC for advertisement fraud,
by making it click on ads on arbitrary websites. This is done by passing three types of
information to the infected PC (we briefly touched upon these in the Settings backup
section) and we will describe their functionality in a moment:

googleclickdate – A timestamp influencing when the fraud should happen
googleclickdatas – A site that should be googled
googleclickdelimitador – Content (advertisement) on which the malware should
click

First of all, only the Google Chrome web browser is supported in the analysed version of
Meh (1.0.0a).

Secondly, the malware needs to actively receive information about the “google” parameters
above. By default, this information is not present in the malware. It can be retrieved from a
previous version of Meh, or by the RAT module. Unfortunately, due to the inoperable C&C
servers during our analysis, we were not able to obtain information about which sites and
advertising companies were actually attacked using Meh. By the generic design
implemented in the malware, we suppose it could be any of them.

After the googleclickdate meets the condition for execution (the date has to be lower than
the current time), the malware also checks if the user is active by obtaining the number of
seconds from the user’s last interaction with the PC. If the user is inactive, it double checks
that the Chrome browser was not used for a while. If the inactivity is sufficient, the evil
operation happens.

The malware disables twelve browser extensions (see below) by renaming their folders (by
appending them with an underscore “_”). These extension folders can be usually found in
the Local AppData location:

C:\Users\<user>\AppData\Local\Google\Chrome\User Data\Default\Extensions\

The extensions which are disabled (if installed), can be found in the table below:

20/28

Extension ID Name

gighmmpiobklfepjocnamgkkbiglidom AdBlock

ghbmnnjooekpmoecnnnilnnbdlolhkhi Google Docs Offline

pkedcjkdefgpdelpbcmbmeomcjbeemfm Chrome Media Router

cfhdojbkjhnklbpkdaibdccddilifddb Adblock Plus

cjpalhdlnbpafiamejdnhcphjbkeiagm uBlock Origin

epcnnfbjfcgphgdmggkamkmgojdagdnn uBlock – free ad blocker

kacljcbejojnapnmiifgckbafkojcncf Ad-Blocker

gginmiamniniinhbipmknjiefidjlnob Easy AdBlocker

alplpnakfeabeiebipdmaenpmbgknjce Adblocker for Chrome – NoAds

ohahllgiabjaoigichmmfljhkcfikeof AdBlocker Ultimate

lmiknjkanfacinilblfjegkpajpcpjce uBlock – AdBlock Tool for Chrome

lalfpjdbhpmnhfofkckdpkljeilmogfl Hola ad remover

After all the extensions are disabled, googleclickdate is set to the next day, suggesting the
fraud happens once a day by default.

Furthermore, the malware creates a subthread which periodically turns off the user’s
monitor.

The next mechanism implemented in the malware is used for remote control of the PC to
perform the clicks. This is done by simulating keystrokes and mouse clicks on the victim’s
PC in similarly to how the user would click the ad:

1. Open the Google Chrome browser on the page https://google.es
2. Type the content of the googleclickdatas parameter in the search box and hit enter
3. Press CTRL+F to show the search box of the browser and fill the contents of the

googleclickdatas and hit enter
4. Use the mouse cursor to click the found link in the Google results
5. Press CTRL+F to show the search box once again and fill the contents of the

googleclickdelimitador parameter. Hit enter to search it
6. Use the mouse to click on the element – the ad

Note that in the first step, the malware also tries to minimize the window by pressing the
Win+Arrow Down keys. It also resizes the browser window so the mouse clicks could work
properly via hardcoded pixel gaps.

21/28

After the click on the advertisement is done, the malware returns everything in the previous
state – it quits the browser (tab) by pressing CTRL+W, turns on the monitor and renames all
the extension folders back to their original name, effectively enabling them.

RAT module

Along with the standalone functionality of Meh which we described above, the malware also
contains a functionality that brings the evil to a next level. That is a remote access tool
incorporated to the capabilities from previous functionalities.

Unfortunately, at the time of writing this blogpost, the C&C servers were shut down and/or
have been made less responsive or responsive only in specific timeframes. Because of this,
we couldn’t properly analyse the exact form of the responses from the malware servers.
However, we could still obtain information like what the messages most likely looked like
and what the structure of the commands looked like.

Retrieving the message

To get the command from the C&C, Meh connects to the server and waits for the response.
In the default settings, this ping is performed every 20 seconds. The list of C&Cs is the
same as with the previous functionalities:

http[:]//193-22-92-35.intesre.com

http[:]//0.le4net00.net

http[:]//83.171.237.231

http[:]//deploy.static.blazingtechnologies.io

http[:]//0.weathdata.nu

The POST request carries three files with it:

ID – the personal computer HWID
Data – a wide hexadecimal text containing a title of an opened active window on the
victim’s PC
ACK – an identifier of the part of the malware that sends the message. In the RAT
mode, this value is 1000 by default. This value is different for every C&C response
and matches the message type from the table below.

Every response consists of two parts. The first part is a message type – a number which
determines a command with what the malware should do. The second part contains a
buffer which represents content passed on to the malware. This content can,for example,
be an additional malware drop, installation command for further persistence (injection to
arbitrary process), coinmining parameters change, browser stealing commands and many
more. The second part can also be compressed and encoded, and it can also be empty
where no additional input is needed.

22/28

RAT functionalities

Let’s deep dive into the functionalities of the remote access features of Meh.

We will first name the specific message types to get a brief idea of all the functionalities.
We will then describe the more interesting and/or unclear ones, separately. A list of all 54
commands can be found in the table below.

It is also important to note two things here. Firstly, across all sorts of Meh functionalities
already described in this analysis, where Meh was sending information to the C&C server
as well, the malware sends a message type as well. However, we suppose these only serve
as debugging information for the attacker – to e.g. automate post processing on the
malware server. In the list below, we only mention the RAT module message types,
because they directly influence the control flow of the malware.

Secondly, there can be more message types with the same functionality. This is due to the
fact that Meh actually has two RAT modules implemented (perhaps because of historical
reasons, although we are not sure). The second RAT module, which runs in its own
separated subthread, only has a few unique commands and they always carry numbers
greater than 3000. This second module also has different RAT request periods, scaling up
to four hours.

Message
type

Functionality

1001,
3001

Send information about attacked victim to the C&C server (explained below)

1003 Terminate all coinmining and self

1004 Parse every keylogging file and send all the data to the C&C server

1008,
3004

Extract passwords from browsers using WebBrowserPassView and send them
to the C&C server

1009,
3005

Extract passwords from mail clients using Mail PassView and send them to
the C&C server

1010 Extract Firefox cookies using MZCookiesView and send them to the C&C
server

1011 Extract information in HTML and save the result into %TEMP%\\skype.txt.
The content is also sent to the C&C server. (explained below)

1012 Extract information in TXT and save the result into %TEMP%\\skype.txt. The
content is also sent to the C&C server. (explained below)

23/28

1013,
3006

Steal FTP connections from FileZilla (if applicable) by reading
sitemanager.xml and recentservers.xml files. Send it to the C&C server.

1014 Extract Chrome cookies using ChromeCookiesView and send them to the
C&C server

1015 Extract Internet Explorer cookies using IECookiesView and send them to the
C&C server

1021 List a root directory and send names and timestamps of all folders and files to
the C&C (explained below)

Also reduce the C&C requests period to 0.5 seconds

1022 Search a given directory (explained below)

1023 Read a given file and send its contents to the C&C server

1025 Set the C&C requests period to 20 seconds

1026 Remove all shadow copies using a command cmd.exe /c vssadmin delete
shadows /for=c: /all /quiet

1027 Create a thread with an infinite loop which turns the infected PC’s monitor off
every second

1028 Wipe browser information (explained below)

1029 Shut down the PC using a cmd.exe /c shutdown -f -s -t 0 command

1030 Restart the PC using a cmd.exe /c shutdown -f -r -t 0 command

1031 Execute a given file as hidden

1033 Terminate a given PID and inject given content to notepad.exe or
regasm.exe

1034,
1037,
3012

Inject a given PE/shellcode into notepad.exe or regasm.exe

1035,
3013

Create a file in the Local\Temp folder with a given content. Name is randomly
generated – eight bytes of upper and lower letters

1036 PE loader. Load a given PE and jump to its entrypoint

1038,
3014

Restart coinmining. Terminate the coinmining process and download a fresh
coinminer when no nominear file is present

1040 Terminate the coinmining process and remove the coinminer. Disable future
coinmining by creating the nominear file

1041 Terminate the coinmining process

24/28

1043 Execute a given file and don’t hide it

1044 Inject itself (Meh payload) into a set of processes (same as here) or any first
x86 process Meh can find

1045 Create a file with a given content

1046 Find a given file recursively and send it to the C&C server

1047,
3036

Restart the coinmining with the current coinminer

1048 Execute a given command line command

1049,
3035

Steal a Discord token by parsing a file Discord\\Local
Storage\\leveldb\\000005.ldb

1050 Inject a given PE/shellcode into a set of processes (same as here) or any
first x86 process Meh can find

1051 Decrypt the settings backup and send it to the C&C server

2000 Download a temporary pe.bin file and use it for a new independent
execution of the Meh instance

2001 Perform the same actions as 2000 and also stop the coinmining and remove
the coinminer from the infected PC

3017 Update the URL set of C&C servers. Note that backup of the settings is
usually performed immediately afterwards

3020 Update the Meh settings backup file. If the RAT request period is lower than
50 seconds, set it to 4 hours

3033 Show a dialog with Test_ string in it

3034 Send the Meh version to the C&C server

3037 Updates the googleclickdatas and googleclickdelimitador values and
save them into the settings backup file

1001, 3001 – Send victim information

The malware collects a lot of information about the victim, concatenates the collected
values to a single string and compresses the output using zlib and encodes the result using
base64. The result is sent to the C&C server. The message contains following values:

LCID
Username in wide hexadecimal format
Computer name

25/28

Parent process in wide hexadecimal format
Number of seconds from the user’s last interaction with the PC
Processor information
Graphics information
Total Physical Memory space in MB
OS version from registry (CurrentVersion\\ProductName)
Admin privileges
Malware start time from epoch
Running AV name
Meh malware version
Port number

1011, 1012 – Extracting and stealing further information

The difference between these two commands is what parameter is passed into a so-called
lol.exe binary. These can be /stext or /shtml which influence the output format of the
extraction. The output is extracted into the %TEMP%\\skype.txt file and sent to the C&C
server afterwards.

The thing is, because of the lack of communication with the C&C servers during our
analysis, we cannot precisely say what kind of file is lol.exe. We have, however, a strong
feeling from the context of the other commands that it is an arbitrary NirSoft binary that
supports these commands. In the reflection of the “skype.txt” name, we would suppose
that SkypeLogView is used here to steal Skype conversations. However, we cannot
eliminate the possibility that e.g. a BrowsingHistoryView is used instead.

1021, 1022 – Exploring the filesystem

A format of the output of the explored folder is:

Name|1 or 0 if folder or file|Created time|Last access|Size in bytes when it

is a file|

The times are given in the format of DD/MM/YYYY HH:MM.

Note that the command 1021 also iterates through all disks and obtains information
revealing whether it is a fixed drive or a removable drive. This information is also appended
to the response and sent to the C&C server.

1028 – Browser wipe

This functionality wipes all the personal data from users’ browsers by renaming or deleting
the browser files and folders. These three browsers are terminated before the wipe is
performed on them:

Firefox

26/28

Google Chrome
Opera

The malware generates a random six byte string (upper and lowercase letters only) which is
appended to the appropriate browser folder. This results in personal data loss in the eyes of
the user, because upon startup the browsers recreate the browser folders and they look as
they would after a clean installation.

These commands are executed by the malware to achieve the wipe (if the particular
browser is present):

cmd.exe /c cd /d "C:\Users\<user>\AppData\Roaming\Mozilla\" && move

firefox firefoxXXXXXX

cmd.exe /c cd /d "C:\Users\<user>\AppData\Local\" && move Google

googleXXXXXX

cmd.exe /c cd /d "C:\Users\<user>\AppData\Roaming\" && move Google

googleXXXXXX

where XXXXXX is the randomly generated string. Note that Google Chrome typically saves
the data into the AppData\Local folder.

A different approach is chosen for the Opera browser. Instead of renaming the whole
directory, the malware searches for every file in the C:\Users\
<user>\AppData\Roaming\Opera Software\ directory which contains a string cookie in its
name and is removed if found.

Conclusion

In this last part of the blog series, we described the Meh password stealer payload
previously unveiled from the MehCrypter, in detail. We looked at a wide range of
functionalities this malware performs on its victims, including keylogging, cryptowallet
stealing, advertisement fraud, coinmining, and a highly versatile RAT module which extends
the functionality of Meh far beyond standard password stealers.

Indicators of Compromise (IoC)

File name Hash

Initial
AutoIt
script

94c2479d0a222ebdce04c02f0b0e58ec433b62299c9a537a31090bb75a33a06e

Stage 1 –
Dropper

43bfa7e8b83b54b18b6b48365008b2588a15ccebb3db57b2b9311f257e81f34c

https://decoded.avast.io/janrubin/complex-obfuscation-meh/

27/28

Stage 2 –
Shellcode

34684e4c46d237bfd8964d3bb1fae8a7d04faa6562d8a41d0523796f2e80a2a6

Stage 3 –
Shellcode
2

2256801ef5bfe8743c548a580fefe6822c87b1d3105ffb593cbaef0f806344c5

Stage 4 –
Meh
stager

657ea4bf4e591d48ee4aaa2233e870eb99a17435968652e31fc9f33bbb2fe282

Meh
password
stealer

1f13024724491b4b083dfead60931dcacabd70e5bd674c41a83a02410dea070d

pe.bin 66de6f71f268a76358f88dc882fad2d2eaaec273b4d946ed930b8b7571f778a8

base.au3 75949175f00eb365a94266b5da285ec3f6c46dadfd8db48ef0d3c4f079ac6d30

cpux64.bin 3c1e5930d35815097435268fab724a6ed1bc347dd97cd20eb05f645a25eb692b

cpux86.bin 57b6fa7cbc98b752da6002e1b877a0e1d83f453f9227044b0b96bf28b0131195

cpux64.bin
unpacked

722502b7302fd6bae93c57212fcafad2767c5f869e37bd00487b946f76251c8d

cpux86.bin
unpacked

e96403de3807ccb740f9ca6cade9ebd85696485590f51a4eb1c308de9875dfaa

URL

http[:]//193-22-92-35.intesre.com

http[:]//0.le4net00.net

http[:]//83.171.237.231

http[:]//deploy.static.blazingtechnologies.io

http[:]//0.weathdata.nu

http[:]//124.red-79-152-243.dynamicip.fina-tdl.io/s/cpux64.bin

http[:]//124.red-79-152-243.dynamicip.fina-tdl.io/s/cpux86.bin

http[:]//www.mejortorrentt.net/ips/download_torrent.php

http[:]//mejortorrent1.net/downloads/download_torrent.php

http[:]//grantorrent.eu/download/download_torrent.php

28/28

http[:]//www.divxtotal.la/downloads/download_torrent.php

Appendix

Repository: https://github.com/avast/ioc/tree/master/Meh-part-2
IDAPython script for strings decryption: https://github.com/avast/ioc/tree/master/Meh-
part-2/extras/decrypt_strings_IDAPython.py

Tagged asanalysis, fraud, malware, passwords, rat, stealer

https://github.com/avast/ioc/tree/master/Meh-part-2
https://github.com/avast/ioc/tree/master/Meh-part-2/extras/decrypt_strings_IDAPython.py
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/fraud/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/passwords/
https://decoded.avast.io/tag/rat/
https://decoded.avast.io/tag/stealer/

