
1/30

Sapphire February 1, 2021

Diving into the Sun — SunCrypt: A new neighbour in the
ransomware mafia

medium.com/@sapphirex00/diving-into-the-sun-suncrypt-a-new-neighbour-in-the-ransomware-mafia-d89010c9df83

Sa
pphir
Sapphire

Nov 12, 2020

·

16 min read

https://medium.com/@sapphirex00/diving-into-the-sun-suncrypt-a-new-neighbour-in-the-ransomware-mafia-d89010c9df83
https://medium.com/?source=post_page-----d89010c9df83--------------------------------
https://medium.com/?source=post_page-----d89010c9df83--------------------------------


2/30

The first time I heard about SunCrypt I was just enjoying my time off preparing some stuff to
get dinner ready. My colleagues sent me over some weird samples that were flagged as
SunCrypt that were also beaconing to Maze C2 infrastructure, however they weren’t Maze but
shared some similarities and that’s basically why they did it as they know my interest in
ransomware and my personal fascination with Maze.

As I was checking a couple of hashes, I saw very interesting things that made me go hands-on
to investigate further and I ended up spending a lot of time not only analysing but also hunting
and creating some detections for this malware.



3/30

Initial Open Source Intelligence shows that SunCrypt made its first appearance around
October 2019 and it has been active since then. The SunCrypt team is active on underground
forums where they look for affiliates for their program just like the rest of ransomware operating
under the RaaS model.

SunCrypt forum advertisement

In their advertisement in a popular forum, shared in Twitter by ShadowIntelligence, can be
observed some of the features they offer for their product such as crypto independency from
the Windows CryptoAPI, “bypass” of 70% of the AV engines, which is not a lot..but I guess at
least they didn’t lie selling it as FUD as other threat actors, asynchronous search and
encryption, speed etc.



4/30

Additionally to the lock service, the SunCrypt team provides DDoS if they consider it as part of
the extortion to get the ransom paid.

SunCrypt shaming website

SunCrypt shaming site where they expose victims, status and data dumps
For some journalists and websites related to infosec, they are part of what they call “The Maze
Cartel” and they also drew some shy lines associating this team with Maze.

My personal opinion: I don’t believe such thing as a Cartel exists but sounds fancy. This would
imply a high degree of collaboration, potential relationships and involvement in the money-
laundry circuit, extortion and affiliation methodology… this is very different from a good or



5/30

neutral relationship with potential collaborations to share resources and infrastructure. I wanted
to see with my own eyes the degree of relationship and sophistication of this ransomware
family.

That said, to start the analysis I grabbed two samples that are available not only in VT but also
in AnyRun and from there I started the analysis to figure out how it works and hunting more
samples for code comparison.

This was fundamental to me to construct a solid opinion and conclusions that I may share
publicly with the community.

SunCrypt PowerShell loader analysis

SunCrypt ransomware has been spotted in many cases using PowerShell loaders for delivery
and deploy following the tendency marked by other groups offering ransomware service.

After the analysis of some of these loaders, I could observe that share some similarities or
reminds to me the structure and functionality of other loaders such a Netwalker PowerShell
Loader scripts. The SunCrypt loaders contains an embedded resource in plain text with two
export functions that are called by the script after the compilation of the C# code, heavy
obfuscation and a lot of junk code and useless data to harden the analysis and detection.

The obfuscation of the script includes arithmetical operations, encoding and string
manipulation not only for anti-analysis but probably to avoid detection by segmenting the
base64 strings.



6/30

SunCrypt ransomware powershell

PoweShell Loader script obfuscation
Jumping to the analysis, the sample md5 c171bcd34151cbcd48edbce13796e0ed is a
PowerShell loader containing the heavy obfuscation mentioned above and contains an
embedded small PE file md5 479712042d7ad6600cbe2d1e5bc2fa88 coded in C# that is
compiled in runtime and dropped to disk.

This DLL is used to assist with Process Injection of the payload by adding a class with
obfuscated names for the exported functions to call the functions VirtualAlloc and
EnumDesktopW. These are used to allocate memory and enumerate desktops associated with
the process.



7/30

The PowerShell script spawns an additional process instance of Powershell which is directly
invoked with the following arguments after the deobfuscation on the fly of the parameters:

C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe -ep bypass -file
<filepath of the script>

The main structure of script contains two heavily obfuscated payloads base64 encoded in
multiple strings that are subsequently deobfuscated by multiple operations and then decoded.

PowerShell uses the dropped .NET DLL to allocate memory space and copies the resultant
buffers to the newly created PowerShell process. The injected bytes are consistent with
shellcode and a PE32 file that are injected into PowerShell’s memory address space.

To analyze the payload the buffer containing the deobfuscated payload was dumped to disk to
carve the bytes.

A basic triage of the shellcode showed that it contains functions related to process injection
such as VirtualAlloc and VirtualProtect, likely indicating that the shellcode is assisting the
PowerShell script to leverage the injection of the payload.

SunCrypt payload Analysis

Most analyzed samples share the same code structure and characteristics but one of them had
a simpler structure that facilitated the analysis as the only major modification that most samples
contain was the addition of more obfuscation layers.

In this case I will jump directly to the analysis of the code shared between multiple samples
followed by a summarisation and conclusion.

From the PowerShell loader md5 c171bcd34151cbcd48edbce13796e0ed, the payload md5
0a0882b8da225406cc838991b5f67d11 was dumped and the bytes carved for analysis. This
PE file is consistent with an executable file likely to be coded in C and contains capabilities to
encrypt the filesystem, delete backups and to gather and exfiltrate user and host
information.

One of the first noticeable difference of the sample md5
0a0882b8da225406cc838991b5f67d11 is that it does not contain commandline arguments
unlike other analyzed samples like md5 3d756f9715a65def4a302f5008b03809 (payload
carved from the PowerShell loader with MD5 ) which contains multiple arguments .

Most samples contain these command line arguments just like the one I just mentioned above
that are intended to modify the behaviour of the ransomware. One of the key characteristics of
SunCrypt is that contain an embedded configuration that is likely to be inserted and then
encoded by the builder.



8/30

These command line arguments seen for example in md5
0a0882b8da225406cc838991b5f67d11 that are expected share some similarities with the
ones seen in other malware like Maze ransomware.

SunCrypt commandline arguments are:

The triaged samples that expect command line arguments contain obfuscated parameters and
SunCrypt uses FNV hashing to obfuscate these parameters.



9/30

SunCrypt arguments flow

IDA flow with each hash value and parameter
FNV () is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll,
and Kiem-Phong Vo. FNV functions contains two primary operations: XOR and
multiplication. These can be spotted also by identifying the hash values for FNV Prime
(0x01000193) and the FNV offset basis (0x811c9dc5).

In this case the identified version that SunCrypt is using is FNV-1a hashing.



10/30

SunCrypt arguments flow

Above the FNV hashing can be observed to obfuscate the commandline arguments, however
the value for “-noreport” is not hashed.
The next step the ransomware takes is to decode the configuration.

This configuration added and encoded by the builder contains the following parameters:



11/30

The whole section containing the configuration is decoded in multiple steps to save some of its
values for its use in different routines, however the whole configuration is decoded by multiple
loops that decode the data with a single-byte xor key 0x11.

SunCrypt ransom note decoded

Decoded data containing the HTML code for the ransom note.
One of the most noticeable things on the ransom note is that is written in multiple languages
including Spanish(Latin American Spanish), German, French and English. This note contains
an hardcoded identifier in hex format that is intended to be used to start negotiating the
payment of the ransom along with the TOR Hidden Service URL where SunCrypt hosts its
webpage and Shaming list containing the victim names, proofs and data dumps.



12/30

SunCrypt ransom note

SunCrypt ransom note
After the initial analysis of the configuration its data showed that both the offset of the ransom
note containing the individual key in hex format and other values that are used later are not
generated on the fly indicating that they are likely to be added by the builder during the
construction process.

One of the decoded details is a string in hex format that is re-encoded at a later stage and sent
within the POST data that is likely to be an implant identifier for the attackers.

The fact that all the data is precomputed or hardcoded is not always typical in ransomware and
popped up some questions in my head about the crypto used that I had to figure out later.



13/30

Once the C2 are decoded the malware looks for multiple addresses in order to save them for its
use later or just continues if only one is used.

The image below shows that after the configuration decoding and extraction, the next step
taken by SunCrypt is a quick system check to delete the Shadow Copy Volumes. Microsoft’s
shadow copy technology allows Windows systems to create snapshots-backups of files and
volumes. This step ensures no possible recovery.

SunCrypt ransomware configuration

After decoding the embedded configuration, it saves the C2 addresses for its use
In most samples all the data such a function names, DLL names and other data are
dynamically loaded and obfuscated using xor, sub or add operations with random values likely
to be inserted by the builder combined with the use of StackStrings for anti-analysis and



14/30

evasion.

The function in charge of deleting the Shadow Copy Volumes works in the same way and all
its steps are obfuscated. SunCrypt retrieves the system version to look for its architecture to
handle this via WMI query executing the query “select * from Win32_ShadowCopy” to then
delete all the available volumes.

SunCrypt shadowcopy deletion

obfuscated flow to decode strings used to retrieve system architecture and to handle the task
via WMI
One of the most interesting things I noticed is the fact that so far most samples create a mutex
but not all of them. In this case, the below screenshot of the sample
3d756f9715a65def4a302f5008b03809 creates it using this hex string that was mentioned



15/30

above and that is decoded during the configuration extraction.

SunCrypt pulls system version and create mutex

After the config decoding, gets the System Version and creates the mutex
Once SunCrypt deletes the Shadow Volumes, it scans for available drives following the
keyboard scheme from Q: to M:. In the case of the sample md5
0a0882b8da225406cc838991b5f67d11 it directly contains the hardcoded volume letters
instead of using other techniques to harden detection such a incrementing loops. However
most samples like md5 3d756f9715a65def4a302f5008b03809 contains a different technique
using FNV-hashing again to obfuscate this phase, indicating that the developer team modified
this to make its detection more complicated.



16/30

SunCrypt drive scanning

In most samples, drive scanning phase is obfuscated using FNV hashing, funnily enough,
contains the strings.

File encryption and Crypto walkthrough

SunCrypt uses a particular way to encrypt the filesystem and this is somehow reflected in their
advertisement where they specify that SunCrypt uses a completely independent
cryptography from the system API. Well, this is true and stepping through the crypto made it
complicated as there’s only a few visible calls and it does completely rely on itself instead of the
Windows CryptoAPI to generate the keys because the implementation is almost completely
manual.

Another interesting feature observed during the crypto walkthrough is that skips files that are
empty or less the 512 bytes size to skip potential garbage files. The Crypto is basically
identical in all the samples and it consists on a first loop to scan all the directories ensuring the
drive C: is present and is encrypted. However SunCrypt scans all the available network drives
such as Windows SMB File Shares in order to encrypted them if they are connected and
available.



17/30

The malware in most cases contains two lists:

of directories: contains a list of directories that skips from the encryption process to
ensure its recovery. These directories are: “”, “ ”, “”, “”, “”.
of file extensions: A huge list of file extensions are used to ensure only vital files are
maintained intact.

SunCrypt file extension check via FNV

note again the use of FNV hashing and the FNV prime hash above. The number 13:19:00
corresponds to the end of the array containing the file extensions.
These two arrays of lists are used with the FNV hashing technique again to ensure
obfuscation, however md5 0a0882b8da225406cc838991b5f67d11 again saves the day
containing all this information in plain text. The directories and file extensions don’t change



18/30

between samples and versions.

Another file extension that is skipped is if the filename contains
“YOUR_FILES_ARE_ENCRYPTED.HTML” which is used for the ransom note to ensure its
delivery to the victim, however there is a problem that is not resolved.

If the ransomware is executed twice, it would re-encrypt the filesystem as the file extension of
the encrypted files is generated on the fly. This embarrassing scenario indicates that if a
previous instance of SunCrypt encrypts the filesystem, another execution would re-encrypt all
the encrypted files, making this very hard to solve.



19/30

Once the directory is picked for encryption SunCrypt decodes the DLL name “advapi32.dll”
and a function to be loaded and used. The malware executes a GetProcAddress to use the
function SystemFunction036(RtlGenRandom), this will be our RNG to generate 32 random
bytes without using CryptGenRandom function call or an insecure generator.

SunCrypt RNG

After decoding the DLL and the function that will be called, SunCrypt uses SystemFunction036
to create 32 byte keys.
This 32-byte buffer is validated after it’s generation to create a secure private key for the
Elliptic Curve algorithm Curve. Curve25519 is a Diffie-Hellman function suitable for a wide
variety of applications and is used by many software applications.



20/30

Curve25519 works as follows according to the official documentation: “given a user’s ,
computes the Given the user’s and another , computes a . This secret can then be used to
authenticate and ”.

After the generation of this private session key, SunCrypt jumps to the curve function to
compute its session public key where this session private key is passed to the function
along with a basepoint constant of 9 followed by all zeros. This session public key will be
converted to hex format and used as file extension for the encrypted file to allow the
recovery as each time a file is encrypted the session private key is destroyed. Next step of
SunCrypt is to load its embedded Curve25519 public key to compute a shared secret.

The analyzed sample md5 0a0882b8da225406cc838991b5f67d11 contains the following
public key in hex format:

c75d83161c3768477c859b15cfe3f6c7bf707976bfed511af7015d04f7066558

The other analyzed sample used in the blog to compare SunCrypt versions
(MD5:3d756f9715a65def4a302f5008b03809) containing the improvement and obfuscation
shared with most of the observed SunCrypt samples contains the public key:
695c567285a5b331dcf1d61bb291ce850e92c57111678fe79a2e5c2e399c9310

The implementation of Curve25519 looks manual and it’s likely to be using code from any of
the multiple open source implementation of Curve25519,

The shared secret is computed by calling the curve function and passing the attacker’s
public key, the generated private key and the basepoint as parameters. This shared secret
is used by another algorithm to encrypt the file, allowing its recovery with the attacker’s
Curve25519 private key hosted in the SunCrypt C2 servers and the session public key that is
the file extension of each file.

Summarising, each time a file is selected for encryption after the aforementioned checks,
SunCrypt creates Curve25519 session keys, stores each public key as file extension and
destroys the session private key.



21/30

SunCrypt key generation

session public key is formatted and used as extension, then the shared key is computed with
the session private key and the attacker’s public key
Once the session keys are created and the shared key is computed for a given file, the
required data is sent via completion I/O port to the encryption thread which takes a pointer
to the file and its new generated extension. To handle encryption threading, SunCrypt gets the
number of processors and the maximum number of available threads that the operating
system can allow to process I/O completion packets for I/O completion port.

This provide an efficient threading for multiple asynchronous I/O requests for encryption.
Again, this was referenced in their forum ad.



22/30

SunCrypt asynchronous multithreading

CreateIOCompletionPort initialisation
For the file encryption SunCrypt uses a very fast and secure algorithm which in this case is
ChaCha. The implementation of ChaCha20 stream cipher is also manual and makes sense its
use, because it does not rely on statically linked libraries or the CryptoAPI avoiding
suspicious calls and it’s very fast and secure. This cipher is used by other popular ransomware
like Maze. Again another similarity.

The actual file encryption happens after the above steps. The malware calls ReadFile function
to get the content of the file and pushes a pointer to the buffer with the file content, the file
extension and the computed shared key for that file to ChaCha20 function that encrypts the
file partially. This limitation is intended to speed up a bit more the encryption as is enough to
make the file useless.



23/30

After reading the file, the flow redirects the data containing the computed shared key and the
file to the ChaCha20 encryption routine

C2 communications

SunCrypt contains a network module unlike many other ransomware and in my opinion this is
also influenced by Maze. The ransomware uses the IP addresses that are embedded in the
configuration and attempts to push different information from the compromised host.

It’s worth noting that the observed IP addresses in SunCrypt are in many cases consistent with
previous associated Maze infrastructure’s subnet, reinforcing the idea of some sort of
collaboration between ransomware dev groups.



24/30

SunCrypt gathers information from the Windows system gathering the Minor Version, Major
Version and Buildnumber of the compromised system. The system survey also consists of
gathering username and hostname information by calling GetUserNameA and
GetComputerA functions.

SunCrypt information gathering

The network module gathers the information and creates a buffer that is later encoded with a
hardcoded key
In the above image can be observed the information mentioned plus the fact of the use of this
offset containing the bytes used for the mutex or implant id.

One of the things that raised my attention is that this step is identical between versions,
meaning that these bytes are always used and intended to be sent in the network traffic,
however, they are also used as mutex if the sample generates one, which is not always the



25/30

case. That’s why I’m naming it implant-id and mutex at the same time. Is some sort of identifier
that they may find useful.

Additionally, SunCrypt adds to this information (Versions and implant/mutex) the victim’s
information as mentioned above.

The network buffer contains the following example structure:



26/30

The above mentioned bytes are likely to be related to a manually implemented library used by
the network routine to create the network buffer, however the library was not identified. Below
an example of the network buffer prior to it’s encoding using an hardcoded single-byte xor key
0x11.

Afterwards the C2 address that was stored during the configuration decoding is loaded and
pushed into the stack to send all this information to the routine handling the HTTP request.



27/30

SunCrypt network buffer

SunCrypt network buffer entering the encoding loop stage
Below an example of what SunCrypt HTTP traffic looks like in WireShark, containing the
encoded data in the POST data.



28/30

SunCrypt network traffic

SunCrypt network traffic
Another interesting detail that was mentioned before was the use of C2 infrastructure
associated to the Maze team, reinforcing the idea of collaboration between ransomware teams
which may indicate not only an stable relationship between threat actors but also a potential
cooperation to share infrastructure, resources and techniques.

Summary

After the analysis of the samples, can be appreciated some but not a lot of evolution and
changes. So far only one sample was found using clear-text strings
(md5:0a0882b8da225406cc838991b5f67d11) which contains vital strings such as the user-



29/30

agent and the drive letter whereas the rest of the identified samples contains some of the
following modifications:

Use of and hiding all the relevant data
implementation

From all the observed samples, most of them has been spotted using PowerShell as initial
vector to obfuscate the payload and to load the binary into memory and “honours” all the
functionalities that the developer team announce in their forum post like the non-use of the
CryptoAPI for file encryption and thread features. By looking at the PowerShell loaders I
personally found it similar to Netwalker PowerShell loaders, which makes me think that the
SunCrypt team got some inspiration from them.

SunCrypt contains multiple manual implementations on the source code to avoid detections
but despite the notable differences, it can be noticed that the team got a lot of inspiration from
Maze. SunCrypt copied part of its cryptoscheme like the use of ChaCha20 stream-cipher and
modified its session key implementation by replacing RSA for the Curve25519 algorithm
probably for two main reasons:

Key generation is way and uses than , which allows a very fast key generation and
operation.
. This allows to and . could be implemented manually, but I guess they considered that it
wasn’t probably worth.

Additionally, to increase the encryption speed the SunCrypt team sends file data via
completion I/O port to the encryption thread.

Overall I have to say SunCrypt is not a very sophisticated ransomware unlike some of its
competitors like Maze, Egregor, Ragnar or Wastedlocker and the main motivation I have to
say this, is due to the evolution, techniques, language(C over OOP like C++) and
obfuscation techniques point to this direction but they got a lot of inspiration to make
something similar to Maze. In fact when I saw SunCrypt for the first time I thought: “someone
from the team just left and started its own project(?)” but after diving into it and checking more
samples I could notice that the level of sophistication and experience, tooling and techniques
used are not the same, but I feel confident saying that they were a source of inspiration for
sure.

However, what has in common with Maze? It shares some of the command line arguments ,
the use of a network module for data exfiltration, algorithm for file encryption and other
references, however the main differences with Maze are:



30/30

It will be interesting to keep an eye on this malware to see its evolution and modifications to
survive as the RaaS model service is a fast paced ecosystem full of very capable
competitors.

MITRE ATT&CK

Samples

C2


