When Threat Actors Fly Under the Radar: Vatet, PyXie
and Defray777

7 unit42.paloaltonetworks.com/vatet-pyxie-defray777/

Ryan Tracey, Drew Schmitt November 7, 2020

By Ryan Tracey and Drew Schmitt
November 6, 2020 at 6:15 PM

Category: Malware, Ransomware, Unit 42

Tags: Defray777, PyXie, Vatet

This post is also available in: HASZE (Japanese)

Executive Summary

As security practitioners, we spend a lot of time focusing on the threat actors and malware
families that leverage the most impactful exploits or affect the highest number of victims. But
what happens when a threat actor goes “low and slow” to fly under the radar? One could
argue that, in that situation, the threat actor may end up having more impact than some of
the more prolific threat groups.

We first noticed that there may be a relationship between the Vatet loader, PyXie Remote
Access Tool (RAT) and Defray777 ransomware when there were remnants and/or detections
of all three in various Incident Response and Managed Threat Hunting engagements. After

1/11

https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/
https://unit42.paloaltonetworks.com/author/ryan-tracey/
https://unit42.paloaltonetworks.com/author/drew-schmitt/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/ransomware/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/defray777/
https://unit42.paloaltonetworks.com/tag/pyxie/
https://unit42.paloaltonetworks.com/tag/vatet/
https://unit42.paloaltonetworks.jp/vatet-pyxie-defray777/
https://www.crypsisgroup.com/
https://www.paloaltonetworks.com/cortex/managed-threat-hunting

digging deep into each malware family, it became apparent that Vatet, PyXie and Defray777
are all associated with the same financially motivated threat group that has been operating
since as early as 2018.

That threat group, sometimes referred to as PyXie by BlackBerry Cylance and GOLD
DUPONT by SecureWorks, has been actively conducting successful ransomware operations
that have impacted organizations in a number of sectors including healthcare, education,
government and technology while remaining under the radar. This blog aims to shed light on
this threat group and to disrupt their operations through awareness of their malware families
and operating methodologies. In essence, we want to get them on the radar.

During our research, we discovered that this threat group has developed and maintained the
Vatet loader. This loader has evolved as this threat group has taken advantage of multiple
open source tools by altering the original application to execute payloads such as PyXie
and/or Cobalt Strike. Next, the threat group uses a tailored version of PyXie, which we call
PyXie Lite, to conduct reconnaissance and to find and exfiltrate files that are likely sensitive
to the victim organization. In a number of incidents we investigated, the actors established an
initial foothold into the victim's network through common banking trojans such as IcedID or
Trickbot. From there, they deployed Vatet, PyXie and Cobalt Strike before executing
Defray777 ransomware entirely in memory. This results in encrypted files on local drives and
file shares before exiting. Additionally, the ransomware leaves no evidence of execution
except for the encrypted files and ransom notes. In regard to Defray777, the group behind
this malware has also ported their ransomware from Windows to Linux, something that,
before Defray777, has yet to be seen in the targeted ransomware space. Before this
discovery, ransomware that had the ability to impact both Windows and Linux systems was
limited to cross-functional ransomware written in Java or scripting languages such as
Python. With the port to Linux, Defray777 ransomware has become the first ransomware
variant to have standalone executables for Windows and Linux.

With three different malware families to cover, we realize there is a lot of content to digest.
We have a lot of great details on each of these, but we also realize that you may be
interested in one malware family over the others, or you may just prefer to choose your own
adventure. If desired, use the links below to skip to the malware family that interests you
most, or to get right to the I0Cs that will get you hunting for, and detecting, this threat group
in action.

Table of Contents

First Up: Vatet Loader

Next Up: PyXie Lite

Last, but Not Least: Defray777
Linking_ Vatet, PyXie and Defray777
Indicators of Compromise (IOCs)

2/11

https://blogs.blackberry.com/en/2019/12/meet-pyxie-a-nefarious-new-python-rat
https://www.secureworks.com/research/threat-profiles/gold-dupont
https://unit42.paloaltonetworks.com/tag/trickbot/
https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/2
https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/3
https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/4
https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/5

First Up: Vatet Loader

Vatet is a custom loader that executes XOR encoded shellcode from the local disk or a
network share. The loaders are typically open source applications found on GitHub, or other
repositories, that the actors modify to load their shellcode. In most cases, the payload winds
up being Cobalt Strike beacons and/or stagers, but some of the more recent payloads have
been an updated version of the PyXie RAT. Vatet is often a precursor to enterprise-wide
ransomware attacks.

Microsoft wrote about the Vatet loader in April 2020 and said the loader had been in use as
early as November 2018 for the purpose of loading Cobalt Strike into memory for execution.
This loader continues to be seen in the wild using multiple versions of open source
applications to load shellcode including:

Version First Seen
Recompiled Tetris game 2019-06-28
Recompiled Notepad 2020-05-03

Recompiled desktop customization app, Rainmeter 2020-06-24

Recompiled Notepad++ 2020-09-24

Table 1. Vatet versions.

In our research, we have seen Vatet samples with compile times as early as 2019, although
this variant has implemented several variations since then.

In the earliest versions of Vatet that we analyzed, the malicious payload was loaded via a
network share using a path with the following format: \\{IP}{EPOCHTIME}\{PAYLOAD}.dat.
However, in the latest samples analyzed, the malicious payload was loaded locally from disk.
Additionally, we have seen variations in the XOR keys used to decode the payload during
execution time. Our research also determined that the Vatet loader has expanded its payload
capabilities to load PyXie in addition to the previously seen Cobalt Strike beacons and
stagers. Finally, the Vatet loaders we analyzed have evolved and begun taking steps to
improve their anti-forensics capabilities by deleting malicious payloads after they have been
loaded into memory for execution.

3/11

https://www.microsoft.com/security/blog/2020/04/28/ransomware-groups-continue-to-target-healthcare-critical-services-heres-how-to-reduce-risk/
https://github.com/VincentJYZhang/tetris-game
https://github.com/wine-mirror/wine/tree/master/programs/notepad
https://github.com/rainmeter/rainmeter

PyXie Lite

Vatet Loader

Cobalt Strike Defray777

Figure 1. Vatet execution flow.
Let’'s take a deeper look at Vatet using a malicious version of Rainmeter.

Inner Workings of the Vatet Loader: A Rainmeter Review

Rainmeter is a desktop customization tool that allows users to customize their desktops
through the use of “skins.” During a legitimate installation, Rainmeter creates an executable,
rainmeter.exe, and a corresponding DLL, rainmeter.dll. Under normal conditions,
rainmeter.dll is responsible for reading configuration files and facilitating a customized
desktop. Under the observed circumstances, a signed, legitimate version of rainmeter.exe
and a malicious version of rainmeter.dll could be simply copied onto the victim system, then
used to load and execute a Cobalt Strike beacon in memory under the context of a signed,
legitimate executable.

Taking a Look at the Static Properties

We first reviewed the suspicious rainmeter.exe and rainmeter.dll files and compared them to
versions that would be installed on a system through the official September 2019 release of
the Rainmeter installer, which can be found on its public GitHub page.

Reviewing rainmeter.exe did not produce many interesting findings. Examining both
executables in PEStudio confirmed that the sample recovered during a ransomware scenario
was the same executable generated by the standard Rainmeter installer, based on the
SHA256 hash. We also verified that both executables had the same valid digital signature.

4/11

https://github.com/rainmeter/rainmeter
https://www.winitor.com/

m [c\cases\arcl

5 - Mahwa n _rainm e - o x pestudio 9.05 - Assessment -
file settings about file settings about
7 %
property value EXS
indicators (2/20 mds 764ED02E1DF71666CCAECOE2DDEBFEA indicators (2/2
1 ot ot) shat 49BODCARAFDA154152D200E 5671 18FIAOIFETEE L O
B dos-stub (124 bytes) sha2sh 3647043720E3551B8993A3ED3 1091 FOSSAESSA3E: B526657EDESS62 B8 dow stub (14 bytes
> file-header (Sep.2019) st houtovein) > file-header (Sep.2019)
> optional-header (GUI) iy > optional-header (GUI)
S directories (5) sha256-without-overlay] directories (6)
+ sections (97.98%) first-bytes-hex D 5A 00,0000 FF FF 00 00 B3 4
7 libraries (4) first-bytes-text M
imports (3/15) file-size 475536 (bytes)
= size-without-overlay
— entropy 2552
17 resources (15) imphash 9ABEE6SF22017F3DTBODIBDAFIEESE {1 resources (1)
signature ings (6/208)
entry-point 83 EC 08 E8 48 FE FF FF 50 FF 15 1C 20 40 00 CC 00 00 00 00.00.00 00 00 00.0
manifest (aslvoker) e 4313321 manifest (aslnvoker)
version (Rainmeter.exe) description Rainmeter desktop customization tool version (Rainmeter.exe)
3l centficate (07/02/2018 - 06/02/2021) fle-type executable Ll certificate (07/02/2018 - 06/02/2021)
=) cpu 32-bit (]
subsystem GuI
compiler-stamp 0x5DE7SATF (Sun Sep 22 06:26:55 2019 - UTC)
debugger-stamp 0x5DE75ATF (Sun Sep 22 06:26:55 2019)

resources-stamp
exports-stamp
version-stamp
cetificate-stamp 0x38C04000 (Tue Feb 06 18:00:00 2018)

property

mds

shal

sha2s
mdS-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature
entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

Figure 2. Initial comparison of static properties of “rainmeter.exe”.
Comparing the rainmeter.dll samples provided more interesting findings. Initially, it was
obvious that the two samples were not the same, since the hashes did not line up. The sizes
of the files were significantly different from one another and the compile dates were also
quite different. Additionally, there was some variability in the imports, exports, strings and
other properties. Further, the suspected malicious DLL was not digitally signed and had

additional sections not present in the legitimate Rainmeter DLL.

value

T64EDO2E 1 DFT1666CCOGC0E2DDEIBFEA
49BODCAAAEDAT54152D209E567118F 34033FETFE.

3647543720F ID91FDS5AES543F2E43E6C3B526657EDATSE3

4D 590,00 03 0 0D 00 04 00 00 00 FF FF 00 00 B3 00 00 00 00 00 000040 0
MZ. [}
475536 (bytes)

2552
SA66E65F22017F3D7BID3BIDAFIEESAE

83 EC 08 E8 48 FE FF FF 50 FF 15 1C 2040 00 CC 0000 00 00 00 00 00 00 00 |
4313321

Rainmeter desktop customization tool

executable

32-bit

Gul

0xBDS7EATF (Sun Sep 22 06:26:55 2019 - UTC)

0x5D875ATF (Sun Sep 22 06:26:55 2018)

0x98C04000 (Tue Feb 06 18:00:00 2018)

2 eter.dll] -] x

- o > | [pestudio 9.05 - Malware Initial Assessment -

file settings about file settings about
property value
mds. BEAQATCCBAD319F5207438TCAFESAIEY
shal DOD7023833F93D28E26D1 DI2CADAGEECCASSBS4D
[dos-header (64 bytes) sha2s6 9EFCAADC | 6CFRAE4IBDE46ESE 1320280 DFCO5088D T6CE2EDC I63DACK] _ dosheader (64 bytes)
b file-header (Sep.2019) BT L] - file-header (Jul.2020)
> optional-header (GUI) shal-without-overlay > optional-header (GU)
H directories (time-stamp) Shazsbpnhoutioveiay 8] directories (time-stamp)
b sections (99.47%) first-bytes-hex 4054500003 FF FF0000 B8 s " sections (blackis]
5 first-bytes-text MZ. "
a file-size 1805200 (bytes) a
3 exports (snonymous) size-without-overlay T3 exports (duplicated)
- entropy 665 -0
T resources (12) imphash T resources (12)
ot signature ate
A entry-point 5588 EC 83 7D 0C 0175 05 E8 24 06 00 00 FF 75 10 FF 75 0C FF 75,08 EB B3
=] manifest (aslnvoker) file-version 1313321 -E] manifest (sslnvoker)
version (Rainmeter.l) descrigtion version (Rainmeterdll)
L3 certificate (07/02/2012 - 06/02/2021) fle-type dynamic-tinklibrary
-1 cpu 32-bit -
subsystem ou
compiler-stemp 0x5DB75A7D (Sun Sep 22 06:26:53 2019- UTC)
debugger-stamp 0x5DE75A7D (Sun Sep 22 06:26:53 2019)
resources-stamp
exports-stamp OXFFFFFFFF (Sun Feb 07 0
version-stamp
certificate-stamp 0x38C04000 (Tue Feb 06 18:00:00 2018)

Figure 3. Comparing the two versions of “rainmeter.dll”.

property

mds

sha

sha2s
mds-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature
entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

value
23DAFA7STTCDADBDFCB2EGSE 1217CBEE

89372B60BCEEQ329E442E601 481 T66FBBBAFAIES

47DECC0A05218D0C 1078DABFEDOCATBTB424C DDT3EAF3BEL 1B42F¢

4D 5 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B3 00 00 00 00 00 00 00 40 0
MZ.. @
1882112 (bytes)

6.648

5588 EC 83 7D 0C 017505 E8 28 06 00 00 FF 75 10 FF 75 0C FF 75 08 EB AE |
2403321

0x5FD1CBA2 (Sun Jul D5 07:46:26 2020 - UTC)
0x5F01CBA2 (Sun Jul 05 07:46:26 2020)

OxFFFFFFFF (Sun Feb 070

El- 9.05 - Mahware Initial A archive ainy ainy - o
file settings about
%
58] ccases\archivellegit_rainmeter\sinmeterdll A [property value value value value value
- name text data idata rsrc reloc
_’)1 don-header (54 bytes) mds F678288D9143CEQEFADDCED.., 37CHSCIDAIACDAFABTAFI4,, BBECDFBSEGCEO20BSDFAF.. 8BGESJE00914ECEBIBAICAC.. (45CEIF2ACTICBABDTIC
B don st (216 bytes) entropy 6.592 4706 559 3436 6702
" fleheader (5ep.2919) file-ratio (99.47%) 94.11% 113% 0.60% 037% 326%
* optional-header (GU) raw-address 0x00D0400 0xDO1FO0D 0xD01A4000 0xDO1ABADD 0xDD1ABADD
raw-size (1795584 bytes) (x0019ECO00 (1698816 bytes) (xD0D05000 (20420 bytes) 0xD0002A00 (10752 bytes) (xDODDTADD (6656 bytes) (xDOOOEGOD (58880 bytes)
virtual-address 0x10001000 0x101A0000 0x101AB0CO Ox101AED0D 010180000
virtual-size (1816940 bytes) ~ (x0019EBDB (1698776 bytes) xD0D0ABSS (43144 bytes) 0xD00028B4 (10420 bytes) 0xD0001850 (6224 bytes) OxDO0DEA08 (58376 bytes)
entry-point OxD0168F56.
[exports (anonymous) writable - x
0 executable x
T resources (12) shareable
st strings (174/12666) v | discardable
< > P
[pestudio .05 - ial Assessment - i m [ci\cases\archi 2 eter.di] - O
file settings about
?
=+ ccasestarchiveloptions_2zinmeter.dil property value value value value value value value
name text data idata testdata tes 5 rSIC reloc
’? o header (54 byte) mds EB34A07TBTAFAATAMBEATG., TDGB2385ROAGMBTI04IBSCE,, CEDBCE01240E2ADTBOFACA,., 3BIGACICEOTFTBMIBECOS,, BDSDCIEADICOSSDIESTOL., 93DIDISBBSTTRIETGEIBA0N.., (CCGHACDOACDEAIATBILY
B dosstub (208 bytes) entropy 6.5% 4547 5612 2134 0.020 3.433 669
. file-headier (ul.2020) file-ratio (99.95%) U61% 114% 057% 003% 0.03% 035% 2%
> optional-header (GU) raw-address 0x00000400 0x00183000 0x00188400 1882 0xD01BCCOD
raw-size (1881088 bytes) 0x001B2COD (1780736 bytes) 0x00003400 (21504 bytes) 0x00002A00 (10752 bytes) 0x00000200 (512 bytes) 0x00000200 (512 bytes) 0x00DD1ADD (6636 bytes) 0xDDODECDD (50416 bytes)
virtual-address 0x10001000 0x101B4000 0x101BFOD0 0x101C2000 0x101C3000 0x101C4000 0x101C6000
virtual-size (1901624 bytes) Ox001B2B42 (1780546 bytes) 0x0000ACE4 (44164 bytes) 0x00002926 (10534 bytes) 04000000C0 (192 bytes) 0400000004 (4 bytes) k00001850 (6224 bytes) OxD0D0EA3S (59960 bytes)
entry-point 0x0017A822
% exports (duplicated) writable - x - -
=0 executable x
(4 resources (12) shareable x x
2t strings (176/13095) discardable

Figure 4. Comparing sections between “rainmeter.dll” samples.

5/11

It is important to note that the code base for Rainmeter is publicly available on GitHub under
the GNU General Public License v2.0. This would have allowed the threat actor to openly
review/modify the existing rainmeter.dll file contents and compile it into the suspected
malicious DLL we saw during our investigation.

After completing these comparisons to confirm that the Rainmeter DLL was likely malicious,
it was time for a deeper and more focused look at the samples using a debugger for dynamic
analysis.

Dynamic Analysis of the Malicious Rainmeter Sample

Now that we had identified samples for deeper inspection, we stopped the comparisons to
the legitimate Rainmeter application and focused on the analysis of the suspicious samples
recovered. We placed the samples of rainmeter.exe and rainmeter.dll recovered from the
investigation into our analysis environment and began debugging Rainmeter. Shortly after
starting analysis, rainmeter.exe loaded rainmeter.dll as expected, and subsequently called its
ordinal 1 exported function. Continuing the execution, there were calls to CreateFileA, where
the sample was looking for the hardcoded path C:\Windows\help\options.dat.

&8 B8010210 push rainmeter.100201E8 100201B8: "c: Y \windows'help'‘\options.dat"

100B115A
100B115F

. FF15 ESF11B10 €all dword ptr ds:[<&CreateFileA>] verifying that options.dat exists at hardcoded path
Eg———e 894424 14 mov dword ptr ss:|esp+l4f),eax
. 83F8 FF cmp eax,FFFFFFFF
——————————— . ~ DFB4 34100000 iE ra‘irlneter.lDDBZlFB

Figure 5. Call to “CreateFileA” for a hardcoded path.

After the call to CreateFileA, there is a comparison of the result of the call to CreateFileA to
FFFFFFFF to determine if it has a valid handle to the file or not. If there is no valid handle,
the program exits.

Originally it was not obvious that options.dat was necessary for the analysis of the malicious
Rainmeter sample as .dat files are not part of the normal Rainmeter application. However, a
version of options.dat was recovered in order to continue analysis. Once the “dat” file was
placed in the expected location, the program then allocated space on the heap and read the
contents of options.dat into memory. After the contents of options.dat were read into memory,
the sample performed a first-level decoding of the contents by XOR-ing the contents with the
value FE.

ﬂ Rainmeter.exe - PID: 5E4 -

Medule: rainmeter.dll - Thread: Main Thread 1514 - x32dbg [Elevated]
FILE VIEW DEBUG TRACE PLUGINS FAVOURITES OPTIONS HELP JUN 4 2020

m o = 1 s 1 + / =y

7 53 push ebx
7 FF7424 24 push dword ptr ss:flesp+z24f)
7 FF1l5 64F12271 call dword ptr ds:[<&ReadFilex]
7 85C0 test eax,eax
———————— 7 ~ 74 1F je rainmeter.711211E7
7 BB4C24 10 mov ecx,dword ptr ss:[fesp+i0f
7 32C0 Xor eax,eax
7 85C9 test ecx,ecx
------ 7 ~ 74 09 je rainmeter.711211DB
7 803418 FE xor byte ptr ds:[eax+ebx],FE Original XOR decoding with 'FE'
i f 7 40 inc eax
g i 7 3BC1 cmp eax,ecx
! 7 ~ 72 F7 jb rainmeter.711211D2

Figure 6. Initial XOR decoding loop.

6/11

https://github.com/rainmeter/rainmeter

Once the first decoding routine is completed, the malicious Rainmeter application closes the
handle to options.dat. When the program closes the handle to options.dat, it is removed from
the file system. This is a built-in anti-analysis technique employed to hinder recovery of the
.dat file for analysis. At this point, the data read into the program was still a blob of
unrecognizable code. However, at the end of the XOR decoding routine, there is a CALL
EBX instruction that transfers execution to the recently decoded data. Following EBX in the
disassembled view shows that this is valid code. At this stage of analysis, Rainmeter has
decoded its options.dat payload, loaded it into memory and executed it. Future analysis
confirmed that this was the end of the Vatet loader routine, and execution was passed to the
Cobalt Strike shellcode loader.

ﬂ Rainmeter.exe - PID: 698 - Thread: Main Thread 1F2C - x32dbg [Elevated]

VIEW DEBUG TRACE PLUGINS FAVOURITES OPTIONS HELP JUN 4 2020

+ N » § + oy

FC Destination of CALL after initial XOR decoding routine
E8 10000000

EA 32335B65 A3D2
BE 475C36FD

05 AA122FEB

27

Figure 7. Transfer of execution to valid code after XOR decoding.

By this point, we realized that the Vatet loading mechanism was completed, but we wanted
to validate the identity of the final payload, so we pressed on. Further along in the execution,
there is a second decoding routine where an additional dynamic XOR loop is used to decode
and rewrite the contents of the executable code. If this routine looks familiar, it's probably
because you are noticing the Cobalt Strike decoding mechanism. This routine begins by
obtaining a pointer to the first four bytes of the imported executable code and setting it as the
starting XOR key. The code then executes a loop acting on four bytes at a time, XORing the
imported code with the starting XOR key. Next, the loop writes the XOR’d value back into the
data segment, followed by setting a new XOR key. The new XOR key is determined by
XOR’ing the current XOR key with the value decoded by the current key. Once this loop is
finished, the sample then uses JMP ECX to transfer execution to the recently decoded
executable contents.

7/11

3% Rainmeter.exe - PID: 692 - Thread: Main Thread 1F2C - x32dbg [Elevated]

FILE VIEW DEBUG
a D =
5600087
. edi
L eax,dword ptr ds: [edi]
L Ed'
. er'p,clword ptr ds:[edi]
L ebp, eax Starting XOR Key
L edi,4
. push ed
L ebx,dword ptr ds:[edi] Dynamic XOR decoding
. ; xor ebx,eax
. 891F mow dwnrd ptr ds:[edi],ebx
. 31D3 Xor eax,ebx
L 83C7 04 add edi,4
. 83ED 04 sub ebp,4
. 31DRB xor ebx,ebx
L 390D cmp ebp, ebx
———-® » 74 02 je 5600084
e ~ EB EA jmp SE0006E
Lo-—r@ 58 pop eax
L ~ FFED jmp eax
— E8 D4FFFFFF call 5600060
. 38B0 FL1l1A3830 cmp byte ptr ds:[eax-7F],dh
L F2:1A4D SA sbb cl,byte ptr ss:[lebp+sAl
L] EE 00000000 call 5600098 call %o
. 5B pop ebx
EDI > FC cld
L 35 4B04A39BC ¥or eax,BCA2044B
. AE scash
. 556A EC test dword ptr ds: [edx-14],ebp
. 2F das
. 856A 13 test dword ptr ds:[edx+13],ebp
. FiC cld
L ED in eax,dx
L 94 AGSEBBFZ AZSE call FarF -e- FZEBSEAG
. BEE F2F5A16B mov ebx,6BALFSF2
. F2:F5 CIC
L Al GBF2FSAL mov eax,dword ptr ds:[ALFS5F26E]
. 6BF2 F5S imul esi,edx,FF esii&l"Ci N\ Usersy\Syt
. Al GEF2F5Al mov eax,dword ptr d 1F5F26E]
L GEBF2 F5 imul e:-" yedx, FF esit&L"C:\\Users\\Syr
™ A1l _EBEZTEL A mos sz _mawnrd AteE HA-sTCascccoopd
]
ebx=0
dword ptr [edi]=[0560009C]=44B35FC
05 60006E
B Dump1 L ¥ wm m @ 2
Address | Hex ASCII
05600048 |FC ES 10 00|00 00 EA 32(33 5B 65 A3|D2 BE 47 5C|He. 23 [e£0%G,
0560005836 FD OS5 AMA (12 2F EB 27 |5F 8B 0OF B3 |C7 04 BB ZF Gy - ,rE clEoo i
0560006831 €5 83 C7 |04 57 8B 1F |31 C3 89 1F |31 DB B3 C7|1A. C W. J. ..18.C
05600078(04 83 ED 04|31 DB 32 DD |74 02 EB EA|58 FF ED EB|.. U‘E!Yt Eehyae
05600088 (D4 FF FF FF |38 BO F1 1A|38 80 F2 1A|4D 5A EB 0O Clji'}fyo f.8.0. MZE
05600098 (00 00 OO0 SB|FC 35 4B 04| A9 BC AE 85|64 EC 2F BS uSK (SR
056000A8(64 13 FC ED|9A A6 SE BBE|F2 A2 S5E BB|F2 F5 Al &B ;| it. '-'\»Dﬂ"“\»l:lml\
D56000B8|F2 F5 AL GB|F2 F5 Al GB|F2 F5 Al GB|F2 F5 Al 6B|0dikdOikddikbdik
O56000C8|(F2 F5 Al GEB|(F2 F5 Al 6B |0A F5 Al 6B |48 EE 34 &E DD|kDD|k D|I\H'I4r1
05600008|D1 33 16 ES|4C 8F A6 29|A4 EA F2 3IF|25 &D B84 FB|R3. élL
056000E8|13 C8 3B B0|EC 72 02 B4|DE6 AE6 2F 21|3C 3A FO 16| .E; ‘Ir
O56000F8 (A2 5A 2E AL|71 6A 6B FF|EF 2B 9C 4A|DF 76 F5 F3|<€Z.
05600108 | CF 4B BY 87 (27 17 74|75 2D DE FE|OC 6D 37 43|IK....
05600118| 88 F8 8A B5 |37 84 5B 1A(DE BB F8 7G|EE 18 9B 4F | .@.u7.
05600128 | 01 35 1C CS 20 13 23 5F|AB AD 30 CA EIB J.4 CG EF E.A
NCCNN1I201 7o A TA TC TAITNA NC DE AA AN '|J.I:"\.“' Pw"lﬂﬂﬂ ~a

Figure 8. Enterlng into the second decodlng Ioop Note the memory space in Dump 1.

ﬁ Rainmeter.exe - PID: 698 - Thread: Main Thread 1F2C - x32dbg [Elevated]

FILE VIEW DEBUG TRACE PLUGINS FAVOURITES OPTIONS HELP JUN 4 2020

" O =

jmp 5600087

pop edi
7 mov eax,dword ptr
7 add edi,4
BBZF mov ebp,dword ptr ds:[edi
31C5 xor ebp,eax Starting XOR Key
83C7 04 add edi,4
57 push edi
BB1F mov ebx,dword ptr ds:[edi Dynamic XOR decoding
31C3 xor ebx,eax
891F mov dword ptr ds:[edi],ebx
31D8 Xor eax,ebx
B3C7 04 add edi,4
83ED 04 sub ebp,4
31DB xor ebx,ebx
390D cmp ebp,ebx
v 74 02 je 5600084
~ EB EA jmp SE0006E
55 pop eax
~~FFED jmp. eax Transfer of execution to decoded executable
ES D4FFFFFF call 5600060
38B0 F11A3880 cmp byte ptr ds:[eax-7FC7ES0OF],dh
FZ2:1A4D SA sbb cl,byte ptr ss:|febp+5al
ES 00000000 €all seso0D098 call $o
5B pop ebx
BIDF mov edi,ebx
52 push edx
45 inc ebp
14 push ebp
B9ES mov ebp,esp
81C3 50810000 add ebx, 8150
FFD3
68 FOBSAZ56
658 04000000
FFDOD
{alulsla] eax],al
{alulsla] eax],al
0000 eax],al
0000 eax],al
fa¥uTatnl a2 27
|

2ax=05600094

05600085

Address

Hex
05600094 /40N 5A ES 00|00 0O OO0 5B e....[.BREU. é
05600044 C2 50 81 0000 FF D3 68 yCIhﬁu(\h
05600084 | 00 57 FF DO(00 OO0 OO0 OO(00 OO0 00 OO0 (00 00 00 00| .WYB...oiaaaaaas
056000C4(00 OO OO0 OO|00 OO OO OOD|00 OO OO0 OO(F8 OO0 00 OO0 cu.eeeenuns 2B ..
056000D4 | 42 1B 95 05|99 DD 22 EB % IeeT
O56000E4 |81 87 76 C4|36 AS BF 7B °94:0-
056000F4| EA 9C DF 37 (9E 60 DE BV] 7 « 7 DE-".A—U
05600104 (30 5D 69 B9 |10 3D 42 74|58 L . Ji'.=BLX\Uda:
05600114 (73 40 E9 3D |84 95 BD F&|BF 7C D1 AF |E8 3F A3 &C y@e— &0¢|ﬁ E"‘E'l
05600124| 31 A3 &3 39(EF 2D 87 BA |21 26 3IF 9A |88 BA B3 95 J.£C9'I—
05600134| 1B BD 56 25(C5 S5E 91 26(B2 60 28 BD B4 FF C9 DE &\«V)A""
05600144 | A8 75 D5 00|BF F4 29 A9|37 07 E8 6D |DC BE E7 AE| wud.
05600154 8C A9 BA 51 |DE CB 51 B3|B5 18 39 FF (94 B3 11 AF|.®8. QDEQ M.
05600164| 8D BS 32 2D (AE 54 A7 BF(6A F1 FC 82|74 2D DO 7B
05600174| 9D 5A AZ 5D(CF Cé& AF 1C DJ. 9F 77 6D |3F 82 77 11 ZC I£ .. .wm7.w.
ncenniealse s s noles co cc oa ac on onlar 03 na ool lnsdire’oe

Figure 9. After the completion of the second decoding routine, note the executable contents
now decoded in Dump 2.

At this stage of analysis, we confirmed the content included in options.dat was shellcode that
was later decoded via a dynamic XOR routine to create executable code in Rainmeter’s
process memory.

Now that we had the executable contents of the XOR’d executable code from options.dat
available in memory, we dumped the contents from the memory map section in x64bdg for
additional analysis to determine this code’s potential functionality.

Moving to our dumped sample of the executable code, we conducted an analysis of the
strings to determine if there was anything obvious to correlate dynamic analysis findings. In
doing this, we identified a reference to beacon.dll, which is most often associated with the
DLL version of Cobalt Strike’s beacon. Additionally, loading the isolated PE into PeStudio
showed the following references to an exported function _ReflectiveLoader@4, which is a
known exported function of Cobalt Strike.

9/11

https://x64dbg.com/#start

pestudio 9.05 - Malware Initial Assessment - www.winitor.com [c\cases\archive\options_2\rainmeter_04c10000_fixed.dll]

file s

about

ettings

e ol

<

sha256: BDAG5BABAGT404CBTFBBBBT0B4404460723DB17D835A5692333012DCI7BBTECE

..... > dos-header (64 bytes)

- JB8 dos-stub (184 bytes)

..... » file-header (number-of-symbols)
..... > optional-header (GUI)

..... = directories (5)

----- > zections (blacklist)

.4 | imports (204)

B %

| % exports (_ReflectiveLoader@4)

>

property

md3

shal

sha236
md3-without-overlay
shal-without-overlay
sha236-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature

entry-point
file-version
description

file-type

cpu

subsystem
campiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

value

439D38FDF4A44BBBC0B2F516B5CT7EF
EBS0AB3CDDDDAZIIADTTACIA2BCHAATFAIIGTF
BDAGBSBABAG1404CETFEEBBTOBA4044607230B17D835456923330120CATBETECE
59289EFS6738F25F4C2BEIIEEFCTRI55
F3076E32B061D87CB346B6E6SESFOCO41B88CD4D
ED8F320699311B776990D3C61F3CO050BFO048B693AB489CAMTADTFITI0E31C4
4D 5A E8 00 00 00 00 5B 89 DF 52 45 55 89 E5 &1 C3 50 &1 0000 FF D3 68 FO B35 A2 56 68 04 00 00 00
MZ.wuwwulwoREU L uPonuwnhow o Vhawo

216940 (bytes)

208896 (bytes)

6.693

8B FF558B EC 837D 0C017505E8 C46C 0000 FF 7508 8B 4D 10 8B 55 0C E8 EC FE FF FF 595D C2

dynamic-link-library

32-bit

GUI

0x58266B7B (Fri Nov 11 19:08:11 2016 - UTC)

0x50DE8F170 (Thu Dec 05 06:00:48 2018)

cpu: 32-bit file-type: dynamic-link-library subsysterm: GUI

Figure 10. Extracted PE analysis in PeStudio.
To confirm whether the extracted payload was a Cobalt Strike beacon or not, we utilized a
Cobalt Strike beacon parser, which dumped the beacon’s decoded configuration.

10/11

© BEACON_METADATA
VERSION
EXPORT_TIMESTAMP
EXPORT_NAME

© BEACON_SETTINGS
SETTING_PROTOCOL
SETTING_PORT
SETTING_SLEEPTIME
SETTING_MAXGET
SETTING_JITTER
SETTING_MAXDNS
SETTING_PUBKEY
SETTING_DOMAINS
SETTING_USERAGENT
SETTING_SUBMITURI
SETTING_C2_RECOVER

SETTING_C2_REQUEST

SETTING_C2_POSTREQ

DEPRECATED_SETTING_SPAWNTO
SETTING_SPAWNTO_X86
SETTING_SPAWNTO_X64
SETTING_PIPENAME
SETTING_CRYPTO_SCHEME
SETTING_DNS_IDLE
SETTING_DNS_SLEEP
SETTING_C2 VERB_GET
SETTING_C2 VERB_POST
SETTING_C2 CHUNK_POST
SETTING WATERMARK
SETTING_CLEANUP
SETTING_CFG_CAUTION
Setting_ID_54

Setting_ID_50
SETTING_PROXY_BEHAVIOR
Setting_ID_55
SETTING_KILLDATE
SETTING_GARGLE_NOOK
SETTING_GARGLE_SECTIONS
SETTING_PROCINJ_PERMS_|
SETTING_PROCINJ_PERMS
SETTING_PROCINJ_MINALLOC

SETTING PROCINJ TRANSFORM _X86

Beacon Dumper

4.0
Thu, 05 Dec 2018 12:00:48 UTC
_ReflectiveLoader@4

HTTPS Beacon (windows/beacon_https/reverse_https)
443

18000

1048576

30

255

MIGFMAQGCSqGSIb3DQEBAQUAA4GNADCBIQKBgQDCT42RZXDKOt4 TBaANG7RggQbQZ K It9JoHUhWGbSHC ZdWd3Z mogF QUFJS3NsjMvGrDkwxGokAV2GaGhCChb1GHK N

192.169.7.160,/siref =nb_sb_nass_1/167-3294888-0262949)field-keywords=books
Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
/N4215/adjfamzn.us.sr.aps

bytearray(b\x04')

Accept: */*

Host: www.amazon.com

session-token=

skin=noskin;

esm-hi
Cookie

5-24KU11BB82RASYGJ3BDK|1419899032996

Accept: */*

Content-Type: text/xml
X-Requested-With: XMLHttpRequest
Host: www.amazon.com

52=180x600

oe=0e=IS0-8859-1;

sn

s=3117

de_s P 2F%2F mazon.com

Shwindir%\syswowB4\WerFault.exe
S%windir¥\sysnative\WerFault.exe

4]

0

0

GET

POST

4]

0x12345678 (305419896)

1
o

T
PROXY_PRECONFIG
4]

0
154122

“1x02x00Q! 00)
64

32

17500

bytearrav(bx02\x90\x90')

Figure 11. Cobalt Strike beacon configuration.

The confirmed Cobalt Strike beacon shows a typical implementation of Cobalt Strike’s
HTTPS beacon using malleable C2 profiles. Specifically, the Amazon browsing_traffic profile

created by harmjoy was used in this beacon.

Continue reading: Next Up: "PyXie Lite"

Get updates from

Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy

Statement.

11/11

https://raw.githubusercontent.com/rsmudge/Malleable-C2-Profiles/master/normal/amazon.profile
https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/2
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

