
1/14

Ryan Tracey, Drew Schmitt November 7, 2020

When Threat Actors Fly Under the Radar: Vatet, PyXie
and Defray777

unit42.paloaltonetworks.com/vatet-pyxie-defray777/2/

By Ryan Tracey and Drew Schmitt

November 6, 2020 at 6:15 PM

Category: Malware, Ransomware, Unit 42

Tags: Defray777, PyXie, Vatet

This post is also available in: 日本語 (Japanese)

Next Up: “PyXie Lite”

An earlier version of PyXie was previously covered in-depth by BlackBerry Cylance in
December 2019. We will be primarily covering an updated variant and some notable
changes we have observed.

Some of these changes include:

Hardened interpreter.
New remapped opcode table.
Repurposed as a data theft and reconnaissance tool.

https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/2/
https://unit42.paloaltonetworks.com/author/ryan-tracey/
https://unit42.paloaltonetworks.com/author/drew-schmitt/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/ransomware/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/defray777/
https://unit42.paloaltonetworks.com/tag/pyxie/
https://unit42.paloaltonetworks.com/tag/vatet/
https://unit42.paloaltonetworks.jp/vatet-pyxie-defray777/
https://blogs.blackberry.com/en/2019/12/meet-pyxie-a-nefarious-new-python-rat

2/14

Exfiltration through internal servers.

We call this variant PyXie Lite because of the significantly smaller code base, but don’t let
the name fool you. It still packs a punch.

Loader

The recent variant we analyzed was loaded by Vatet rather than the Goopdate.dll and
LMIGuardianDll.dll side loaders seen with earlier versions of PyXie.

The decrypted Vatet payload contains the first stage of PyXie prepended by a shellcode
loader responsible for mapping the first stage into memory and executing it.

The shellcode loader utilizes MurmurHash3 hashing to locate APIs needed during this
process at runtime.

DLL Function API Hash

Kernel32.dll GetProcAddress 0x261C88ED

Kernel32.dll VirtualAlloc 0xC17E7EB2

Kernel32.dll LoadLibraryExA 0x4B9B30B9

Table 2. MurmurHash3 API hashes.

Stage 1

The purpose of the first stage is to decrypt the second stage payload and execute it in
memory.

Mutex

A mutex is created to prevent multiple instances from running at the same time. The
following logic is used:

Retrieve computer name with a call to GetComputerNameA. If that fails, fall back to
DEFAULTCOMPNAME.
Compute MD5 Hash of the computer name.
XOR computed hash with 0x2.
Convert the result to a string with StringFromGUID2.
Create mutex using the string with a call to CreateMutexW.

String encryption

Significant strings are encrypted by a routine that increments each byte of the ciphertext by
its index, masks the result with 0x7F (highest value in the ASCII character set) and XORs it
against a key of equal length.

3/14

Table 3. String decryption example.

Decrypted Strings

4/14

uiAccess=true"
-q -s {%S} -p %u

werfault.exe

vsjitdebugger.exe

dvdplay.exe

onedrivesetup.exe

openwith.exe

%windir%\syswow64\

%windir%\system32\

kernel32.dll

KiUserExceptionDispatcher

RtlCreateUser

IsWow64Process

\StringFileInfo\%04x%04x\ProductName

Table 4. Decrypted first stage strings.

Payload Decryption

The next stage payload is stored in an encrypted 7z archive located in the .gfids section of
the binary. It is decrypted with the modified RC4 algorithm previously discussed in the
BlackBerry Cylance write-up using the hard-coded key:
2C01443389BDFC7330A3386981C43E154AE8B60EC6646D916F93D18137A53544

Figure 12. Decrypted 7z archive.
Payload Execution

OpenProcessToken and GetTokenInformation are called to determine if the process is
running under the LocalSystem account. This is used to determine how the next stage
payload is executed.

If it is determined to be running as LocalSystem, the payload is injected into a newly
spawned process chosen from the Windows directory. The command line for this process
follows this format and can be used as an indicator:

5/14

-q -s {{GUID}} -p NUMBER

Figure 13. Command line argument.
If not found to be running as LocalSystem, the payload will execute in the memory space of
the current process.

Stage 2

The second stage payload is a custom-compiled Python interpreter very similar to ones seen
used with earlier variants of PyXie.

Configuration

The configuration is stored in a zlib compressed json blob and is located in the .gfids section
of the interpreter. Unlike previous versions of PyXie, it is not encrypted this time around. The
variable sys.builtin_json_cfg is created with a call to PySys_SetObject and the compressed
configuration blob is stored in it for later use by the final stage Python component.

6/14

Figure 14. sys.builtin_json_cfg variable is created.
Decrypted Strings

The second stage uses the same string encryption that was noted in the previous stage.

kernel32.dll
openwith.exe

onedrivesetup.exe

dvdplay.exe

vsjitdebugger.exe

werfault.exe

-q -s {%S} -p %u

oleout32.dll

VariantClear

Mozilla\Firefox

Mozilla\Firefox\profiles.ini

SOFTWARE\Clients\StartMenuInternet\firefox.exe\shell\open\command

I_CryptUIProtect

cryptui.dll

RtlCreateUserThread

import core.modules.winapi_stubs as winapi_stubs

import core.zip_logs as zip_logs

import os

zip_logs.send_zip_log(winapi_stubs.get_self_executable_path(), os.getpid(), 'CERTS',
r'%s')

KiUserExceptionDispatcher

7/14

uiAccess="true"

\StringFileInfo\%04x%04x\ProductName

\VarFileInfo\Translation

\\?\globalroot\systemroot\system32\drivers\null.sys

SystemDrive

IsWow64Process

core.entry_point

zipimporter

memzipimport

libs_zip_ctx

start_bind_port

Table 5. Decrypted second stage strings.

Final Stage: Libs.zip

The final stage of PyXie bytecode is contained in an encrypted ZIP file embedded within the
interpreter binary. As with the earlier version of PyXie, the memzipimport library is used to
import the bytecode from memory.

PyXie Lite

The “core” modules in this variant consist of 41 files versus the 79 seen in the previous
version of PyXie analyzed by BlackBerry Cylance. The discrepancy is due to a shift in
functionality that we will cover in the next section.

https://github.com/zyobi/memzipimport

8/14

Figure 15. Bytecode listing.

Interpreter hardening

Cursory analysis of the bytecode revealed that the headers had been stripped as with
previous earlier versions of PyXie. Additionally, we found that the opcode table had once
again been modified and the opcodes recovered from previous versions of PyXie could no
longer be used to decompile this bytecode.

9/14

Figure 16. Attempts to decompile bytecode with previously recovered PyXie opcodes
resulted in an error.
Knowing this, we attempted to force the interpreter to import DeDrop's all.py with hopes of
generating bytecode that could be used for opcode recovery. To our dismay, we found that
simply importing a script would no longer cause the interpreter to output bytecode.

A closer look at the interpreter found that the sys.dont_write_bytecode variable had been set
to true. This has the effect of preventing bytecode from being written to disk when modules
are imported. Likely, this is something the developers intentionally enabled to hinder analysis
efforts.

Figure 17. sys.dont_write_bytecode is set to True.
Hijacking the interpreter with a search order vulnerability

During our analysis of the interpreter, we found that it attempted to load a number of modules
from the current working directory and was vulnerable to search order hijacking.

Figure 18. PyXie attempting to load libraries from the current working directory.
We were able use this to our advantage by dropping a simple Python shell into one of the
modules it attempted to import. This gave us unfettered access to the interpreter, which
enabled us to overwrite the sys.dont_write_bytecode variable, generate opcodes for modules
on demand and even dump PyXie’s configuration.

https://github.com/kholia/dedrop/blob/master/src/dedrop/all.py

10/14

Figure 19. Search order vulnerability being used to gain control of the interpreter.
Once we were able to output bytecode for modules of our choosing, it was trivial to recover
the remapped opcodes and decompile PyXie. A copy of the opcodes for this variant can be
found in the appendix.

Functionality

As we previously mentioned, PyXie Lite has been repurposed to focus on the automated
collection and exfiltration of data.

Upon execution, it creates a staging directory whose name is based on the output of the
tempfile.NamedTemporaryFile() command.

%temp%\tmp1rjvhglo

Table 6. Example staging directory name.

Next, it collects data from the system by running a combination of routines that are dictated
by the user account PyXie is found to be running under. Table 7 breaks down each of these
routines and the types of account they will run under.

Routine User
type

Description

_mimi_redirector All Runs Mimikatz in memory. Injects into a newly spawned
process from this list: write.exe, notepad.exe, explorer.exe

11/14

_main_routine All Collects basic details about the system
Inventories software
Collects cookies
Collects LogMeIn data
Collects Citrix data
Collects KeePass safes

_save_sysinfo All Collects uninstall list from registry

_get_passwords All Collects passwords with Lazagne

_find_files System Searches for and collects files and directories based on
keywords, directories and extensions specified in the
configuration

_scan_network System Runs network scans

_run_shell_cmds System Runs a series of commands to gather details about the
system

_get_desktop_files User Similar to find_files but only searches the current user’s
Desktop

_take_screenshot User Takes a screenshot

_get_ps_history User Collects Powershell history

Table 7. PyXie routines.

The list of keywords and directories from configuration provides us some insight into the type
of data the attackers are interested in:

passw logins wallet private

confidential username wire access

treason vault operation bribery

contraband censored instruction credent

cardholder secret explosive suspect

personal cyber restricted balance

passport victim submarine checking

saving routing esxi vsphere

spy admin newswire bitcoin

12/14

ethereum n-csr 10-sb 10-q

convict tactical engeneering military

disclosure attack infrastruct marketwired

agreement illegal nda hidden

privacy fraud statement finance

marketwired clandestine compromate concealed

investigation security

Table 8. Keywords from PyXie Lite configuration (including misspellings).

As part of the data gathering routines, a number of commands are executed to collect details
about the system.

netstat -an
net user

net use

net view /all

net view /all /domain

net share

net config workstation

net group "Domain Admins"

net group "Enterprise Admins"

route print

net localgroup

ipconfig /all

tasklist /V

wmic process

arp -a

gpresult /z

cmdkey /list

13/14

net config workstation

nslookup -type=any %userdnsdomain%

vssadmin List Shadows

wmic qfe list

klist

manage-bde -status

nltest /domain_trusts

nltest /domain_trusts /all_trusts

qwinsta

ipconfig /displaydns

systeminfo

dclist

net group "domain admins" /domain

net localgroup "administrators"

wmic path win32_VideoController get name

wmic cpu get name

reg.exe save hklm\security %LOCALAPPDATA%\temp\[RANDOM]

reg.exe save hklm\system %LOCALAPPDATA%\temp\[RANDOM]

reg.exe save hklm\sam %LOCALAPPDATA%\temp\[RANDOM]

Table 9. Executed commands.

14/14

Figure 20. Data collected from the routines in a staging directory prior to exfil.
Exfiltration

The staging directory containing the collected data is added to a compressed ZIP archive
and encrypted before being sent to the server specified in the gates section of the config.
The archive is encrypted with AES in CBC mode and
THIS_KEY_IS_FOR_INTERNAL_USE_ONLY is used as the key. A random 16-byte
initialization vector (IV) is used and is prepended to the encrypted archive. The exfil servers
we have seen in samples to date have typically been compromised internal servers on the
victim’s networks listening on ports 31337, 900 and 8443. Although we did not have visibility
into how the attackers moved data off the victim network, in at least one incident the exfil
server was running Cobalt Strike.

Continue reading: Last, but Not Least: Defray777

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://unit42.paloaltonetworks.com/vatet-pyxie-defray777/3
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

