
1/9

Blaze Information Security November 5, 2020

Attack of the clones: Git clients remote code execution
blog.blazeinfosec.com/attack-of-the-clones-github-desktop-remote-code-execution/

Introduction

This post is a rather unusual story of a vulnerability that could be leveraged as a supply
chain attack and used to attack millions of software developers around the world. It is also a
tale of a bug collision that paid a bounty to one reporter and assigned the CVE to another!

The main focus of this blog post is GitHub Desktop. Other Git clients such as GitKraken, Git-
Tower and SourceTree were also found to be vulnerable, however these have different
exploitation scenarios that require user interaction.

Brief description of the issue

As part of GitHub Desktop's default repository cloning process, among other actions it calls
the executable git-lfs.

From git-lfs's official page "Git Large File Storage (LFS) replaces large files such as audio
samples, videos, datasets, and graphics with text pointers inside Git, while storing the file
contents on a remote server like GitHub.com or GitHub Enterprise."

git-lfs is then called on the current cloned repository, already present in disk.

https://blog.blazeinfosec.com/attack-of-the-clones-github-desktop-remote-code-execution/

2/9

A vulnerability was discovered when cloning a repository with a especially crafted file in the
root directory. Upon cloning such malicious repository, code execution is achieved with the
same privileges as the affected user running GitHub Desktop.

When inspecting the desktop application under Proccess Monitor, it was noticed several
actions of git-lfs called a git executable from inside the newly cloned repository.

By placing a malicious git in the root of the malicious repo, a user that clones it will have the
malicious git executed by git-lfs, all of this behind the scenes and transparent to the user.

The cloning process happens normally and there is no visual indication that a malicious
binary was ran instead of the original git executable.

Root cause analysis

We attempted to understand the root cause of this vulnerability by reading git-lfs's code. The
authors of this write-up tried to put together as much information as possible in order to
understand the cause of the problem.

From https://github.com/git-lfs/git-lfs/blob/master/commands/command_clone.go

From line 23:

https://github.com/git-lfs/git-lfs/blob/master/commands/command_clone.go

3/9

func cloneCommand(cmd *cobra.Command, args []string) {
requireGitVersion()

if git.IsGitVersionAtLeast("2.15.0") {
 msg := []string{
 "WARNING: 'git lfs clone' is deprecated and will not be

updated",
 " with new flags from 'git clone'",
 "",
 "'git clone' has been updated in upstream Git to have

comparable",
 "speeds to 'git lfs clone'.",
 }

 fmt.Fprintln(os.Stderr, strings.Join(msg, "\n"))
}

The function above seems to be called when a clone action takes place. Right in the
beginning the function calls requireGitVersion() and then checks whether the version is at
least 2.15.0.

From https://github.com/git-lfs/git-lfs/blob/master/commands/commands.go

Line 537:

func requireGitVersion() {
minimumGit := "1.8.2"

if !git.IsGitVersionAtLeast(minimumGit) {
 gitver, err := git.Version()
 if err != nil {
 Exit("Error getting git version: %s", err)
 }
 Exit("git version >= %s is required for Git LFS, your version: %s",

minimumGit, gitver)
}

}

It calls !git.IsGitVersionAtLeast(minimumGit) which can be found in https://github.com/git-
lfs/git-lfs/blob/master/git/version.go

From line 28:

func IsGitVersionAtLeast(ver string) bool {
gitver, err := Version()
if err != nil {
 tracerx.Printf("Error getting git version: %v", err)
 return false
}
return IsVersionAtLeast(gitver, ver)

}

Version() can be found in the same file version.go on line 18:

https://github.com/git-lfs/git-lfs/blob/master/commands/commands.go
https://github.com/git-lfs/git-lfs/blob/master/git/version.go

4/9

func Version() (string, error) {
gitVersionOnce.Do(func() {
 gitVersion, gitVersionErr =
 subprocess.SimpleExec("git", "version")
})
return gitVersion, gitVersionErr

}

The function calling chain is the following:
cloneCommand() -> requireGitVersion() -> IsGitVersionAtLeast() -> Version()

We can see that in line 21 in version.go, there is inside the function Version() a call to
subprocess.SimpleExec() - it executes the git binary with the argument "version".

There is an implicit assumption from git-lfs that by executing an external binary, the operating
system will first look it up from the system's PATH environment variable. This is the true root
cause of the vulnerability.

Calling the subprocess 'git' works as intended in GitHub Desktop for MacOS. In Windows,
however, the search order favors the current directory first and only then it searches in the
order specified in PATH.

Exploitation

By copying calc.exe, renaming it to git.exe and committing/pushing it into the root of the
repository, the attacker sets up the crafted repository that will be used to later exploit users.

When a developer clones this repository using GitHub Desktop for Windows, its
subcomponent git-lfs will work on the cloned folder as its current directory, meaning all
subsequent calls to the binary 'git' will be instead calling the malicious git.exe not the one
present in the PATH.

5/9

6/9

7/9

Below is a the video of exploiting this issue on GitHub Desktop for Windows:

Watch Video At:

https://youtu.be/p8tbHNBbO1U

Other clients

https://youtu.be/p8tbHNBbO1U

8/9

During our research we noticed SourceTree

SourceTree

Watch Video At:

https://youtu.be/zOXUdP50VYM

GitKraken

Watch Video At:

https://youtu.be/RmLCjgc0ppo

https://youtu.be/zOXUdP50VYM
https://youtu.be/RmLCjgc0ppo

9/9

Credits

The vulnerability was simultaneously discovered and researched by Vitor Fernandes and
Julio Fort of Blaze Information Security. The independent researcher Dawid Golunski (dobra
robota, amigo!) apparently discovered the issue a few days earlier and submitted it to
MITRE, while Vitor submitted it to GitHub's bug bounty.

Vitor collected the bounty from GitHub's program on HackerOne as his report arrived earlier
and Dawid was assigned the CVE.

References

[1] https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/path]

 [2] https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-
r2-and-2012/cc753427(v=ws.11)

 [3] https://github.com/git-lfs/git-lfs/security/advisories/GHSA-4g4p-42wc-9f3m (Collision with
Dawid Golunski)

https://twitter.com/Rapt00rVF
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/path
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc753427(v=ws.11)
https://github.com/git-lfs/git-lfs/security/advisories/GHSA-4g4p-42wc-9f3m

