
1/7

norfolk November 2, 2020

TinyPOS and ProLocker: An Odd Relationship
norfolkinfosec.com/tinypos-and-prolocker-an-odd-relationship/

Recently, I came across a VISA bulletin regarding point-of-sale malware being used against
merchant targets. In Incident #1 in this VISA report, VISA described a deployment technique
for TinyPOS that seemed oddly similar to the ProLocker ransomware installation workflow
described by Group-IB, although I initially dismissed this as a coincidence.

After spending time mapping out code-level relationships and VirusTotal submitter
relationships (initially with the intent of identifying an entry vector), there is evidence to
suggest that this is not pure chance. In short, one of the following is likely true:

1. ProLocker and TinyPOS are written by the same author, who also provides a deployment
mechanism; or,

2. ProLocker and TinyPOS are written, deployed, and used by the same threat actor

3. The ProLocker adversary obtained or modified the TinyPOS source code and also
operates in the carding space

Of these, the second seems the most likely. In addition to distinct code-level relationships
shared across several tools from both threat actors (and no apparent other threat actors) and
the very similar delivery mechanisms, both ProLocker attacks and TinyPOS attacks appear to
be low-volume enough that it is plausible a single small to medium-sized group is operating
them, rather than two distinct entities. This would parallel assessments that other threat
groups who traditionally operated in the carding and banking spaces have also switched to
ransomware attacks, including FIN6 and TA505.

This remainder of this post primarily walks through the analytic workflow that led to these
assessments (as opposed to a traditional intelligence-style condensed publication of the key
facts) so that others may properly evaluate the methodology and findings.

———————————————————————————–
 I.Identifying More Files

TinyPOS Installation Workflow

Incident #1 in the VISA report contains two sets of indicators of compromise (IOC) including
filenames and hashes, which describe the following installation workflow:

1. A .bat file executes a PowerShell script
 2. This PowerShell script reads data “hidden” inside an image file

 3. This data is loaded and run in memory as shellcode

https://norfolkinfosec.com/tinypos-and-prolocker-an-odd-relationship/
https://usa.visa.com/dam/VCOM/global/support-legal/documents/new-pos-malware-samples.pdf
https://www.group-ib.com/blog/prolock
https://www.fireeye.com/blog/threat-research/2019/04/pick-six-intercepting-a-fin6-intrusion.html
https://www.hornetsecurity.com/en/security-information/clop-clop-ta505-html-malspam-analysis/


2/7

4. The shellcode decodes itself into the TinyPOS malware

There are a few items worth noting here. First, VISA provided two examples of such image
files from two observed installation workflows, one of which is located at “c:\temp\” and the
other at the “c:\journal\” directory. The second item worth noting is that while the shellcode is
simply “appended” to the image file and not obscured through a more complex
steganography method. These characteristics will be important for the ProLocker
comparisons.

The files for the hashes provided are not on VirusTotal and VISA offers limited additional
details regarding these files; however, a report from Carbon Black describes the exact same
files and provides more information, including code snippets for a decoded version of the
PowerShell loader and the shellcode.

Obtaining a Copy of The Shellcode

At this point, there is actually enough information to identify a copy of the shellcode on
VirusTotal. Figure 4 in Carbon Black’s report highlights the start of the shellcode – by taking
some of these bytes and running a VirusTotal content search (e.g. content:”{48 31 Db 48 C7
C0 A3 A1 A8}”), a single result for a file named “t.bin” appears:

MD5: f1efe5959ac5f730e08fb629143a78f9
SHA1: 6544e7506163782ccb2e06348d3c9467d0513be9
SHA256: 0be35b73262e67569e02950f5de9b94b7e0915dcd8ef4d8de66a6db600e41a18
Debugged, this file contains a decoding routine at the start that unpacks the rest of the
shellcode, resulting in the TinyPOS sample identical to the one described by VISA and
Carbon Black:

https://www.carbonblack.com/blog/tau-technical-report-new-attack-combines-tinypos-with-living-off-the-land-techniques-for-scraping-credit-card-data/


3/7

Decoded/Unpacked shellcode matching Carbon Black report

With a confirmed copy of this shellcode in hand, there are two additional pivoting vectors.
First, there is a pivoting opportunity using the decoded segments of TinyPOS. Taking a set of
opcode, a content search (content:”{41 ff 57 38 48 83 C4 20 49 89 87 00 02}”) yielded two
additional hashes:

MD5: a88107d4723ee6e6b33eca655c68a562 (sql.exe)
MD5: 57acabff815119ac5c391adbf8133c4a (sqlsrv.exe)

Each of these is an additional TinyPOS sample, but in executable form. Further pivoting from
one of these submitters led to a TinyLoader sample uploaded alongside the TinyPOS sample
communicating with known infrastructure from this threat actor, but this became a dead end
for further meaningful research.

On the other hand, pivoting using a different part of the initial decoding function yielded far
more interesting results: 24 hashes, all of which (with the exception of a single unclassified
file) are ProLocker ransomware components or appear to be TinyPOS-related files.



4/7

The next section examines these files.

II.ProLocker and TinyPOS Relationship

The following hashes were identified and classified by pivoting with a VirusTotal content
search using opcode from the decoding algorithm:

Hash Filename Description

F1EFE5959AC5F730E08FB629143A78F9 t.bin TinyPOS
(Previously
identified)

5FC14B914B9A7DC2D546BC33E4B80584 ccv_server.txt TinyPOS
payload

417F35F30BCB474340CDB3F50491C1B0 readme_shellcode.exe TinyPOS
behavior

74D5D09F513FD5EBEE1EFF50495AC2D8 SQLSRV.EXE TinyPOS
behavior

E9C27A9F2A221527E03C36917DC36CB9 SQLSRV.EXE TinyPOS
behavior



5/7

Hash Filename Description

2A673709121D05BC57863002F8C62C51 PPD8535CAAEC677E9FAF.exe ProLocker

16A29314E8563135B18668036A6F63C8 – ProLocker

F3634A3B184B68A10C7A4849D378171A 7ZSfxMod ProLocker

404EF54232F1817BA4258392815E1D22 NAS.exe ProLocker

C182610DD437F90D0CC6CB0AC19CFDB7 loytrohens.exe ProLocker

FE659D877AED2178EF084E3BF1E40254 MCC1D3C303AEA0018852.exe ProLocker

02C01B59D0621815FC6A367FB1C7474E LOCK.exe ProLocker

AE3AAB90F69A05B131BD76ABE8A5A988 MCC1D3C303AEA0018852.exe ProLocker

3355ACE345E98406BDB331CCAD568386 NAS_0.exe ProLocker

90CD7B4A952A6C929BD006F74125FB8C – ProLocker

B0EEEC6DCA9F208C3E2B43EBF26D80BA lock.exe ProLocker

7AD4AFD690A1C69356BB3D0C8AD0947B WRFF965C1.jpeg ProLocker
code

C579341F86F7E962719C7113943BB6E4 Winmgr.bmp ProLocker
code

B77EAE27DB59E660F972FAB37708807F ___8A67B05B.dib_ ProLocker
code

34525178FB98B59E9BD98DF1ABE58C28 MCC1-D3C3-03AE-A001-
8852.db

ProLocker
code

BC469BF7946B9153D6270551F554B839 2B9E5820.db ProLocker
code

34F8DC1C8A0B49627B118C21E7C3B047 readme ProLocker
code

EA6E664A4EADE0428E6CD10028C9F3A7 readme File
containing
code with
TinyPOS
behavior

D28AD0CC48005A09A04BA1D95275EE9A – Unknown

https://www.falcon-sandbox.com/sample/9edce4c966d3452a094972602bc14d68cc11444358ac18ada9240bb7b0a7c817/5eceb20a805ff060b44da792
https://twitter.com/AltShiftPrtScn/status/1239966261313847298


6/7

These file paint an important picture: the only files on VirusTotal with these opcode patterns
belong to one of these two families. There are slight differences, including a different
decoding key across files and an added instruction, but the core decoding mechanism and
the “noop” buffer are identical.

These files also share another interesting property: when using a list to check processes,
both malware families use a list consisting of partial process names that are six characters
long. For example, the t.bin TinyPOS sample has a target list for “ccs.ex”, “ops.ex”, and
“zioskp”. The first two may be related to Oracle point-of-sale components, and the latter a
Ziosk product. ProLocker uses the exact same type of process list, albeit with a different
purpose (closing processes that might interfere with document and database information).

https://docs.oracle.com/cd/E94131_01/doc.57/e95002.pdf
https://www.ziosk.com/


7/7

While compelling, these characteristics alone would be insufficient information to strongly
assess a common operator (rather than simply a common author). However, there are
additional factors to consider. The staging locations appear to be relatively consistent across
these files. The TinyPOS shellcode files appear to be staged in subdirectories of the C:\ root
drive, such as “c:\journal\”, “c:\temp\”, and (per a reddit post) “c:\Windows\”. For the
ProLocker files, the observed files were all in “c:\ProgramData”.

The table above provides one small piece of additional evidence that the same operating
group is responsible: the presence of files uploaded named “readme” each leading to a
different malware payload. This, along with the fact that these deployment techniques
emerged in close temporal proximity, lends more evidence to the “common operator” theory,
although there are still limitations regarding how far this assessment can go.

This blog also notes that not every TinyPOS sample is identical in code and configuration.
Specifically, the t.bin sample analyzed that matches the Carbon Black/VISA reports and the
ccv_server.txt file described in a reddit post appear to target specific processes, with
evidence from the latter source suggesting these may be specific to the target environments.
Other samples analyzed in the “pivoting” section tagged as “TinyPOS behavior” contain a
process blacklist rather than a process target list. This is noted primarily for the sake of
technical accuracy and completeness, although these characteristics may be explored in a
future post.

III.Conclusion

Based on the observed commonalities surrounding these two malware families and how they
are used, it seems likely that there is some relationship between them. Originally, this
research began as an effort to identify threat actor C2 infrastructure related to the incidents
described by VISA’s report; unfortunately, that type of infrastructure is precisely what is still
needed to more definitively solve this puzzle.

If evidence emerged that a ProLocker attack and a TinyPOS attack each relied on the same
infrastructure, this would suggest a workflow in which a threat actor group gains access to a
network, triages it, and then chooses the type of attack it wishes to launch. This, in turn,
would be consistent with other threat actor groups that operate in this space.

 

https://www.reddit.com/r/sysadmin/comments/ftxe1v/malicious_scheduled_task/
https://www.reddit.com/r/sysadmin/comments/ftxe1v/malicious_scheduled_task/

