
1/15

Denis Sinegubko November 2, 2020

Sucuri Blog
blog.sucuri.net/2020/11/css-js-steganography-in-fake-flash-player-update-malware.html

This summer, MalwareBytes researcher Jérôme Segura wrote an article about how criminals
use image files (.ico) to hide JavaScript credit card stealers on compromised e-commerce
sites.

In a tweet, Affable Kraut also reported another similar obfuscation technique using .ico files
to conceal JavaScript skimmers.

Just something I’ve noticed more recently with digital skimmers/#magecart.
Obfuscated code that has a weird google-analytics[.]com URL in it, which is the proper
Google controlled domain. But there’s some extra characters, which are strange, so
let’s see what’s actually going on pic.twitter.com/fk0dCh1dET

— Affable Kraut (@AffableKraut) May 15, 2020

From the sample in his tweet, the “www.google-analytics.com URL is clearly visible within
the malicious script. However, this script was only used as a dictionary of characters to build
a URL for the real payload (priangan[.]com/wp-content/languages/blogid/favicon.ico and
lebs[.]site/favicon.ico in other variations).

Steganography in CSS

Both of these two cases conceal malware within real, benign files — a technique referred to
as steganography.

https://blog.sucuri.net/2020/11/css-js-steganography-in-fake-flash-player-update-malware.html
https://blog.malwarebytes.com/threat-analysis/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files/
https://twitter.com/hashtag/magecart?src=hash&ref_src=twsrc%5Etfw
https://t.co/fk0dCh1dET
https://twitter.com/AffableKraut/status/1261157021027622912?ref_src=twsrc%5Etfw

2/15

During a recent investigation this October, we came across another interesting variant
leveraging the same technique. Instead of loading .ico files and extracting JavaScript from
the EXIF data, however, the malware was found nestled within a .css file.

The script, which was almost identical to the one found in Affable Kraut’s tweet, had been
injected at the bottom of the .js files wp-includes/js/wp-emoji-release.min.js, wp-
includes/js/jquery/jquery.js, and at the top of index.php as seen below.

Infected index.php
This time, the //static.xx.fbcdn.net[.]com/plrhg URL was easily seen in plain text.

The string visually resembles a real URL used by Facebook: //static.xx.fbcdn.net. However,
in reality the static.xx.fbcdn.net[.]com (with extra .com) does not even exist. It’s presence
serves as a red herring: it’s real purpose is to provide a character dictionary to build the real
malicious URL, which this script tries to load via XMLHttpRequest:
“//polobear[.]shop/fonts.css

Since .css is just a text file, how can someone conceal malicious code in it? This part of the
injected script explains it:

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-index-php.png

3/15

CSS to JavaScript algorithm
The algorithm takes the part after the last “}” in the requested .css, splits it into pieces
separated by spaces, and then uses those pieces to construct binary representation of
character codes, converting them to real characters using the fromCharCode function.

This method essentially constructs the JavaScript function character by character, which is
then executed once the whole file is processed.

Demonstration of How It Works

To further illustrate this example, let’s review the fonts.css file containing the malicious
payload:

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-algorithm.png

4/15

Contents of polobear[.]shop/fonts.cssAt first glance, there really doesn’t appear to be
anything suspicious here. Just some benign CSS rules.
There are, however, many empty lines at the bottom of the file. Very many. 56,964 empty
lines! And the size of this small fonts.css file is about 150 Kilobytes!

Empty lines are normally ignored by browsers and CSS parsers. While strange, this is still
absolutely benign in normal circumstances. However we know that this malware uses the file
not as CSS but as a source of a JavaScript code — and its binary representation is
concealed by sequences of tab and non-tab characters.

Revealing the Code

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-fonts-css.png

5/15

If we select the empty lines after the last “}” character in a text editor, another story is
revealed:

Selecting invisible contents in text editor
Looks like Morse code with sequences of dots and dashes, doesn’t it?

When reviewed in hex, it appears like this:

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-invisible-contents.png
https://en.wikipedia.org/wiki/Morse_code

6/15

Hex view of fonts.css
Here you can explicitly see that the lines are not that empty. They consist of sequences of
tabs (09), spaces (20) and line feeds (0A).

In these sequences, spaces work as delimiters between individual bytes (characters). Tabs
and line feeds form binary representations of characters, where tab is 1 and line feed is 0.

For example, the first encrypted character after the last “}” is 09-09-09-0A-09-09, which can
be converted to the binary “111011”. This is equal to decimal 59, which is the character code
for “;” (semicolon).

Converting Empty Lines to JavaScript Code

Using this algorithm, we decoded all the 56,964 lines and got 20,233 bytes of this malicious
JavaScript code:

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-hex-view.png

7/15

Result of conversion of empty lines to JavaScript code
Interesting — it’s the same WiseLoop JS Obfuscation that is found in EXIF metadata of .ico
files used by web skimmers! In this case, however, it didn’t turn out to be a credit card
skimmer.

Fake Flash Player updates

Here’s the decoded version of the script:

Decoded script obtained from fonts.css
What the decoded script does is create an iframe from lopiax[.]us with a fake Flash Player
update recommendation.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-js-code.png
https://blog.malwarebytes.com/threat-analysis/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files/
https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-decoded-script.png

8/15

Fake Flash Player update notification
While Flash player is reaching end of life on December 31, 2020 and all major browsers will
stop supporting it in a couple months, Flash Player updates are still quite a popular lure for
social engineering attacks that trick people into installing malware on their computers.

This particular popup seems to be related to what MalwareBytes calls the Domen social
engineering kit.

The only way to get rid of this popup is to click on the Update button. This initiates a
download of the adobeflpl_installer.zip file with an HTA file with VB script that uses
PowerShell to download malicious .exe and .dll files (including the NetSupport RAT).

The download link changes quite often, pointing to malicious files on various compromised
sites.

The zip files also change in size, but are still reliably detected by many antiviruses.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-flash-notification.png
https://blog.malwarebytes.com/social-engineering/2019/09/new-social-engineering-toolkit-draws-inspiration-from-previous-web-campaigns/
https://www.virustotal.com/gui/file/d29aa1d0f6a4b1348cf4f4965b13c1d2db21c1d7962f44fbcaa60a5fe098e789/detection

9/15

VirusTotal detections

Revelations of the polobear[.]shop Site

This malware is not a leftover from some old attack. It’s pretty recent because the domain
polobear[.]shop was registered just a few weeks ago on October 9th, 2020.

The site is not properly protected, and we can see directories and files hosted there.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-virustotal.png

10/15

File listing on polobear[.]shopIn the /tmp/active directory, you can see IP addresses of
computers attacked by this malware in real time. Around 5-10 new IPs are typically listed
every few seconds.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-file-listing.png

11/15

IPs of attacked computers

Important files

Generate.php

The generate.php file is responsible for the generation of JavaScript code which attackers
inject into compromised websites.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-ips.png

12/15

generate.php
The script’s interface shows that the generated code has been defined to work for the
polobear[.]shop domain.

Attackers can choose a version with or without the “Anti-Debug” feature. As an Anti-Debug
mechanism, the script puts the main functionality into the requestAnimationFrame function
callback.

The CSS-JS name tells us that the script was specifically designed to work with CSS files as
the source of JS payload.

On every load of the generate.php script, variable names randomly change — leaving the
remaining parts of the code intact.

Gate.php

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-generate.png

13/15

Gate.php is a common name for data exfiltration scripts used by web skimmers. In this case,
however, this is the file that generates the fonts.css response with a payload concealed by
tabs, spaces and line feeds.

Most likely this is accomplished by an .htaccess rule for .css files, since fonts.css is not
present in the file list. Moreover, when a request to fonts.css files is considered unwanted
by the malware, a “The requested URL was not found on this server” page with a 200
response code is displayed — instead of the 404 that you get for any other types of really
nonexistent pages on the site.

GeoIP.dat (1).zip

According to the timestamp found on the /index page, the first file uploaded to the site was
GeoIP.dat (1).zip. This occurred on October 9th, 2020 — the same date the
polobear[.]shop domain was registered.

The zip archive contains three files: geoip.inc, GeoIP.dat (both created on Sept 3, 2020)
and index.php (Oct 1, 2020). The first two files belong to a GeoIP library which helps identify
the geographic origin of the requests.

The index.php file is more interesting, though. It’s a boilerplate script for fake Flash Player
update attacks. The script checks to ensure that a visitor is not a bot and comes from an
eligible country (in this file it’s: USA, Italy, Germany, UK and Canada).

If the user agent and geographic location match the success criteria, then a web page is
displayed with the Flash Player update warning.

Code that generates fake Flash Player Update warnings
Actual download links are not present in the file. These must be specified by the attacker
whenever they prepare a new download location. Most likely, something similar currently
works on the lopiax.us site.

162.0.235[.]12 Server

At this moment, polobear[.]shop is hosted on the server IP 162.0.235[.]12 which belongs to
Namecheap Inc.

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-warnings.png

14/15

A quick search shows that this IP address is associated with multiple phishing sites:

Last seen domains hosted on 162.0.235[.]12We found a number of active phishing sites
targeting many popular platforms:

PayPal: tierretyr[.]live and Pp-login-alert[.]com.
Docusign: dorcsign[.]cloud, Doscug[.]live.
Banking sites: www.ehb-onlinebank[.]ml, halifax-alerts[.]com, ing-app-nl[.]me.

A hacker admin panel also exists on hxxps://techvita[.]biz/PL341/panel/admin.php
(located on the same server).

Techvita[.]biz has also been found receiving requests from Windows malware (with
detections by Azorult, Lokibot and GuLoader signatures), as seen in this JoeSandbox
report.

Conclusion

Multiple types of web malware (including web skimmers and social engineering malware
droppers) have recently started using this same 3-step approach to obfuscation in their
attacks.

To begin, attackers inject an obfuscated script into a compromised environment. Next, the
malicious script loads a seemingly benign file from a remote third-party website — for
example, an ICO or CSS file. An obfuscated malicious payload concealed within the
inconspicuous file is then extracted at whim.

One distinctive trait of this approach is that the obfuscation algorithms used for each step are
very specific and stay the same — regardless of the type of the attack. This suggests that
attackers are using the same toolkit containing steganography features to hide the malicious
behavior of their injections.

https://urlscan.io/ip/162.0.235.12
https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-domains.png
https://urlscan.io/result/4b317f3c-2e54-45fe-805e-07d837beddb8/
https://www.joesandbox.com/analysis/291640/0/html

15/15

Front-end scripts like the one described for generate.php clearly demonstrate that they were
created to be used by an unlimited number of users. The script allows any bad actors to
easily incorporate their payload into an attack by installing it on their own domain, without
making any changes to the code — we can assume this feature allows for easy monetization
and distribution of the malicious toolkit.

As attackers continue to look for ways to automate their malware campaigns and avoid
detection, it’s likely that we may see even more attacks using similar steganography-
obfuscation approaches.

For site owners it doesn’t change much though. They should keep their site software up-to-
date, employ website security best practices, and leverage integrity monitoring to detect
unwanted changes.

https://sucuri.net/guides/website-security/
https://sucuri.net/malware-detection-scanning/

