
1/18

October 26, 2020

Exploit Developer Spotlight: The Story of PlayBit
research.checkpoint.com/2020/graphology-of-an-exploit-playbit/

October 26, 2020
Research By: Eyal Itkin and Itay Cohen

Introduction

Exploits have always been an important and integral part of malicious attacks. They allow
attackers to gain capabilities that are not easy to achieve otherwise. Whether attackers strive
to gain higher privileges on a given computer, or laterally move inside a network, exploits
often play a key role in their plan. While in-the-wild exploits are used by many malware
families, the malware authors get most of the attention, and the exploit developers remain
out of the spotlight.

As part of our effort to focus on the exploit developers themselves, we previously shared our
methodology and technique of fingerprinting and tracking exploit developers. In our earlier
publication, we thoroughly explained our methodology and focused on Volodya, a prominent
exploit developer we tracked using the unique fingerprints left in their exploits. Now our focus
is on another exploit developer known as PlayBit or luxor2008.

Initial Sample – CVE-2018-8453

https://research.checkpoint.com/2020/graphology-of-an-exploit-playbit/
https://research.checkpoint.com/2020/graphology-of-an-exploit-volodya/

2/18

As our research technique of fingerprinting exploit writers exceeded our initial expectations,
we were on the lookout for more exploits to investigate. Soon enough, we came across this
blog post from Kaspersky detailing how Sodin (a.k.a Sodinokibi, or REvil), an infamous
ransomware, is using a 1-Day exploit for CVE-2018-8453.

CVE-2018-8453 is an interesting case, as it was formerly caught in the wild by Kaspersky
when used by FruityArmor. From their report, it was clear that this exploit was reimplemented
by another actor. While we would prefer to investigate an exploit developed by the actor
behind the 0-Day exploit, we had to settle for the exploit used in REvil.

Even from this one sample, it was clear that this new actor uses a totally different exploit
template than the one used by Volodya. Luckily for us, the actor chose to implement new
features that weren’t in Volodya’s exploit template, which gave us a wider choice of artifacts
to hunt for. After we created a few hunting rules, we set out to pursue our quarry.

Our actor’s exploits

All of the exploits that we found related to this actor were 1-Day exploits for Local Privilege
Escalation (LPE) vulnerabilities in Windows. This list of 5 different CVEs that were exploited
eventually led us to our actor’s identity: PlayBit (a.k.a luxor2008). A full profile of the actor
can be found later on in this blog post, under the “Intelligence Report” section.

CVE-2013-3660

Classification: 1-Day
 Basic Description: Uninitialized kernel pointer in EPATHOBJ::pprFlattenRec

 Used by the following malware families: Dyre, Ramnit
 Background on this vulnerability:

 This vulnerability was originally found by Google’s Tavis Ormandy, and made headlines due
to an unusual disclosure process as Microsoft was not notified about the vulnerability before
the full disclosure.

https://securelist.com/sodin-ransomware/91473/
https://securelist.com/cve-2018-8453-used-in-targeted-attacks/88151/
https://seclists.org/fulldisclosure/2013/May/91
https://seclists.org/fulldisclosure/2013/May/91
https://www.theverge.com/2013/5/23/4358400/google-engineer-bashes-microsoft-discloses-windows-flaw

3/18

Figure 1: Decompiled code showing PlayBit’s exploit banner, as seen in IDA Pro.

CVE-2015-0057

Classification: 1-Day
 Basic Description: Use-After-Free in win32k!xxxEnableWndSBArrows

 Used by the following malware families: Dyre, Evotob
 Background on this vulnerability:

 Also known as MS15-010, this vulnerability was found by Udi Yavo, the CTO of enSilo. The
public disclosure of the vulnerability included a technical explanation of the vulnerability as
well as the exploitation plan. In addition, the authors specifically mentioned they were able to
exploit this vulnerability on all Windows versions, and even supplied a demo video.

Even though the disclosure didn’t share any exploit code, it was enough to draw our actor’s
attention. Three months after the patch, PlayBit already had a working exploit, and a month
later this exploit was used by the Dyre Banking Trojan. The exceptional case behind this
vulnerability is described in more detail in FireEye’s Black Hat presentation on CVE-2015-
0057.

CVE-2015-1701

Classification: 1-Day
 Basic Description: CreateWindow callback validation error

 Used by the following malware families: Locky
 Background on this vulnerability:

 Also known as MS15-051, this vulnerability was originally exploited as a 0-Day in an
operation attributed to APT28.

CVE-2016-7255

Classification: 1-Day
 Basic Description: Memory corruption in NtUserSetWindowLongPtr

 Used by the following malware families: LockCrypt
 Background on this vulnerability:

 Originally exploited as a 0-Day, once again attributed to APT28. This 0-Day was found and
exploited by Volodya, later to be exploited again and sold by PlayBit.

CVE-2018-8453

Classification: 1-Day
 Basic Description: Use-after-free in win32kfull!xxxDestroyWindow

 Used by the following malware families: REvil (Sodinokibi), Maze, Neshta
 Background on this vulnerability:

 Originally exploited as a 0-Day, and attributed to FruityArmor.

https://web.archive.org/web/20150211120820/http:/breakingmalware.com/vulnerabilities/one-bit-rule-bypassing-windows-10-protections-using-single-bit/
https://www.fireeye.com/blog/threat-research/2015/07/dyre_banking_trojan.html#:~:text=New%20variants%20of%20the%20Dyre,CVE%2D2015%2D0057).&text=CVE%2D2015%2D0057%20is%20a,to%20perform%20local%20privilege%20escalation.
https://www.blackhat.com/docs/asia-16/materials/asia-16-Wang-A-New-CVE-2015-0057-Exploit-Technology-wp.pdf
https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
https://www.trendmicro.com/en_us/research/16/l/one-bit-rule-system-analyzing-cve-2016-7255-exploit-wild.html
https://www.trendmicro.com/en_us/research/16/l/one-bit-rule-system-analyzing-cve-2016-7255-exploit-wild.html
https://securelist.com/cve-2018-8453-used-in-targeted-attacks/88151/

4/18

As bitdefender reported, Maze ransomware uses two different LPE exploits: CVE-2016-
7255, and CVE-2018-8453. What’s interesting is that they use Volodya’s exploit for CVE-
2016-7255 (like GandCrab, and many other malware families), while transitioning to using
PlayBit’s exploit for CVE-2018-8453. Not only do we see both Volodya and PlayBit selling
their exploits to the same malware actor, we can take this opportunity to learn about the
dynamics involved. While PlayBit sells their own exploit for CVE-2016-7255, Maze chose to
use Volodya’s exploit even though they also purchased an exploit from PlayBit (CVE-2018-
8453).

It seems a bit unusual that when purchasing their LPE exploits, the actors behind Maze
decided to buy from two different sellers, especially as PlayBit sells both of these exploits.
However, an important fact to remember is that Maze ransomware was first discovered in
2019. Therefore, our theory is that at least in some campaigns, the operators behind Maze
simply “inherited” the first exploit, later purchasing another one to target more victims.

Mindset of a 1-Day exploit seller

When going over the list of CVEs that were exploited by PlayBit, we found a unique pattern
that they all share: All of the vulnerabilities were already “famous” before PlayBit decided to
implement an exploit for them.

CVE-2013-3660 – Made headlines due to an unusual disclosure process.
CVE-2015-0057 – The public disclosure of the vulnerability included a detailed
explanation of the vulnerability and the exploitation plan, and to this day is still highly
regarded as a novel exploitation technique.
CVE-2015-1701 – Originally exploited as a 0-Day.
CVE-2016-7255 – Originally exploited as a 0-Day.
CVE-2018-8453 – Originally exploited as a 0-Day.

As we can see, all of the CVEs that our actor chose to exploit as 1-Days were already well
known. While we didn’t find a similar tactic for Volodya when choosing which 1-Day
vulnerabilities to exploit, it does seem that this helped PlayBit advertise their exploits in
underground forums.

One more characteristic that we found in all of PlayBit’s exploits that were lacking in
Volodya’s, is the exploitability check. PlayBit supplies the customer with a thin wrapper
around the exploit, which checks whether the target computer is indeed vulnerable. Although
the check varies a bit between different exploits and versions, the basics are the same: the
modification date of the vulnerable win32k driver is checked, to detect if a patch was
installed.

https://download.bitdefender.com/resources/files/News/CaseStudies/study/318/Bitdefender-TRR-Whitepaper-Maze-creat4351-en-EN-GenericUse.pdf

5/18

Figure 2: Checking if win32k.sys was modified after February 10, 2015 (CVE-2015-0057).
Screenshot from Cutter.

This operational decision was very useful from our perspective, as the exploit effectively tells
us in which Patch Tuesday the exploited vulnerability was fixed:

CVE-2013-3660 – The first sample of this exploit didn’t yet contain such a check.
CVE-2015-0057 – win32k.sys checked for a modification date of February 10, 2015.
CVE-2015-1701 – win32k.sys checked for a modification date of May 13, 2015.
CVE-2016-7255 – win32k.sys checked for a modification date of November 8, 2016.
CVE-2018-8453 – win32k.sys / win32kfull.sys are checked for a modification
date of September 11, 2018.

The author’s fingerprints

Now that we found 5 different exploits from PlayBit, we can review them in greater detail and
familiarize ourselves with the actor’s work habits. As was the case with Volodya, it was clear
to us from the beginning that PlayBit probably has a simple template to deploy for the
different exploits.

As some of the actor’s characteristics were already used in the previous comparison to
Volodya, we chose to focus instead on other implementation decisions, some of which aren’t
even included in Volodya’s exploits.

Hash-Based Imports

In every exploit, PlayBit picks a handful of important functions and obfuscates their use.
Instead of just importing these functions in the PE level, or using their cleartext strings and
importing them using GetProcAddress() , PlayBit devised their own import technique.

https://research.checkpoint.com/2020/graphology-of-an-exploit-volodya/

6/18

Figure 3: Loading the addresses of Ps* symbols based on their hash/CRC.

Here is a short Python snippet that performs this “hash” calculation (more like a checksum /
CRC):

from malduck import ror

def calc_hash(export_str):
 crc_value = 0
 for c in export_str:
 cur_value = ord(c)
 # convert lower case back to upper case
 if cur_value >= ord('a'):
 cur_value -= 0x20 # 'a' - 'A' = 0x20
 crc_value = ror(crc_value, 13) + cur_value
 return crc_value

Not only is this hash-based import technique used in all of the actor’s exploits, we were also
able to find it in other tools they sold over the years, going back to 2012.

When examining the functions imported using this mechanism, we found out they all have a
common trait. All of these functions are used by the “shellcode”, the exploitation part that is
executed with high privileges and is responsible for elevating the permissions of the target

7/18

process. This also means that it is relatively easy to locate the shellcode in each of the
exploits, as it references the global variables that store the addresses of the specially
imported functions.

OS Fingerprinting

Like any other experienced exploit developer attempting to target as many OS versions as
possible, our actor needs to fingerprint the exact version of the immediate target. This means
that the exploit identifies and calibrates itself to the target’s Windows version. In contrast to
Volodya, it seems that PlayBit is interested in everything they can learn about the target:

OS major number
OS minor number
Service pack
Server or a standalone computer
Windows 10 build number

Figure 4: Querying for the exact OS version, as can be seen in Cutter.

GetVersionEx()

While this API call is used in all of the exploits, it was used exclusively only in the exploit of
CVE-2013-3660. As this API became deprecated, the exploits from 2015 and later only use it
when querying for the service pack and the OS type. Both the major number and minor
number of the Windows OS are now queried using a different technique.

Accessing the PEB

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getversionexa

8/18

Switching from the now deprecated GetVersionEx() , PlayBit chose to query the Process-
Environment-Block (PEB).

Figure 5: Extracting the major and minor versions from the PEB, as can be seen in Cutter.

This is a clear difference in the modus operandi of PlayBit as compared to Volodya. Not only
do they extract the same information in different ways, but Volodya is also interested in far
less information than PlayBit, even when they both exploit the same vulnerability (CVE-2016-
7255).

In general, both actors hold detailed version-specific configurations from which they load the
relevant information once the OS version is determined. The main difference between the
two is that the code flow in Volodya’s exploits rarely depends on the OS version, while
PlayBit incorporates multiple twists and turns using various if-checks that depend on the OS
version.

Leaking Kernel Addresses

In contrast to what we initially thought, a closer examination of PlayBit’s exploits showed that
they do indeed contain a kernel-pointer-leak primitive. Not only do the exploits contain such a
leak, the chosen leak primitive hints at a high level of understanding of the internals of
Windows. PlayBit directly accesses the Desktop Heap stored in user-mode, via the
Win32ClientInfo field stored in the Thread-Environment-Block (TEB).

Figure 6: Extracting information on the Desktop Heap, using TEB’s Win32ClientInfo.

9/18

As Microsoft gradually fixed the design issue that allowed for this pointer-leak, PlayBit had to
implement some updates along the way to allow this technique to continue to work. For
instance, Creators Update removed the ulClientDelta field from Win32ClientInfo ,
mandating that the exploit for CVE-2018-8453 calculate it manually. This technique was
finally patched by Microsoft in Windows 10 RS4.

The leak primitive enables PlayBit to learn the kernel addresses of the windows created
during the exploitation. In turn, this information is used in several phases during the
exploitation:

The addresses are used for pointing to / creating fake kernel objects.
The kernel memory shaping is measured by the distance between the leaked
addresses.
The exploits usually invoke a kernel shellcode, and we need to know where it is stored.

The last point is explained in more detail in the next section.

SMEP Bypass

Generation 0 – No Bypass

In the initial versions of the earlier exploits, such as the exploit for CVE-2013-3660 and some
versions of CVE-2015-0057, the exploit caused the kernel to execute a token-swapping
shellcode stored in user-mode.

Figure 7: PlayBit exploit scanning the EPROCESS in search for the token, as can be seen in
Cutter.

10/18

The downside of this form of privilege-elevation is that SMEP prohibits the kernel from
executing code that is stored in user-mode. Instead of changing the way the token-swap is
performed, PlayBit decided to add an additional layer that turns off SMEP. This way, the
problem is reduced to the same token-swap problem that earlier exploits already solved. A
classic academic solution.

Generation 1 – Kernel shellcode

In this set of exploits, an additional kernel shellcode was added. This bootloader code is
copied to kernel-space and stored as the “window name” of one of the windows corrupted by
the exploit. Upon execution, the code modifies CR4 to disable the SMEP support, and then
jumps back to the original user-mode payload.

Figure 8: Checking for kernel-mode, and masking out the SMEP-related bit out of CR4.

The exploit copies the payload to the kernel using the NtUserDefSetText syscall, which
explains why this syscall is included in the per-version configuration of all of the relevant
exploits.

Note that this SMEP bypass is based on the fact that the above code snippet can be
executed, in kernel-mode, even though it should have been a window name. The fact that
memory pools were flagged as “executable” (or more specifically, weren’t flagged as “non-
executable”), was used by many attackers. Eventually, Microsoft noticed this design flaw in
the kernel’s memory and introduced Non-eXecutable (NX) pools to the kernel.

Once again, PlayBit decided to overcome this added restriction using yet another reduction,
implemented in the exploit for CVE-2018-8453.

Generation 2 – Disabling the NX bit from the kernel shellcode

This additional change was more complicated than the previous one, as it also demanded
the use of Arbitrary-Read and Arbitrary-Write kernel primitives. While the use of these
primitives allows for a cleaner exploit to begin with, as Volodya was doing since 2015,
PlayBit only added it as an additional step in the reduction to the basic user-mode token-
swap payload.

11/18

During this step, the page table entries are traversed in search of the entry associated with
the kernel shellcode. Once found, the entry is masked-out of the XD (eXecute Disable) bit,
and stored back in the table. From this point on, the memory page containing the kernel
shellcode is executable, and thus the privilege-escalation chain can start.

Figure 9: Traversing the Page Table and removing the XD bit from the record of the kernel
shellcode.

An exploit framework

After finding enough samples that adhere to PlayBit’s exploit template for Windows memory
corruption LPEs, we decided to perform one more check. Using exploit-specific artifacts from
each of the exploits, we created an additional set of hunting rules and did one more search.

In this additional search, we found Ramnit samples which contain an exploit for CVE-2013-
3660, but with some changes:

When checking if the target is vulnerable or patched, instead of looking for the driver’s
modification date, the exploit searches for a specific patch id in the registry, as can be
seen in Figure 10 below.
PlayBit’s hash-based imported functions are no longer used; GetProcAddress() is
used instead.

12/18

Figure 10: A check for KB2850851 before exploiting CVE-2013-3660.

Our Ramnit sample exploits both CVE-2013-3660 (by PlayBit) and CVE-2014-4113 (using
the same exploit code originally found as a 0-Day). The original exploit for CVE-2014-4113
was part of an exploit framework in which the API passes a command-line argument, and
that command is executed as SYSTEM. As that wasn’t the original API for PlayBit’s exploit,
some adjustments were made and PlayBit’s exploits were re-adjusted to receive a
command-line argument to be executed once elevated.

https://www.fireeye.com/blog/threat-research/2014/10/two-targeted-attacks-two-new-zero-days.html

13/18

When further investigating this new framework, we saw that it matched FireEye’s report on
the Dyre Banking Trojan. As Dyre exploited CVE-2013-3660 and CVE-2015-0057, both of
which were written by PlayBit, this means that during the lifetime of this exploit framework, it
included at least the following 3 exploits:

CVE-2013-3660 – PlayBit.
CVE-2014-4113 – 1-Day use of the original 0-Day exploit. Unknown author.
CVE-2015-0057 – PlayBit.

Aside from connecting PlayBit to this now defunct exploit framework, we can deduce
additional conclusions regarding our exploit-based hunting technique:

Our hunting is mainly based on an actor’s given exploit template.
When working with other associates, and collaborating on a given exploitation
framework, this template is replaced with the agreed-upon design modifications.
Given an initial exploitation framework sample, it is easier to find similar framework-
related samples, than it is to find independent exploits of one of the authors who
contributed to this framework.

Essentially, both the attribution and the hunting are more complicated as the exploit
framework masks many telltale-signs of the individual exploit developer.

Intelligence Report

In contrast to the previous blog post on Volodya, we decided this time to perform an
additional “Background Check” on PlayBit. Being unfamiliar with this actor, we thought it
would be a good chance to better understand how they work. In addition, we could test how
well our exploit-based hunting technique works by comparing the found list of advertisements
to the actual samples we caught.

PlayBit (a.k.a luxor2008)

Funnily enough, attributing the exploits to our exploit writer was quite simple. It turns out that
alongside the use of numerous underground forums, there are also public YouTube channels
advertising the actor’s exploits.

https://www.fireeye.com/blog/threat-research/2015/07/dyre_banking_trojan.html

14/18

Figure 11: A screenshot from one of PlayBit’s YouTube channels.

For some unknown reason, there are actually two YouTube channels: one for earlier exploits,
and another one (still active) for more recent exploits. As the videos publicly state which CVE
is being exploited, the attribution process was very short.

When trying to learn more about this actor, we only found a single slim report. Therefore, we
decided to include a detailed profile of the actor in this blog post.

The Actor’s Advertisements

Aside from the YouTube channels we mentioned earlier, the actor used multiple platforms to
advertise the vulnerabilities.

https://www.lookingglasscyber.com/blog/zero-day-vulnerabilities-an-inside-look-at-luxor2008/

15/18

Figure 12: Forum advertisement for CVE-2019-1069.

Whether the ads were placed on underground forums, YouTube, or even Pastebin, they all
shared a common template:

“

Ring0 LPE Exploit CVE-2015-0057 [All win versions]
 Vulnerability: CVE-2015-0057 (Published: February 10, 2015)

 Supported versions: XP/2003/Vista/2008/W7/W8/2012/W8.1/2012R2/W10TP
 Supported architecture: x86/x64

 Development stage: v1.1.1900 (stable)
 Shellcode size x86: 13Kb

 Shellcode size x64: 16Kb

Bypass all possible Windows security defences:

SMEP
Kernel DEP
KASLR
Integrity Level (escape from Low)
NULL Dereference Protection
UAC

There are no public POCs on this vulnerability. Shellcode has ready for immediate use in
your projects. The test demo sources are supplied. Exploit is extremely stable, no bsods or
error messages. Can be run under Guest account from Low Integrity Level.

Successfully bypasses proactive defences of:

16/18

KIS 2015
Avast IS 2015
ESET Smart Security 8

“

These extensive ads emphasize the fact the exploit isn’t detected by AV vendors, and that
public POCs do not exist or are of poor quality when compared to the exploit. The wide
range of supported Windows versions is also evident: If a given Windows version is
vulnerable to the exploited vulnerability, you can be sure that PlayBit’s exploit supports it.

Years of activity

We successfully traced PlayBit to various exploits and tools going as far back as 2012. On
average, the actor sells a single Windows LPE 1-Day exploit per year, and that includes
recent exploits for both CVE-2019-1069 (a SandboxEscaper vulnerability) and CVE-2020-
0787 (yet another logical vulnerability).

Transition to exploit logical vulnerabilities

While we caught samples of 5 memory-corruption Windows LPE vulnerabilities, the ads
show that in the last year or so the actor shifted their interest. Both of the recently sold
exploits are now more logical in nature, and may indicate a trend in the exploitation market.
Knowing that PlayBit’s previous exploits relied on a design flaw that was fixed by Microsoft in
Windows 10 RS 4 (released on April 30, 2018), it could be that Microsoft’s mitigations are
one reason behind this shift in focus.

Pricing

As previously reported by Kaspersky, Volodya sold 0-Day exploits at prices ranging from
$85,000 (exploit from 2016) up to $200,000. While we don’t know what the selling price was
for 1-Day exploits, we expected prices roughly in the same neighborhood. However, when
going over the different ads published by PlayBit, we saw a wide pricing gap when compared
to Volodya.

All Windows LPE exploits were advertised with a price tag ranging between $5,000 and
$10,000. We even found the actor using a fake nickname and claiming to sell a 0-Day
exploit, which was in fact the 1-Day exploit for CVE-2016-7255. The asking price for this “0-
Day” was still $35,000, way below the $85,000 for which Volodya sold the real 0-Day exploit
of the same vulnerability. In addition, we couldn’t find any pricing trend for the different
exploits, as all pretty much sold for the same price from 2015 to 2020.

Intelligence Report Wrap-up

https://twitter.com/sandboxbear?lang=en
https://www.zdnet.com/article/mysterious-hacker-has-been-selling-windows-0-days-to-apt-groups-for-three-years/

17/18

Although not intuitive at first, the fact that we didn’t see ads for other CVEs (of the same
exploitation template) is actually good news. It means that our technique worked better than
expected: A fully technical hunt for PlayBit’s exploits, without any intelligence, still managed
to cover all of their exploits that originated from the exploit template with which we initially
started.

Aside from Windows LPEs, we found two more interesting tools that PlayBit is
developing/collaborating with.

Avatar Rootkit

ESET mentioned this in 2013.
Uses the same hash-based imports that is still a feature of PlayBit today:
get_module_by_hash() / get_func_by_hash() .

This Pastebin ad specifically mentions PlayBit as an associate.

EternalBlack

Self-implemented EternalRomance
Again, uses features seen in all of the rest of the samples.

Figure 13: Message printed when executing EternalBlack, developed by PlayBit.

The Customers

The “customers” i.e. malware who use PlayBit’s exploit, either directly or by using an exploit
framework, are all crimeware. Most prominent are the popular ransomware that use PlayBit’s
exploits to escalate their privileges before encrypting the victim’s disk. These ransomware
include Maze, Locky, LockCrypt, and REvil (Sodin, Sodinokibi). Other malware are popular
Trojans like Ramnit and Dyre.

Conclusion

https://www.welivesecurity.com/2013/05/01/mysterious-avatar-rootkit-with-api-sdk-and-yahoo-groups-for-cc-communication/
https://pastebin.com/maPY7SS8
https://www.microsoft.com/security/blog/2017/06/16/analysis-of-the-shadow-brokers-release-and-mitigation-with-windows-10-virtualization-based-security/?source=mmpc

18/18

In this article, we demonstrated another case in which we were able to fingerprint an exploit
developer, without prior knowledge about the developer or any public profiles. All we started
with was a single sample. We showed how PlayBit, similar to Volodya, has a unique set of
choices, approaches, methodologies and combinations of implementation decisions. By
gathering all the pieces, we managed to understand and profile PlayBit, as well as attribute
samples to the actor. We also took the opportunity to compare PlayBit to Volodya, and
highlight the differences between their coding styles and preferences.

Aside from the technical aspects, this is the first time that PlayBit has been thoroughly
described by researchers. We took a look at the exploit market, the advertisements, YouTube
channels and collaborations between exploit developers and malware authors. Developing
an exploit is just the beginning. The next step is to monetize the “product” and sell the
customers a high-quality piece of software that is relatively stable and supports as many
versions as possible.

Following our success with profiling both PlayBit and Volodya, we believe that our research
methodology can be used to identify additional exploit writers as well. We therefore
recommend that other researchers try our approach and add it to their toolbox.

Recommendation for Protection

Check Point Threat Emulation provides protection against this threat:

Wins.Generic.G

Appendix – IOC Table

CVE-2013-3660:
9f1a235eb38291cef296829be4b4d03618cd21e0b4f343f75a460c31a0ad62d3

CVE-2015-0057:
1b3524fd57e4e836778d4af4579b6d986e7475ee6a1a7818ead0fc59efbdc2ac

CVE-2015-1701 (Also contains an exploit for CVE-2015-0057):
8869e0df9b5f4a894216c76aa5689686395c16296761716abece00a0b4234d87

CVE-2016-7255:
5c27e05b788ba3b997a70df674d410322c3fa5e97079a7bf3aec369a0d397164

CVE-2018-8453:
50da0183466a9852590de0d9e58bbe64f22ff8fc20a9ccc68ed0e50b367d7043

Avatar Rootkit:
d1a8d74aadb10bff4bfda144e68db3e087ec4fee82cd22df22839fd5435d0d37

EternalBlack:
effa8e38838ba7d2c58b2731c086ac72d639f9d2ab8184bc8cf05d72c5444dd1

https://research.checkpoint.com/2020/graphology-of-an-exploit-volodya/
https://www.checkpoint.com/products/threat-emulation-sandboxing/

