
1/14

Gacrux – a basic C malware with a custom PE loader
krabsonsecurity.com/2020/10/24/gacrux-a-basic-c-malware-with-a-custom-pe-loader

Posted on October 24, 2020
I was given two samples of the malware known as Gacrux recently. Due to the nature of the
source of the files, I won’t be able to share the hash or the files publicly, but it should be
relatively easy to recognize this malware with the information provided here. The loader
was developed in C and compiled with Visual Studio 2017. The malware is sold on certain
forums starting from around August 2020, and appears to be heavily inspired by Smoke
Loader.

Anti-analysis tricks

Gacrux features a few anti-debugging and anti-VM tricks. The first trick involves the
following jumps, which leads IDA to inaccurately disassembling the instructions after.

This can easily be fixed by patching the bytes following the pair of jumps with nops. After
pattern scanning and fixing this, the file can mostly be decompiled with IDA easily.

https://krabsonsecurity.com/2020/10/24/gacrux-a-basic-c-malware-with-a-custom-pe-loader
https://krabsonsecurity.com/2020/10/24/

2/14

The next trick involves fake returns that disrupt IDA’s function analysis. Like before, it is
easily dealt with by NOPping out the offenders.

The final obfuscation involves two functions being encrypted on disk. The decryption done
right before the function is called, and the function is re-encrypted shortly afterward.

3/14

The decryption/encryption works by finding two patterns within the function that signifies the
beginning and end of the encrypted region. The code in between is then XORed with a key
that is passed to the function.

The bot checks the available disk space and RAM size as its anti-VM check. This is easily
mitigated by breakpointing on and modifying the return value, or simply nopping out the
checks.

4/14

String encryption

Strings are stored in a function which decrypts them based on the ID that was passed in.

The list of strings for the outer module can be found here.

Overall execution flow

https://gitlab.com/krabsonsecurity/gacrux/-/blob/master/str1.txt

5/14

6/14

Anti-debug and anti-VM tricks

There are some anti-debug tricks littered throughout the code. They are for the most part
mixed into important functions and will crash the process if a debugger or VM is detected.
The first trick is located in the malloc function, it checks the BeingDebugged member of the
PEB, if it is set the function will return the size of the requested buffer instead of allocating
it. In addition to this, it checks for blacklisted modules and exits if any are present.

7/14

The second trick increments the PID of explorer if the system has too little RAM or disk
space – often a sign of virtualization. This would of course result in NtOpenProcess failing
and prevent execution from proceeding any further.

The injected initialization shellcode/custom PE loader (which will be explored in further
details later) also performs a check of the BeingDebugged and NtGlobalFlag members of
the PEB.

Syscall

The syscall module is almost entirely copied from an open-source crypter.

8/14

The hashing algorithm has been changed to djb2, with the output being xored with a
constant value.

Persistence

Persistence is achieved via a Window Procedure that is repeatedly called inside the context
of explorer.exe. This procedure checks the installed file and creates the startup .lnk file in
the startup directory if it is not present.

9/14

Code Injection

For code injection, Gacrux uses NtCreateSection/NtMapViewOfSection as the write
primitive on 32-bit environments, and NtAllocateVirtualMemory/NtWriteVirtualMemory on
64-bit environments, both done via direct syscalls. For the execution primitive, it abuses
SetPropA as detailed by Adam in his article “PROPagate – a new code injection trick“. This
is copied from open-source implementations, as evidenced by the way the function pointer
is set up.

https://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/

10/14

The injection is used to invoke a tiny custom PE loader, which’s description follows.

Custom PE Loader and format

This is the most interesting feature of Gacrux. The code injected into explorer is not a
regular PE file but rather one with a customized PE header and a customized loader.

The loader first has some antidebug checks.

Then, it resolves 3 APIs and uses them to process the import table and fix up relocation.

11/14

Finally, it flushes the instruction cache and calls the entrypoint.

The PE Loader utilizes a custom PE format, the Kaitai descriptor for it can be found here.
With the information listed, we can easily restore the original PE file.

https://gitlab.com/krabsonsecurity/gacrux/-/blob/master/gacrux_32.ksy

12/14

Modules

I do not have access to any module files and as such cannot describe them. The module
loader is entirely copy-pasted from the MemoryModule project on Github.

Networking

Networking uses WinInet. This is done from the context of explorer after injection of course.

https://github.com/fancycode/MemoryModule

13/14

Final remarks

As we can see, there is not much that is special when it comes to Gacrux. It copies a lot of
public code with slight modifications and is filled with bugs (which I have not described in
the article as I have no intention of helping the author fix them). The custom PE format was
quite interesting to look at, and I had some fun reverse engineering that.

14/14

Comments (5)

1. mePosted on 12:22 pm October 26, 2020
any hashes?

KrabsOnSecurityPosted on 10:42 am November 27, 2020
None

2. GodPosted on 12:13 am June 11, 2021
Krabs give me a fucking discord to join

KrabsOnSecurityPosted on 5:45 am June 17, 2021
who are you again? reply with contact method ty

3. unboxedmindPosted on 9:05 pm August 12, 2021
The custom header is a cool twist - thanks for the write up.

View Comments (5) ...

