
1/11

Sean Gallagher October 21, 2020

LockBit uses automated attack tools to identify tasty
targets

news.sophos.com/en-us/2020/10/21/lockbit-attackers-uses-automated-attack-tools-to-identify-tasty-targets

Earlier this year, we analyzed the inner workings of LockBit, a ransomware family that
emerged a year ago and quickly became another player in the targeted extortion business
alongside Maze and REvil. LockBit has been quickly maturing, as we observed in April, using
some novel ways to escalate privileges by bypassing Windows User Account Control (UAC).

A series of recent attacks detected by Sophos provided us with the opportunity to dive
deeper into LockBit’s tools, techniques and practices. The actors behind the ransomware
use a number of methods to evade detection: calling scripts from a remote Google
document, using PowerShell in a way that may foil some efforts at monitoring and logging to
establish a persistent backdoor—by using renamed copies of PowerShell.exe. The attack
scripts also attempt to bypass Windows 10’s built-in anti-malware interface, directly applying
patches to it in memory. Internally, we’ve referred to this style of LockBit attack as
“PSRename.”

Based on some artifacts, we believe that some components of the attack were based on
PowerShell Empire, the PowerShell-based penetration testing post-exploitation tool. Using a
series of heavily obfuscated scripts controlled by a remote backend, the PowerShell scripts
collect valuable intelligence about targeted networks before unleashing the LockBit
ransomware, checking for signs of malware protection, firewalls and forensic sandboxes as

https://news.sophos.com/en-us/2020/10/21/lockbit-attackers-uses-automated-attack-tools-to-identify-tasty-targets
https://news.sophos.com/en-us/2020/04/24/lockbit-ransomware-borrows-tricks-to-keep-up-with-revil-and-maze/

2/11

well as very specific types of business software—particularly, point-of-sale systems and tax
accounting software. The series of attack scripts only deploys ransomware if the fingerprint
of the target matches attractive targets.

Aside from the initial point of compromise and registry key entries, these attacks left little in
the way of a file footprint for forensic analysis. The ransomware was pulled down by scripts
and loaded directly into memory, and then executed. And the attackers did a thorough
cleanup of logs and supporting files when the attack was executed.

These highly automated attacks were fast—once the ransomware attack was launched in
earnest, LockBit ransomware was executed across the targeted network within 5 minutes,
leveraging Windows administrative tools.

Layers of obfuscation

The organizations hit in the eight attacks we analyzed were smaller organizations with only
partial malware protection deployed. None of them had public Internet facing systems on
their networks, though one had an older firewall with ports open for remote administration by
HTTP and HTTPS.

It’s not clear what the initial compromise was across these organizations, as we had no
visibility into the event. But it appears all of the activity in the attack we analyzed here were
initiated from a single compromised server within the network used as the “mothership” for
the LockBit attack.

While analyzing one of the attacks, we found traces of a number of PowerShell scripts that
were launched against systems that had malware protection in place. The scripts gave a
clear picture of the degree of automation of the attack, and also demonstrated the lengths
the LockBit operators had gone to make forensic analysis of their attacks as difficult as
possible.

In the first stage of the attack, a PowerShell script connects to a Google Docs spreadsheet,
retrieving a PowerShell script encoded in Base64 from the body of the spreadsheet.

3/11

The code is hidden in cell B1 of this Google Sheets document.
The script fetches the contents of cell B1 in the sheet and executes it. The retrieved script
makes a copy of PowerShell in the system’s TMP folder, and executes Base64-encoded
contents with that copy:

The code concealed in the Google Sheets document’s cell, with Base64-encoded content.

The contents of the encoded section.

https://news.sophos.com/wp-content/uploads/2020/10/bad_sheet.png
https://news.sophos.com/wp-content/uploads/2020/10/sheet-script-encoded.png
https://news.sophos.com/wp-content/uploads/2020/10/decoded-sheet-script.png

4/11

Decoding the script reveals it uses a System.Net.ServicePointManager object to create a
session connecting to hxxps://142[.]91.170.6, downloading yet another stream of encoded
script. This much larger chunk of code contains a function that creates a persistent backdoor.
Using a template, the function selects a new name and path to create copies of
PowerShell.exe and the Microsoft Scripting Host mshta.exe, as well as fictional agent
descriptions to make them look like other legitimate processes. It also creates a Task
Scheduler manifest file that uses the renamed executables, scheduling a VBscript command
to be executed by the scripting host that invokes the backdoor with the renamed PowerShell
executable:

https://news.sophos.com/wp-content/uploads/2020/10/genshurt_1_lockbit_psrename.png
https://news.sophos.com/wp-content/uploads/2020/10/genshurt2_lockbit_psrename.png

5/11

We also found the LockBit attackers use another form of persistent backdoor, using an LNK
file dropped into Windows’ startup commands folder. The LNK file launches Microsoft
Scripting Host, to run a VBScript, which in turn executes a PowerShell script to read data
stored in the link file itself encoded in Base64.
The extra LNK bytes decode to yet another encoded chunk of PowerShell, decoded below:

PowerShell code stored in the end of the LNK file used by Lockbit to create a persistent
backdoor.
The script connects to the remote server and pulls down the backdoor script as a stream,
then executes the downloaded script with the command line interpreter.

Empire building

The backdoor stub downloads more obfuscated code, establishing a proxy connection to the
command and control server, and creating a web request to pull down more PowerShell
code. One of the modules downloaded is a collection functions used to perform
reconnaissance on the targeted system and to disable some of its anti-malware capabilities.

One of the functions in the module aims to disable Microsoft Windows’ Antimalware Scan
Interface (AMSI) provider by changing its code in memory. The backdoor uses a script to
load a Base64-encoded DLL into memory, and then executes a PowerShell code that
invokes C# code calling the DLL’s methods to patch the copy of the AMSI library already in
kernel memory. This code is repeated in another module discovered during our analysis:

https://news.sophos.com/wp-content/uploads/2020/10/lnk_encoded_script.png

6/11

A

portion of the script used by LockBit actors to attempt to “patch” AMSI.
Another module downloaded by the backdoor checks for anti-malware software and artifacts
that indicate it is running on a virtual machine, but also checks for software that may indicate
the system is of greater value—using a regular expression to look for tax accounting and
point-of-sale software, specific web browsers, and other software:

https://news.sophos.com/wp-content/uploads/2020/10/patch_script_amsi1.png

7/11

VM detection function in the scripts downloaded by the LockBit backdoor.

Code that searches the WIndows registry for software that is interesting to the LockBit
attackers.

https://news.sophos.com/wp-content/uploads/2020/10/function_nmicz_lockbit_psrename.png
https://news.sophos.com/wp-content/uploads/2020/10/function_bmh_lockbit_psrename.png

8/11

The regular expression parses the local Windows registry, looking for matches to the
following keywords:

Keyword Target

Opera Opera browser

Firefox Mozilla Firefox browser

Chrome Google Chrome browser

Tax Search for any tax-related software process

OLT OLT Pro desktop tax software

LACERTE Intuit Lacerte tax software for accountants

PROSERIES Intuit ProSeries tax software

Point of Sale Search for point-of-sale (retail) software

POS Search for point-of-sale (retail) software

Virus Search for anti-malware processes

Defender Microsoft Windows Defender

Secury

Anti Search for anti-malware processes

Comodo Search for Comodo antivirus or firewall

Kasper Kaspersky anti-malware software

Protect Search for anti-malware processes

Firewall Search for firewall processes

If and only if the fingerprint generated by these checks indicate the system is what the
attackers are looking for, the C2 server sends back commands that execute additional code.

9/11

Wrecking crew

Depending on what responses come back from the C2, the backdoor can execute a number
of tasks, designated by a numeric value. They include simply forcing a logoff, grabbing hash
tables to apparently exfiltrate for password cracking, attempting to configure a VNC
connection, and attempting to create an IPSEC VPN tunnel. These tasks are executed using
variables and modules pushed down by the C2, obfuscating most of their functionality.

https://news.sophos.com/wp-content/uploads/2020/10/LockBit-1-1.png

10/11

Instrumented backdoor script used by LockBit.
In the attacks we analyzed, the PowerShell backdoor was used to launch the Windows
Management Interface Provider Host (WmiPrvSE.exe). Firewall rules were configured to
allow WMI commands to be passed to the system from a server—the initially compromised
system—by creating a crafted Windows service.

And then, the attackers launched the ransomware via a WMI command, filelessly—without
dropping a single file artifact on the disk of the targeted systems. In one case, the WMI
commands used port 8530 to reach back to the initially compromised server—the port used
for Windows Server Update Service. The server was running Internet Information Server but
had never been fully configured to run WSUS. The .ASP file on the server contained a key
which was loaded into memory and used to unlock additional operations by the dropper code
and trigger the ransomware.

All of the targets were hit within five minutes over WMI. The server-side file used to distribute
the ransomware, along with most of the event logs on the targeted systems and the server
itself, were wiped in the course of the ransomware deployment. Sophos Intercept X stopped
the attack on systems it was installed upon, but other systems did not fare as well.

A moving target

https://news.sophos.com/wp-content/uploads/2020/10/lockbit_backdoor_menudriven.png

11/11

It’s not a surprise to see yet another ransomware operator using repurposed code from the
offensive security tools world—we recently saw Ryuk using Cobalt Strike post-exploitation
tools to great effect. PowerShell Empire is easily modified and extended, and the LockBit
crew appears to have been able to build a whole set of obfuscated tools just by modifying
existing Empire modules.

It’s also not a real surprise that ransomware actors would want to target AMSI, the interface
used by many anti-malware tools (including Sophos’) to monitor potentially malicious
processes running on Windows 10. By combining the use of native tools, logging evasion,
and the blinding of AMSI, the LockBit gang has made it increasingly difficult to detect and
defeat their attacks once they’ve established a foothold.

The only way to defend against these types of ransomware attackers is to have defense in
depth and to have consistent implementation of malware protection across all assets. Not
having a handle on what services are exposed on a network makes modeling for threats like
these difficult. And if services are misconfigured, they can easily be leveraged by attackers
for ill purpose.

Sophos detects these abuses of PowerShell and the LockBit ransomware. A list of IOCs for
these attacks is posted on the Sophos GitHub here.

SophosLabs would like to acknowledge the contributions of Vikas Singh, Felix Weyne,
Richard Cohen and Anand Ajjan to this report.

https://news.sophos.com/wp-content/uploads/2020/10/lockbit-killchain.png

