
1/19

New Vizom Malware Discovered Targeting Brazilian Bank
Customers with Remote Overlay Attacks

securityintelligence.com/posts/vizom-malware-targets-brazilian-bank-customers-remote-overlay/

Home&nbsp/ Banking & Finance
New Vizom Malware Discovered Targets Brazilian Bank Customers with Remote Overlay
Attacks

https://securityintelligence.com/posts/vizom-malware-targets-brazilian-bank-customers-remote-overlay/
https://securityintelligence.com/
https://securityintelligence.com/category/topics/banking-financial-services-industry/


2/19

Banking & Finance October 19, 2020
By Chen Nahman co-authored by Ofir Ozer , Limor Kessem 11 min read
IBM Security Trusteer researchers have discovered a new malware code and active
campaign targeting online banking users in Brazil. The malware, coined “Vizom” by the team,
uses familiar remote overlay attack tactics to take over user devices in real time, as the
intended victim logs in, and then initiates fraudulent transactions from their bank account.

What we found interesting about Vizom, is the way it infects and deploys on user devices. It
uses ‘DLL hijacking’ to sneak into legitimate directories on Windows-based machines,
masked as a legitimate, popular video conferencing software, and tricks the operating
system’s inherent logic to load its malicious Dynamic Link Libraries (DLLs) before it loads the
legitimate ones that belong in that address space. It uses similar tactics to operate the
attack.

In this blog post we will provide further information about Vizom, going over the technical
details of its components and how it achieves the attacker’s objectives to steal money from
online banking users. It’s important to keep in mind that while Vizom currently operates in
Brazil, it can be adapted to target any other country in LATAM and in other parts of the world.

Recent Trends in Banking Malware

The COVID-19 pandemic has changed the world in many ways and has especially affected
the ways we work. Since so many people have shifted to working from home, and almost
everyone is using videoconferencing software to replace in-person meetings with both
friends and colleagues, Vizom uses the binaries of a popular videoconferencing software to
pave its way into new devices.

To operate the attack, Vizom uses the files of yet another legitimate software, this time the
Internet browser Vivaldi, which helps to disguise the malware’s activity and avoid detection
from operating system controls and anti-virus software.

Vizom’s Creative Way In

A bird’s eye view of how Vizom operates shows the main components of the attack:

https://securityintelligence.com/category/topics/banking-financial-services-industry/
https://securityintelligence.com/author/chen-nahman/
https://securityintelligence.com/author/ofir-ozer/
https://securityintelligence.com/author/limor-kessem/
https://securityintelligence.com/articles/vendor-management-remote-work/


3/19

Figure 1: Vizom’s infection flow and fraud method

Vizom’s DLL Hijacking

Typically delivered by spam, once Vizom is downloaded by an unwitting user, it finds its way
into the AppData directory and launches the infection process. The following file list shows
what Vizom’s dropper unpacks after it initially reaches a new device. These files come
packed into a .zip archive, which is deleted after the files are extracted to the %temp% folder
on the target system.

File Path Purpose

C:\Users\
<USERNAME>\AppData\Local\Temp\zCrashReport.dll

“Crash Handling Module”

C:\Users\
<USERNAME>\AppData\Local\Temp\zTscoder.exe

Legitimate videoconferencing
software’s video recording
converter

C:\Users\
<USERNAME>\AppData\Local\Temp\86970492.vbs

Malware script to obtain statistics
on infections

C:\Users\
<USERNAME>\AppData\Local\Temp\a2start.old

Encrypted malware string
dictionary

C:\Users\
<USERNAME>\AppData\Local\Temp\Cmmlib.dll

Malicious DLL (downloads
second payload)

C:\Users\
<USERNAME>\AppData\Local\Temp\DuiLib.dll

Videoconferencing software DLL

C:\Users\
<USERNAME>\AppData\Local\Temp\libeay32.dll

“OpenSSL Shared Library”



4/19

C:\Users\
<USERNAME>\AppData\Local\Temp\reslib.dll

Videoconferencing software DLL

C:\Users\
<USERNAME>\AppData\Local\Temp\ssleay32.dll

“OpenSSL Shared Library”

The above file list contains a mix of legitimate files and the malware’s own resources. What
Vizom aims to do is have the main, and legitimate binary, load its malicious DLLs. It does
that by naming its own Delphi-based DLLs with DLL names the legitimate software expects
to find in its directory. By doing that, Vizom tricks the operating system into running malware
as the child process of a benign, videoconferencing file.

How can that take place? By relying on known Windows mechanisms.

How Vizom Piggybacks on Windows

The Windows operating system (OS) works in certain ways when it comes to loading files
from its various directories. When an application or service is called to start running, the OS
looks for applicable DLLs in a given order. Many times, DLLs are called without a fully
qualified file path, which makes Windows search for the correct location. It does that by
looking in a few places in the following order:

1. It searches the directory from which that application was called and/or loaded.
2. It searches in C:\Windows\System32.
3. Searches in C:\Windows\System.
4. Goes up and searches in C:\Windows.
5. Searches the current working directory.
6. Searches directories in the entire system’s PATH environment variable.
7. Finally, it searches directories in that user’s PATH environment variable.

In our case, Vizom’s malicious DLL was saved in the same directory of the executable that
loaded it and Windows allowed it to load via the main executable. In this case, the malicious
DLL’s name was taken from a popular videoconferencing software: “Cmmlib.dll.”

To make sure that the malicious code is executed from “Cmmlib.dll,” the malware’s author
copied the real export list of that legitimate DLL but made sure to modify it and have all the
functions direct to the same address – the malicious code’s address space.



5/19

Figure 2: Cmmlib.dll export list showing the same address for all functions

Vizom Misuses Binaries to Gain a Foothold

The next step for the dropper is to execute another legitimate binary, this time it’s
“zTscoder.exe” via the command line prompt. This file will load the malicious DLL charged
with downloading the second payload.

“C:\Windows\SysWOW64\cmd.exe” /k cd “C:\Users\<USERNAME>\AppData\Local\Temp\”
&& zTscoder.exe && exit

At this point, Vizom downloads the second payload, another .zip archive, from a remote
server that happens to be hosted on a public cloud bucket. These addresses can change
every campaign.

hxxps://galinhaborabora[.]s3[.]amazonaws.com/felicidadeviver[.]zip

This archive contains a legitimate browser application called Vivaldi; a browser program
based on Chromium. Once again here, after extracting all files from the archive, Vizom then
deletes it.

%USERPROFILE%\AppData\Local\Vivaldi



6/19

Vivaldi is dropped to the target system alongside the malware’s malicious DLLs and will be
used as part of operating the attack. The first step is loading Vizom’s DLL from the main
Vivaldi folder:

C:\Users\User\AppData\Local\Vivaldi\vivaldi_elf.dll

Figure 3: vivaldi_elf.dll is loaded to the “Vivaldi” process

Vizom’s Persistence Mechanism

To create a persistence mechanism that will allow it to keep being loaded by an unwitting
user, Vizom modifies browser shortcuts so that they will all lead to its own executables and
keep it running in the background no matter what browser the user attempted to run.

Application opened Vivaldi File Name

Mozilla Firefox vivaldi_2.6.1566.40.exe

Google Chrome vivaldi_2.6.1566.41.exe

Internet Explorer vivaldi_2.6.1566.42.exe

Opera vivaldi_2.6.1566.43.exe

Bank-specific secure browser (1) vivaldi_2.6.1566.44.exe

Bank-specific secure browser (2) vivaldi_2.6.1566.45.exe

Microsoft Edge vivaldi_2.6.1566.46.exe



7/19

In the following image we show an example of a modified .LNK shortcut file that sets Vivaldi’s
poisoned file to open instead of Google Chrome.

Figure 4: Chrome Link file used by Vizom for persistence

This does not mean that the victim will not see the intended browser open. The
corresponding browser program will be launched by the malicious Vivaldi process as a child
process and the user will not have reason to suspect that something is amiss.

Figure 5: Vivaldi launches Chrome as a child process



8/19

In the background, Vizom, disguised as a Vivaldi process, continues to run, monitoring the
user’s browsing and waiting for them to access their bank account. If the window title’s name
matches Vizom’s target list, it will go into action and alert the fraudster to connect remotely to
that victim’s device.

Dropping the Banking Malware Payload

Vizom is based on four major components that allow it to operate the fraud cycle after it is
installed. Those components are:

1. Browser monitoring
2. Communication with the attackers’ (C2) server in real-time
3. Remote access Trojan
4. Malicious overlay screens module

To get some statistics on the botnet’s size, Vizom runs the following script:

Dim o
Set o = CreateObject(“MSXML2.XMLHTTP”)

o.open “GET”, “http://sstatic1.histats.com/0.gif?4390758&101”, False

o.send

Vizom Starts Watching the Browser

After it begins fully running on an infected device, Vizom, like other overlay malware,
monitors the user’s online browsing, waiting for a match for its target list. Since Vizom does
not hook the browser like other, more sophisticated malware typically does, it monitors
activity by comparing the window title the user is accessing to key target strings the attacker
is interested in. This comparison happens continually in a loop.

In the image below, Vizom uses the function TwBuilding_obtainLines to decrypt the bank
names it targets. The decrypted string is compared to the active browser window title the
user is viewing.



9/19

Figure 6: Vizom window tab monitoring and string comparison

The windows title acquisition is enabled by using the function GetWindowText:

Figure 7: Vizom’s window title acquisition function

Upon finding a bank name match, Vizom moves to the next stage and informs the attacker
that an infected device is accessing a targeted bank’s website.

Banking Malware Communicates With Attacker’s C2 Server

To alert the attacker to an opening banking session, Vizom uses a TCP socket and connects
to the attacker’s server. The communication with the C2 server is a reverse shell where the
infected machine communicates back to the attacking server where a listener port receives
the connection.



10/19

In Vizom’s case, the connection is based on Delphi’s TClientSocket object. This object gets
the obvious address and port in order to connect. In addition to do that, the object also
receives three functions that handle different aspects of the connection:

Connect is used for the first message, which is “openconn.”
Error is for error handling, and it’s the standard “terminate socket” function.
Read is the command list function — it processes every command received from the
C2 server and executes the desired action.

Figure 8: Socket creation function initiated

Vizom’s communication with the C2 server is encrypted with AES256 using Delphi’s
TCryptographicLibrary. In this library the decryption flow is different from regular AES
decryption:

The encrypted data is also Base64 encoded, so first we need to decode it to get the
AES encrypted buffer.
The Delphi TCryptographicLibrary doesn’t have key restrictions like a normal AES
encryption (32 bytes for AES256 for example) because it generates a key per a given
string.



11/19

The key generation process is as follows:
Vizom uses a SHA-1 hash on the given string it wants to encrypt
It adjusts the length of the key to match the AES key restriction. In Vizom’s case
we’d need a 32-byte key because it uses AES256 encryption. To adjust the
length, the key generation function shown below cuts the hash to the requested
length when it’s longer than the required length, and if it’s short, it appends bytes
to the beginning of the hash until the required length is achieved.

The decryption takes place per the normal AES process, using the buffer and generated key.
The Python code snippet shown below demonstrates that:

Figure 9: Python decryption code using Python’s secure message HashLib module and
Crypto.Cipher

Each message sent between the banking malware on the infected device and the attacker’s
C2 server contains the encrypted data and the key set apart by a semi-colon (;). The
malware holds a hardcoded key — TjH^/nu%+.SiOfKR”Bo. One example is shown below:

C2 server sends message

IYtuBnJ8ZUXYVD2UmPxhHg==;TjH^/nu%+.SiOfKR”Bo

Malware actions

The malware will use TjH^/nu%+.SiOfKR”Bo as the key, then apply SHA-1 to the key and
normalize the key length. Since SHA-1 produces a 20-byte hash value, 12 first bytes will
be added for the key to make it 32 byte long.



12/19

Next step

The encrypted text IYtuBnJ8ZUXYVD2UmPxhHg== would be decoded by Base64 and
then further decrypted using AES256 with the key generated.

Result

In the example we provided here, the malware would receive the “framewinc” command
which instructs it to deploy overlay screens.

How Vizom Uses Remote Access and Control (RAT)

The central component of any remote overlay malware is the ability it lends its operator to
take control of the infected device without the user’s consent. After gaining access remotely,
the attacker can use overlay screen to manipulate the user, keep them unable to control the
online session they initiated, and trick them into providing additional details that can help the
attacker complete fraudulent transactions from their bank account.

Vizom’s remote control capabilities rely on Windows API functions. For example, the Vizom
command “movesys” moves the mouse cursor and emulates clicks by using the
SetCursorPos and Windows’ mouse_event APIs.



13/19

Figure 10: Mouse movement and clicks in Vizom

To add keyboard control, Vizom uses the “inputkb” command and launches keyboard
keystrokes using the keybd_event API.



14/19

Figure 11: Keyboard keystrokes via keybd_event API

Banking Malware Grabs Screenshots From an Infected Device

For capturing screenshots from the infected device, Vizom uses two different tactics:

The default option is the PrintWindow API function which is the common way to take
screenshots on Windows machines.
The second option used here is the “settypebit” command which initializes the
Windows magnification library. This library is normally used for magnifying portions of
the screen and it is manipulated by Vizom as a screen capturing tool, most likely to
bypass some security controls that can block suspicious screen capture through
standard API functions. To return to the default method, the attacker would use the
“settypefull” command. Both functions change a Boolean global variable which is
checked every time the screenshot function is called.

Figure 12: The settypefull command – changes the global Var

Overlay Screen Module Gives Banking Malware Control

The last component, the overlay screen module uses a mechanism that’s somewhat different
from what is commonly used by similar malware codes.

To plaster full screen overlays on the infected user’s desktop, Vizom generates an HTML file
from encrypted strings, then opens it with the “Vivaldi” browser in application mode. This
mode allows the application to be executed on a single web page without the typical
browser’s user interface, preventing the infected victim from taking on-screen actions. This is
probably one of the reasons the attacker picked this specific browser’s files.



15/19

Figure 13: Overlay HTML file

The images Vizom uses are retrieved from a public cloud storage bucket from an account
that is either compromised or set up for temporary use by the attackers.

Vizom Activates a Keylogger

To grab passwords and information from the infected device, Vizom also features a
keylogging module called “activeanalitycs” – yes, there is a typo in the module name. This
function uses GetAsyncKeyState function to get keyboard data and send the information to
the attacker’s C2 server. This takes place repeatedly in 10 second intervals.

The keylogging operation is being handled by 2 Delphi Timers. Delphi Timers gives the
programmer the ability to use sequential functions that will occur on a set time cycles. For
instance, the Windows title scanning mentioned earlier is not in a “While True” loop – it is
being operated by a Delphi timer.

How Vizom Watches Keystrokes

The first timer, called “TwBuilding_L5pingT”, is the logger’s timer. It is executed every
millisecond and uses the GetAsyncKeyState Windows function to find which key is being hit.
The results are logged to a global variable string – every keystroke being added to the string.



16/19

Figure 14: Snippet from logger timer – adding the key pressed to the global variable

The second timer is called “TwBuilding_L4pingT” and is the data send timer. Every 10
seconds, the timer function executes, reads the global variable string, encrypts it and sends
it to the C2 server. After that the global variable string clears and is ready for the next
message.

Figure 15: Sending Timer snippet – the explained steps are highlighted



17/19

Vizom Joins Cybercrime Action in LATAM

The Remote Overlay malware class has gained tremendous momentum in the Latin
American cybercrime arena through the past decade making it the top offender in the region.
These malicious programs are spread widely to large numbers of users through malspam
and phishing campaigns. Once a potential victim is tricked into downloading the camouflaged
malware dropper, and executes it, the malware starts the deployment process all while
attempting to stay under the radar and not be blocked by security software and operating
system controls. This is not to say that this type of malware is very sophisticated, what it can
be, is quite creative.

Vizom hides inside legitimate executable, ensuring that the operating system would run its
malicious DLLs without questioning them.

At this time, Vizom focuses on large Brazilian banks, however, the same tactics are known to
be used against users across South America and has already been observed targeting
banks in Europe as well.

Vizom Indicators Of Compromise

Hashes

808ed13b13d31e116244e1db46082015 (Dropper EXE)

a555654f89aaf0d90a36c17e16014300 (Malicious DLL#1 – videoconferencing software)

1cd5806c5d6f9302d245ac0e5b453076 (Malicious DLL#2 – Vivaldi browser file)

C2 Server

18.234.42.30

Want to learn more about protection from new malware in 2020 like Vizom? Browse the IBM
Trusteer page on fraud protection.

Advanced Malware | Banking Malware
Chen Nahman
Security Threat Researcher, IBM Security (Trusteer)

Chen Nahman is a Security Threat Researcher at IBM Security (Trusteer). Chen is
experienced in malware analysis and advanced threat research. Prior to that C...

https://www.ibm.com/security/fraud-protection/trusteer
https://securityintelligence.com/tag/advanced-malware/
https://securityintelligence.com/tag/banking-malware/
https://securityintelligence.com/author/chen-nahman/
https://www.ibm.com/events/think%20


18/19

https://www.ibm.com/events/think%20


19/19

https://www.ibm.com/events/think%20

